# **Risk Aggregation**

### Paul Embrechts

### Department of Mathematics, ETH Zurich Senior SFI Professor

www.math.ethz.ch/~embrechts/

Joint work with P. Arbenz and G. Puccetti



Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich



### The background

Query by practitioner (2005):

Calculate VaR for the sum of three random variables with given marginals (Pareto, gamma, lognormal) and across a variety of dependence structures (copulas)

Research project:

Numerical evaluation of (generalized) copula convolutions, leading to (G)AEP.

### Risk aggregation is relevant for:

portfolio analysis

- understanding diversification & concentration
- for regulatory capital calculations
  - between risk categories
  - within risk categories

within the Basel III, Solvency 2, SST frameworks

- better understanding of diversification
- we shall only touch upon some aspects

### New publication by the Bank for International Settlements



### A canonical set-up

- $X_1, \ldots, X_d$  one-period risks
- $\psi : \mathbb{R}^d \to \mathbb{R}$  aggregation function
- ► *R* a risk measure

Task: calculate  $\mathcal{R}(\psi(X_1,\ldots,X_d))$ 

Example:  $\psi(X_1, \ldots, X_d) = X_1 + X_2 + \cdots + X_d$ ,  $\mathcal{R} = \mathsf{VaR}_{\alpha}$ ,  $\alpha \in (0, 1)$ 

$$\operatorname{VaR}_{\alpha}(X_1 + X_2 + \cdots + X_d)$$

At best:

$$R_L \leq \mathcal{R}(\psi(\mathbf{X})) \leq R_U$$

depending on the underlying model assumptions!

### Key issues

#### Conditions:

- $X_i \sim F_i, i = 1, \ldots, d$
- known?/unknown?/unknowable?
- risk versus uncertainty
- statistical uncertainty
- model uncertainty
- Dimensionality:
  - small:  $d \leq 5$ , say, versus
  - ▶ large: *d* ~ 100*s*

#### Extremes matter:

- in the tails: Extreme Value Theory (EVT)
- in the interdependence: copulas (may) enter

$$\mathbb{P}[X_1 \leq x_1, \ldots, X_d \leq x_d] = C(F_1(x_1), \ldots, F_d(x_d))$$

Return to canonical example:

$$\operatorname{VaR}_{\alpha}(X_1 + X_2 + \cdots + X_d)$$

Issues:

- Relevance: sense or nonsense?
- Estimation, calculation
- additive (=) for comonotonic risks subadditive (<) for elliptical risks superadditive (>) for
  - very heavy-tailed risks
  - very skewed risks
  - risks with a special interdependence

does it matter?

measure of frequency (if), not severity (what if)

### VaR in finance and insurance

Concerning VaR-calculations in finance and insurance:

- the VaR-number is just the final-final issue
- getting the risk-factor-mapping, clean-P&L are far more important
- recall: VaR is a statistical estimate
- often upper (lower) bounds can be found
- find (best) worst case VaR given some side conditions

Example for an upper bound for VaR

#### Theorem (Embrechts-Puccetti)

Let  $(X_1, \ldots, X_d)$  be continuous with equal margins  $F_i = F$ ,  $i = 1, \ldots, d$ . Then for  $\alpha \in (0, 1)$ ,

$$\operatorname{VaR}_{\alpha}(X_1 + \cdots + X_d) \leq D_d^{-1}(1 - \alpha),$$

where

$$D_d(s) = \inf_{r \in [0,s/d)} \frac{\int_r^{s-(d-1)r} (1-F(x)) \mathrm{d}x}{s/d-r}$$

### This talk (as an example):

Numerically calculate, for  $\alpha$  close to 1,

$$\mathsf{VaR}_{\alpha}(X_1 + X_2 + \dots + X_d) \tag{1}$$

or equivalently, calculate, typically for s large:

$$\mathbb{P}[X_1 + X_2 + \dots + X_d \le s] \tag{2}$$

numerically in terms of  $F_1, \ldots, F_d$  and C which are assumed to be known analytically

**Remark:** in order to calculate (1) for a given  $\alpha$ , use a root-finding procedure based on (2)

### Standard solution

Monte Carlo: simulate i.i.d.

$$(X_1^i, X_2^i, \ldots, X_d^i), \qquad i = 1, \ldots, n$$

and estimate

$$\mathbb{P}[X_1 + X_2 + \dots + X_d \le s] \approx \frac{1}{n} \sum_{i=1}^n \mathbf{1} \{X_1^i + X_2^i + \dots + X_d^i \le s\}$$

(Dis)advantages:

