Loss rate for a general Lévy process with downward periodic barrier

Zbigniew Palmowski Joint work with P. Świątek

Based on Soren's idea as it is in many of my papers...

Extraordinariness

Snails and central station

Reflected Lévy process

Reflected Lévy process

X_{t} - general Lévy process which is not subordinator models netto input to buffer of finite capacity K fluid queue

Reflected Lévy process

X_{t} - general Lévy process which is not subordinator
models netto input to buffer of finite capacity K fluid queue

$$
\begin{aligned}
& V_{t}=X_{t}-\sup _{0 \leq s \leq t}\left(\operatorname { m a x } \left(\operatorname { m i n } \left\{X_{s}-\boldsymbol{M}_{\substack{ }}^{\left.\left.\operatorname{mif}_{u \in[0, t]} X_{u}\right\}_{,} \inf _{u \in[s, t]} X_{u}\right)} \underset{\sim}{ }\right.\right.\right. \\
& \stackrel{D}{=} \sup _{s \in[0, t]} \max \left\{X_{t}-X_{s}, \inf _{u \in[s, t]}\left(I X_{t}-X_{t}\right)\right\}
\end{aligned}
$$

Reflected Lévy process

X_{t}-general Lévy process which is not subordinator
models netto input to buffer of finite capacity K fluid queue

$$
A_{t}
$$

models additional input which is not available on liquit basis

Reflected Lévy process

X_{t} - general Lévy process which is not subordinator
models netto input to buffer of finite capacity K fluid queue
Downward periodic barrier

$$
A_{t}=\varphi(t+U)
$$

models additional input which is not available on liquit basis for
$\varphi(t) \quad$ nonnegative periodic function with period s

$$
U \stackrel{D}{=} \mathrm{U}[0, s]
$$

Reflected Lévy process

X_{t} - general Lévy process which is not subordinator
models netto input to buffer of finite capacity K fluid queue
Downward periodic barrier

$$
A_{t}=\varphi(t+U)
$$

models additional input which is not available on liquit basis for
$\varphi(t)$ nonnegative function

$$
U \stackrel{D}{=} \mathrm{U}[0, s]
$$

Reflected process:

$$
V_{t}^{K}=X_{t}+L_{t}^{A}-L_{t}^{K}
$$

being solution of respective Skorohod problem

Loss rate

X_{t}-general Lévy process which is not subordinator
Downward periodic barrier $A_{t}=\varphi(t+U)$ Reflected process:

$$
V_{t}^{K}=X_{t}+L_{t}^{A}-L_{t}^{K}
$$

with the stationary measure

$$
\pi_{K}
$$

Loss rate:

$$
l^{K}=\mathbb{E} L_{1}^{K}
$$

where expectation is taken for the stationary V_{t}^{K}
Goals: identification of l^{K} in terms of Lévy triple and finding its asymptotics as $K \rightarrow \infty$

Asmussen \& Pihlsgard (2010):

$$
A(t) \equiv 0
$$

Denote $l^{K, 0}$ loss rate in this case. Then:

$$
l^{K, 0} \leq l^{K} \leq l^{K-a, 0}
$$

and

$$
\frac{1}{K} \log l^{K}=-\gamma
$$

for some γ.
We want to get more explicit asymptotoics and exact expressions.
The ultimate goal is better understanding reflection for more general (lower and upper) barriers (both possibly tending to infinity).

Invariant measure of lower barrier

Assume that: $\varphi \in \mathcal{C}^{1}\left(\operatorname{int} J_{k}\right)$ is invertible on some disjoint intervals J_{k} satisfying $\cup_{k=1}^{n} J_{k}=[0, s]$ with $\varphi^{\prime}(x) \neq 0$ for $x \in \operatorname{int} J_{k}$

Lemma 1. Process $A_{t}=\varphi(t+U)$ has invariant measure:

$$
\xi(d y)=\sum_{k=1}^{n} \frac{1}{s}\left|h_{k}^{\prime}(y)\right| \mathbf{1}_{\varphi\left(\operatorname{int} J_{k}\right)}(y) d y
$$

where h_{k} is a inverse of φ on int J_{k}.