- A sampling algorithm must be available
- The convergence rate is relatively slow:  $O(1/\sqrt{n})$
- ▶ The convergence rate is independent of the dimension *d*

### The AEP algorithm: First assumption

#### First assumption:

The components of  $(X_1, X_2, \ldots, X_d)$  are positive:  $\mathbb{P}[X_i > 0] = 1$  (or bounded from below)

**Consequence:** Suppose d = 2. Due to  $X_1 > 0$  and  $X_2 > 0$  we get



The AEP algorithm: Second assumption

#### Second assumption:

The joint distribution function (df)

$$H(x_1,\ldots,x_d) = \mathbb{P}\left[X_1 \leq x_1, X_2 \leq x_2,\ldots,X_d \leq x_d\right]$$

is known analytically or can be numerically evaluated

**Example:** *H* is given by a copula model:

$$H(x_1,\ldots,x_d)=C(F_1(x_1),\ldots,F_d(x_d))$$

The probability mass of a rectangle is easy to calculate



Then

$$\mathbb{P}[(X_1,X_2)\in\mathcal{Q}]=H(b,d)-H(a,d)-H(b,c)+H(a,c)$$

Idea behind the AEP algorithm: approximate the triangle  ${\cal S}$  by rectangles!

First approximation (d = 2)

• Recall: 
$$S = \{(x_1, x_2) \in \mathbb{R}^2 : x_1 > 0, x_2 > 0, x_1 + x_2 \le s\}$$

► Set:  $Q = (0, 2/3s] \times (0, 2/3s]$  (later: why 2/3)

Use  ${\mathcal Q}$  as a first approximation of  ${\mathcal S}$ 



### Error of the first approximation



The error of the first approximation  $\mathbb{P}[(X_1, X_2) \in \mathcal{Q}]$  can again be expressed in terms of triangles!

Idea: again approximate those triangles by squares!

### Approximate new triangles by squares

$$+ \boxed{ = } = \frac{+ \boxed{}}{- \boxed{}} \boxed{ - \boxed{}} = - \boxed{ = } \frac{- \boxed{}}{- \boxed{}} \boxed{ + \boxed{}} = \boxed{ = } \frac{+ \boxed{}}{- \boxed{}} \boxed{ + \boxed{}} = \boxed{ = } \frac{+ \boxed{}}{- \boxed{}} \boxed{ + \boxed{}} = \boxed{ = } \frac{+ \boxed{}}{- \boxed{}} \boxed{ + \boxed{}} = \boxed{ = } \frac{+ \boxed{}}{- \boxed{}} \boxed{ + \boxed{}} = \boxed{ = } \frac{+ \boxed{}}{- \boxed{}} \boxed{ + \boxed{}} = \boxed{ = } \frac{+ \boxed{}}{- \boxed{}} \boxed{ + \boxed{}} = \boxed{ = } \frac{+ \boxed{}}{- \boxed{}} \boxed{ + \boxed{}} = \boxed{ = } \frac{+ \boxed{}}{- \boxed{}} \boxed{ + \boxed{}} = \boxed{ = } \frac{+ \boxed{}}{- \boxed{}} \boxed{ + \boxed{}} = \boxed{ = } \frac{+ \boxed{}}{- \boxed{}} \boxed{ + \boxed{}} = \boxed{ = } \frac{+ \boxed{}}{- \boxed{}} \boxed{ + \boxed{}} = \boxed{ = } \frac{+ \boxed{}}{- \boxed{}} \boxed{ + \boxed{}} = \boxed{ = } \frac{+ \boxed{}}{- \boxed{}} \boxed{ + \boxed{}} = \boxed{ = } \frac{+ \boxed{}}{- \boxed{}} \boxed{ + \boxed{}} = \boxed{ = } \frac{+ \boxed{}}{- \boxed{}} \boxed{ + \boxed{}} = \boxed{ = } \frac{+ \boxed{}}{- \boxed{}} \boxed{ + \boxed{}} = \boxed{ = } \frac{+ \boxed{}}{- \boxed{}} \boxed{ + \boxed{}} = \boxed{ = } \frac{+ \boxed{}}{- \boxed{}} \boxed{ + \boxed{}} = \boxed{ = } \frac{+ \boxed{}}{- \boxed{}} \boxed{ + \boxed{}} = \boxed{ = } \frac{+ \boxed{}}{- \boxed{}} \boxed{ + \boxed{}} = \boxed{ = } \frac{+ \boxed{}}{- \boxed{}} \boxed{ + \boxed{}} = \boxed{ = } \frac{+ \boxed{}}{- \boxed{}} \boxed{ + \boxed{}} = \boxed{ = } \frac{+ \boxed{}}{- \boxed{}} \boxed{ + \boxed{}} = \boxed{ = } \frac{+ \boxed{}}{- \boxed{}} \boxed{ + \boxed{}} = \boxed{ = } \frac{+ \boxed{}}{- \boxed{}} \boxed{ + \boxed{}} = \boxed{ = } \frac{+ \boxed{}}{- \boxed{}} \boxed{ = } \boxed{ = } \frac{+ \boxed{}}{- \boxed{}} \boxed{ = } \boxed{ = } \frac{+ \boxed{}} = \boxed{ = } \frac{+ \boxed{}}{- \boxed{}} = \boxed{ = } \frac{+ \boxed{}}{- \boxed{}} \boxed{ = } \boxed{ = } \frac{+ \boxed{}}{- \boxed{}} \boxed{ = } \boxed{ = } \boxed{ = } \frac{+ \boxed{}}{- \boxed{}} \boxed{ = } \boxed{ = } \boxed{ = } \frac{+ \boxed{}}{- \boxed{}} \boxed{ = } \boxed{ \boxed{ = } \boxed{ = } \boxed{ = } \boxed{ = } \boxed{ \boxed{ = } \boxed{ \boxed{ = } \boxed{ = } \boxed{ \boxed{ =$$

With these geometric approximations of S, define a sequence  $P_n$  of approximations of  $\mathbb{P}[X_1 + X_2 \leq s] = \mathbb{P}[(X_1, X_2) \in S]$ :



Set representation of  $P_1$ ,  $P_2$  and  $P_3$ 



Triangles are iteratively approximated by squares and the left over triangles are then passed on to the next iteration

### AEP algorithm for d = 3

In higher dimensions, the AEP can also be used. For instance, for d = 3, the set representation of  $P_1$ ,  $P_2$  and  $P_3$  is



Analogous decomposition possible in any dimension  $d \in \mathbb{N}$ , **but** resulting simplexes are *overlapping* for  $d \ge 4$ ! Choice of the sidelengths of the approximating hypercubes

How to choose the sidelengths of the approximating hypercubes?

**Answer:** For an optimal rate of convergence, take a hypercube with sidelength

$$h=rac{2}{d+1} imes$$
 (sidelength of the triangle)

Hence the choice of  $\mathcal{Q} = (0, 2/3s] \times (0, 2/3s]$  before for d = 2

### Convergence

#### Theorem

Let  $d \leq 5$  and suppose  $(X_1, \ldots, X_d)$  has a density in a neighbourhood of  $\{\mathbf{x} \in \mathbb{R}^d : \sum x_i = s\}$ , then

$$\lim_{n\to\infty}P_n=\mathbb{P}\left[X_1+\cdots+X_d\leq s\right]$$

**Remark**: reason for convergence problems in high dimensions: simplex decomposition is overlapping for  $d \ge 4$ 

### Richardson extrapolation

Define the extrapolated estimator  $P_n^*$  of  $\mathbb{P}[X_1 + \cdots + X_d \leq s]$  by

$$P_n^* = P_n + a(P_n - P_{n-1}),$$

where  $a = 2^{-d}(d+1)^d/d! - 1$ .

The additional term cancels the dominant error term of  $P_n$ 

#### Theorem

Let  $d \leq 8$  and suppose  $(X_1, \ldots, X_d)$  has a twice continuously differentiable density in a neighbourhood of  $\{\mathbf{x} \in \mathbb{R}^d : \sum x_i = s\}$ , then

$$\lim_{n\to\infty}P_n^*=\mathbb{P}\left[X_1+\cdots+X_d\leq s\right]$$

**Remark**: for d > 8, higher order extrapolation may be useful for proving convergence

### Convergence rates

#### Theorem

Let d ≤ 5 and suppose (X<sub>1</sub>,..., X<sub>d</sub>) has a density in a neighbourhood of {x ∈ ℝ<sup>d</sup> : ∑x<sub>i</sub> = s}, then

$$|P_n - \mathbb{P}[X_1 + \cdots + X_d \leq s]| = O((A_d)^n)$$

Let d ≤ 8 and suppose (X<sub>1</sub>,..., X<sub>d</sub>) has a twice continuously differentiable density in a neighbourhood of {x ∈ ℝ<sup>d</sup> : ∑x<sub>i</sub> = s}, then

$$|P_n^* - \mathbb{P}[X_1 + \cdots + X_d \leq s]| = O((A_d^*)^n)$$

|         | <i>d</i> = 2 | <i>d</i> = 3 | <i>d</i> = 4 | <i>d</i> = 5 | <i>d</i> = 6 | <i>d</i> = 7 | <i>d</i> = 8 |
|---------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Ad      | 0.333        | 0.500        | 0.664        | 0.925        | -            | -            | -            |
| $A_d^*$ | 0.037        | 0.125        | 0.234        | 0.358        | 0.498        | 0.656        | 0.8314       |