Example 1

Saw-like lower boundary modeling constant intensity input (with rate 1 for simplicity)

$$
\varphi(t)=t \bmod a
$$

with $0<a<K$.
In this case $n=1, J_{1}=[0, a], s=a$ and

$$
\xi(d y)=\frac{d y}{a} I_{(y \in[0, a])}
$$

Example 2

Few lines with different slopes

$$
\varphi(t)= \begin{cases}t & \text { for } t \in[0,1) \\ 1-2(t-1) & \text { for } t \in\left[1, \frac{3}{2}\right) \\ 3\left(t-\frac{3}{2}\right) & \text { for } t \in\left[\frac{3}{2}, \frac{5}{2}\right)\end{cases}
$$

In this case $n=3, J_{1}=[0,1], J_{2}=\left[1, \frac{3}{2}\right), J_{3}=\left[\frac{3}{2}, \frac{5}{2}\right), s=\frac{5}{2}$ and

$$
\xi(d y)=\frac{2}{5}\left(\mathbf{1}_{\varphi\left(J_{1}\right)}(y)+\frac{1}{2} \mathbf{1}_{\varphi\left(J_{2}\right)}(y)+\frac{1}{3} \mathbf{1}_{\varphi\left(J_{3}\right)}(y)\right) d y
$$

Stationary distribution

Lemma 2. Stationary distribution V_{∞}^{K}

$$
\pi_{K}(x, \infty)=\mathbb{P}\left(V_{\infty}^{K} \geq x\right)=\int_{0}^{a} \underbrace{\sum_{k=1}^{n} \mathbb{P}\left(X_{\tau} \geq \widehat{A}_{\tau}^{-z, k}+x\right) p_{k}(z)}_{\widehat{\pi}_{K}^{2}(x)} \xi(d z)
$$

where

$$
\begin{gathered}
\tau=\inf \left\{t \geq 0: X_{t} \notin\left[x-K, \widehat{A}_{t}^{-z, k}+x\right)\right\} \\
\widehat{A}_{t}^{-z, k}=-\varphi\left(h_{k}(z)-t\right) \quad \text { for } z \in \varphi\left(J_{k}\right) \\
p_{k}(z)=\mathbb{P}\left(U \in J_{k} \mid \varphi(U)=z\right)=\frac{\left|h_{k}^{\prime}(z)\right| \mathbf{1}_{\varphi\left(J_{k}\right)}(z)}{\sum_{j=1}^{n}\left|h_{j}^{\prime}(z)\right| \mathbf{1}_{\varphi\left(J_{j}\right)}(z)}
\end{gathered}
$$

Stationary distribution

Lemma 2. Stationary distribution V_{∞}^{K}

$$
\pi_{K}(x, \infty)=\mathbb{P}\left(V_{\infty}^{K} \geq x\right)=\int_{0}^{a} \underbrace{\sum_{k=1}^{n} \mathbb{P}\left(X_{\tau} \geq \widehat{A}_{\tau}^{-z, k}+x\right) p_{k}(z)}_{\widehat{\pi}_{K}^{2}(x)} \xi(d z)
$$

where

$$
\begin{gathered}
\tau=\inf \left\{t \geq 0: X_{t} \notin\left[x-K, \widehat{A}_{t}^{-z, k}+x\right)\right\} \\
\widehat{A}_{t}^{-z, k}=-\varphi\left(h_{k}(z)-t\right) \quad \text { for } z \in \varphi\left(J_{k}\right) \\
p_{k}(z)=\mathbb{P}\left(U \in J_{k} \mid \varphi(U)=z\right)=\frac{\left|h_{k}^{\prime}(z)\right| \mathbf{1}_{\varphi\left(J_{k}\right)}(z)}{\sum_{j=1}^{n}\left|h_{j}^{\prime}(z)\right| \mathbf{1}_{\varphi\left(J_{j}\right)}(z)}
\end{gathered}
$$

Duality

$$
\begin{array}{ll}
p_{1}(z)=\frac{1}{1+\frac{1}{2}+\frac{1}{3}}=\frac{6}{11}, \quad z \in[0,1] \\
p_{2}(z)=\frac{\frac{1}{2}}{1+\frac{1}{2}+\frac{1}{3}}=\frac{3}{11}, \quad z \in\left[1, \frac{3}{2}\right] \\
p_{3}(z)=\frac{\frac{1}{3}}{1+\frac{1}{2}+\frac{1}{3}}=\frac{2}{11}, \quad z \in\left[\frac{3}{2}, \frac{5}{2}\right]
\end{array}
$$

Main result

Theorem 1. If $\int_{1}^{\infty} y \nu(d y)=\infty$, then $l^{K}=\infty$, and otherwise

$$
\begin{aligned}
l^{K}= & \mathbb{E} X_{1}\left[\frac{1}{K-\mathbb{E} A_{0}} \int_{0}^{K} x \pi_{K}(d x)-\frac{\mathbb{E} A_{0}}{\left(K-\mathbb{E} A_{0}\right)}\right]+\frac{\sigma^{2}}{2\left(K-\mathbb{E} A_{0}\right)} \\
& +\frac{1}{2\left(K-\mathbb{E} A_{0}\right)} \int_{0}^{a} \int_{z}^{K} \int_{-\infty}^{\infty} \varphi_{K}(x, y, z) \nu(d y) \pi_{K}^{z}(d x) \xi(d z)
\end{aligned}
$$

where

$$
\varphi_{K}(x, y, z)= \begin{cases}-(x-z)^{2}-2 y(x-z) & \text { if } y \leq-x+z \\ y^{2} & \text { if }-x+z<y<K-x \\ 2 y(K-x)-(K-x)^{2} & \text { if } y \geq K-x\end{cases}
$$

and ν is a Lévy measure of X
Idea of the proof will be given on next slides.

Kella-Whitt martingale

Step 1.

$$
\begin{aligned}
M_{t}= & \kappa(\alpha) \int_{0}^{t} e^{\alpha V_{s}^{K}} d s+e^{\alpha V_{0}^{K}}-e^{\alpha V_{t}^{K}}+\alpha \int_{0}^{t} e^{\alpha A_{s}} d L_{s}^{A, c} \\
& +\sum_{0 \leq s \leq t} e^{\alpha A_{s}}\left(1-e^{-\alpha \Delta L_{s}^{A}}\right)-\alpha e^{\alpha K} L_{t}^{K, c}+e^{\alpha K} \sum_{0 \leq s \leq t}\left(1-e^{\alpha \Delta L_{s}^{K}}\right)
\end{aligned}
$$

is a zero-mean martingale, where

$$
\kappa(\alpha)=\log \mathbb{E} \exp \{\alpha X(1)\}
$$

is a Laplace exponent of X.
Step 2.
Take $t=1$, start V_{0}^{K} according to the stationary distribution and use expansion

$$
e^{\alpha x}=1+\alpha x+\frac{(\alpha x)^{2}}{2}+\frac{(\alpha x)^{3}}{6} e^{\theta \alpha x}, \quad \theta \in[-1,1]
$$

Kella-Whitt martingale

Step 2.
This produces:

$$
\begin{aligned}
\alpha\left(1-e^{\alpha K}+\alpha \mathbb{E}\left(A_{0}\right)\right) l^{K}= & -\kappa(\alpha) \mathbb{E} e^{\alpha V_{0}^{K}}+\alpha \mathbb{E} X_{1}-\alpha e^{\alpha K} \bar{l}_{j}^{K}+\alpha \bar{l}_{j}^{A} \\
& +\frac{\alpha^{2}}{2} \mathbb{E} \sum_{0 \leq s \leq 1}\left(\Delta L_{s}^{K}\right)^{2}+\frac{\alpha^{2}}{2} \mathbb{E} \sum_{0 \leq s \leq 1}\left(\Delta L_{s}^{A}\right)^{2} \\
& -e^{\alpha K} \mathbb{E} \sum_{0 \leq s \leq 1}\left(1-e^{\alpha \bar{\Delta} L_{s}^{K}}\right) \\
& -\mathbb{E} \sum_{0 \leq s \leq 1} e^{\alpha A_{s}}\left(1-e^{-\alpha \bar{\Delta} L_{s}^{A}}\right) \\
& +\alpha^{2} \mathbb{E}\left(A_{0}\right) \mathbb{E} X_{1}+\alpha^{2} \mathbb{E} \sum_{0 \leq s \leq 1} A_{s} \bar{\Delta} L_{s}^{A}+o\left(\alpha^{2}\right)
\end{aligned}
$$

as $\alpha \downarrow 0$
We split ΔL_{t}^{K} into two parts, ΔL_{t}^{K} and $\bar{\Delta} L_{t}^{K}$, corresponding to $\Delta X_{s} \in[0, L]$ and $\Delta X_{s} \in(L, \infty)$, respectively
We split ΔL_{t}^{A} into two parts, ΔL_{t}^{A} and $\bar{\Delta} L_{t}^{A}$, corresponding to $\Delta X_{s} \in[-L, 0]$ and $\Delta X_{s} \in(-\infty,-L)$, respectively

Identifying terms - Lévy triple

Step 3.

$$
\begin{aligned}
\alpha\left(1-e^{\alpha K}+\alpha \mathbb{E}\left(A_{0}\right)\right) l^{K}= & -\kappa(\alpha) \mathbb{E} e^{\alpha V_{0}^{K}}+\alpha \mathbb{E} X_{1}-\alpha e^{\alpha K} \bar{l}_{j}^{K}+\alpha \bar{l}_{j}^{A} \\
& +\frac{\alpha^{2}}{2} \mathbb{E} \sum_{0 \leq s \leq 1}\left(\Delta L_{s}^{K}\right)^{2}+\frac{\alpha^{2}}{2} \mathbb{E} \sum_{0 \leq s \leq 1}\left(\underline{\Delta} L_{s}^{A}\right)^{2} \\
& -e^{\alpha K} \mathbb{E} \sum_{0 \leq s \leq 1}\left(1-e^{\alpha \bar{\Delta} L_{s}^{K}}\right) \\
& -\mathbb{E} \sum_{0 \leq s \leq 1} e^{\alpha A_{s}}\left(1-e^{-\alpha \bar{\Delta} L_{s}^{A}}\right) \\
& +\alpha^{2} \mathbb{E}\left(A_{0}\right) \mathbb{E} X_{1}+\alpha^{2} \mathbb{E} \sum_{0 \leq s \leq 1} A_{s} \bar{\Delta} L_{s}^{A}+o\left(\alpha^{2}\right)
\end{aligned}
$$

Summing

Step 4.
After sending L to ∞ we get:

$$
\begin{aligned}
\alpha\left(1-e^{\alpha K}+\alpha \mathbb{E} A_{0}\right) l^{K}= & -\mathbb{E} X_{1} \alpha^{2} \int_{0}^{K} x \pi_{K}(d x)-\frac{\sigma^{2} \alpha^{2}}{2} \\
& -\frac{\alpha^{2}}{2} \int_{0}^{a} \int_{z}^{K} \int_{-x+z}^{K-x} y^{2} \nu(d y) \pi_{K}^{z}(d x) \xi(d z) \\
& +\frac{\alpha^{2}}{2} \int_{0}^{a} \int_{z}^{K} \int_{K-x}^{\infty}\left((x-K)^{2}+2 y(x-K)\right) \nu(d y) \\
& +\frac{\alpha^{2}}{2} \int_{0}^{a} \int_{z}^{K} \int_{-\infty}^{-x+z}\left((x-z)^{2}+2 y(x-z)\right) \nu(d y) \\
& +\alpha^{2} \mathbb{E} A_{0} \mathbb{E} X_{1}+o\left(\alpha^{2}\right)
\end{aligned}
$$

The proof follows by dividing both sides of above equation by $\alpha\left(1-e^{\alpha K}+\alpha \mathbb{E} A_{0}\right)$ and sending α to 0

Cramér asymptotics

Assume that jump measure ν is non-lattice and there exists $\gamma>0$ such that

$$
\kappa(\gamma)=0
$$

with $\kappa^{\prime}(\gamma)<\infty$ (hence $E X_{1}<0$)
Define:

$$
\begin{gathered}
\left.\frac{d \mathbb{P}^{\gamma}}{d \mathbb{P}^{\prime}}\right|_{\mathcal{F}_{t}}=e^{\gamma X_{t}} \\
\tau_{z}^{A}(x)=\inf \left\{t \geq 0: X_{t} \geq \widehat{A}_{t}^{-z}+x\right\}, \quad \tau_{-z}^{-}=\inf \left\{t \geq 0: X_{t}<-z\right\} \\
\tau^{A}(x)=\inf \left\{t \geq 0: X_{t} \geq \widehat{A}_{t}^{\xi}+x\right\} \quad \text { where } \widehat{A}_{t}^{\xi}=\int_{0}^{\infty} A_{t}^{-y} \xi(d y) \\
B^{A}(x)=X_{\tau^{A}(x)}-x
\end{gathered}
$$

- overshoot of the dual of the downward periodic barrier

Cramér asymptotics

We will write $f(K) \sim g(K)$ when $\lim _{K \rightarrow \infty} f(K) / g(K)=1$
Theorem 2.

$$
l^{K} \sim D e^{-\gamma K}
$$

where

$$
\begin{aligned}
D= & -\mathbb{E} X_{1} C_{\gamma}+\mathbb{E}^{\gamma} e^{-\gamma B^{A}(\infty)} \int_{0}^{\infty} e^{\gamma x} \mathbb{P}^{\gamma}\left(\tau_{-x}^{-}=\infty\right) \int_{x}^{\infty}\left(1-e^{\gamma(y-x)}\right) \nu(d y) \\
& +\int_{-\infty}^{0}\left(y+\gamma^{-1}\left(1-e^{\gamma y}\right)\right) \nu(d y) \\
& +\int_{0}^{\infty} \int_{0}^{a \wedge x} \mathbb{P}\left(\tau_{z}^{A}(x)<\infty\right) \int_{-\infty}^{-x+z}\left(1-e^{\gamma(x+y-z)}\right) \nu(d y) \xi(d z) d x
\end{aligned}
$$

with

$$
C_{\gamma}=\mathbb{E} e^{\gamma A_{s}}, \quad B^{A}(x) \xrightarrow{D} B^{A}(\infty)
$$

Asymptotic overshoot

The proof is based on the exponential change of measure and regenerative arguments.

Exponential claims

$$
X_{t}=\sum_{i=1}^{N_{t}} \sigma_{i}-t
$$

with $\left\{\sigma_{i}\right\}_{\{i \geq 1\}}$ being i.i.d. $\operatorname{Exp}(\mu)$
and
N_{t} being a Poisson process with intensity $\lambda<\mu$

$$
\varphi(t)=t \bmod a
$$

Then we have:

$$
D=\frac{1}{a}\left(e^{a(\mu-\lambda)}-1\right) \frac{\mu-\lambda}{\mu} \frac{\lambda}{\mu}
$$

Heavy-tailed asymptotics

Assume:

$$
E X_{1}<0
$$

Define:

$$
\nu_{I}(x)=\int_{x}^{\infty} \nu(y, \infty) d y
$$

Theorem 3. (Andersen (2011)) If ν_{I} is subexponential and one of the following conditions holds:
(i) $E X_{1}^{2}<\infty$ and $\int_{K}^{\infty} \nu_{I}(y) d y / \nu_{i}(x)=\mathrm{O}(K)$,
(ii) $\nu(K, \infty) \sim L(K) K^{-\alpha}$ for locally bounded slowly varying function L and $0<\alpha<2$,
then

$$
l^{K} \sim \nu_{I}(K)
$$

The proof is based on Theorem 1 and finding appropriate bounds.

Centered Lévy process - asym.

Assume:

$$
E X_{1}=0
$$

Theorem 4. (Andersen \& Asmussen (2010)) (i) If $E X_{1}^{2}<\infty$ then

$$
l_{K} \sim \frac{1}{2 K} \int_{-\infty}^{\infty} y^{2} \nu(d y)+\frac{\sigma^{2}}{2 K}
$$

where σ is a Gaussian coefficient.

Centered Lévy process - asym.

Theorem 4. (Andersen \& Asmussen (2010)) (ii) If for $1<\alpha<2$ and slowly varying functions L_{1} and L_{2} :

$$
\nu(x, \infty)=L_{1}(x) x^{-\alpha}, \quad \nu(-\infty, x)=L_{2}(x)|x|^{-\alpha}
$$

such that

$$
\lim _{x \rightarrow \infty} \frac{L_{1}(x)}{L_{1}(x)+L_{2}(x)}=d:=\frac{\beta+1}{2}, \quad \lim _{x \rightarrow \infty} L_{0}(x)^{\alpha}\left(L_{1}(x)+L_{2}(x)\right)=1
$$

for some slowly varying function L_{0}, then

$$
l^{K} \sim \frac{\zeta}{K^{\alpha-1} L_{0}(K)^{\alpha}}
$$

for

$$
\zeta=\frac{c B(2-\alpha \rho, \alpha \rho)+d B(2-\alpha(1-\rho), \alpha(1-\rho))}{B(\alpha \rho, \alpha(1-\rho))(2-\alpha)(\alpha-1)}
$$

and $c=1-d, \rho=P\left(X_{t}>0\right)=\frac{1}{2}+(\pi \alpha)^{-1} \arctan (\beta \tan (\pi \alpha / 2))$
The proof is done by approximation.

THANK YOU
for Your Attention!