### Convergence rates, cont.

The calculation of  $P_n$  and  $P_n^*$  requires  $N(n) = O((B_d)^n)$ evaluations of the joint distribution function

Both convergence rate and numerical complexity of  $P_n$  and  $P_n^*$  are exponential. Combining both, we get

$$|P_n - \mathbb{P}[X_1 + \dots + X_d \le s]| = O\left(N(n)^{-\gamma_d}\right)$$
$$|P_n^* - \mathbb{P}[X_1 + \dots + X_d \le s]| = O\left(N(n)^{-\gamma_d^*}\right)$$

where  $\gamma_d$  and  $\gamma_d^*$  determine the rate of convergence.

### Convergence rates, cont.

The following table shows  $\gamma_d$  and  $\gamma_d^*$ 

|              | <i>d</i> = 2 | <i>d</i> = 3 | <i>d</i> = 4 | <i>d</i> = 5 | <i>d</i> = 6 | <i>d</i> = 7 |
|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| $\gamma_d$   | 1            | 0.5          | 0.15         | 0.05         | -            | -            |
| $\gamma_d^*$ | 3            | 1.5          | 0.54         | 0.34         | 0.17         | 0.09         |

- Convergence rate of Monte Carlo: O (N<sup>-0.5</sup>), where N is the number of simulations.
   BUT: a (complex?) sampling algorithm must be available.
- Convergence rate of Quasi Monte Carlo O (N<sup>-1</sup>(log N)<sup>d</sup>).
   BUT: the algorithm must be tailored for each application.
- ► AEP does not need any tailoring or simulation. Only requirement: able to evaluate the joint distribution function of (X<sub>1</sub>,...,X<sub>d</sub>).

### Numerical example

- ▶ *d* = 2, 3, 4
- $X_i$  are Pareto(i) distributed ( $\mathbb{P}[X_i \leq x] = 1 (1 + x)^{-i}$ )
- ▶ Clayton copula with  $\theta = 2$  (pairwise Kendall's tau = 0.5)
- ▶ *s* = 100
- plot shows logarithm absolute errors: difference between estimate (extrapolated AEP & MC) and reference value x-axis, execution time on log scale



### Numerical example: Conclusion

- In two and three dimensions, AEP is much faster than Monte Carlo
- For  $d \ge 4$ , Monte Carlo beats AEP
- Memory requirements to calculate P<sub>n</sub> with AEP grow exponentially in n and in the dimension d, hence only low dimensions are numerically feasible

#### **AEP in general**: INPUT:

- INPUT:
  - marginal dfs F<sub>i</sub>
  - copula C
  - threshold s

OUTPUT:

▶ sequence P<sub>n</sub> of estimates of P[X<sub>1</sub> + · · · + X<sub>d</sub> ≤ s]
 SOFTWARE: available in C++

### Open problem

Recall: using Richardson extrapolation,

$$P_n^* = P_n + a(P_n - P_{n-1})$$

for some  $a \in \mathbb{R}$  converges faster and in higher dimensions than  $P_n$ 

#### Further work:

Extend Richardson extrapolation to cancel higher order error terms! Possibly through estimators of the following form?

$$P_n^{**} = P_n + b_1(P_n - P_{n-1}) + b_2(P_{n-1} - P_{n-2})$$

$$P_n^{***} = P_n + c_1(P_n - P_{n-1}) + c_2(P_{n-1} - P_{n-2}) + c_3(P_{n-2} - P_{n-3})$$
:

### The GAEP algorithm

GAEP (Generalized AEP) concerns more general aggregation functionals, i.e. the estimation of

$$\mathbb{P}[\psi(X_1,\ldots,X_d)\leq s],$$

where  $\psi : \mathbb{R}^d \to \mathbb{R}$  is a continuous function that is strictly increasing in each coordinate.

This probability can be represented as the mass of some "generalized triangle":



### GAEP generalized triangle decomposition

Analogous to the AEP algorithm, we can decompose a generalized triangle into a rectangle and further generalized triangles:



### GAEP: short summary

- Issue: how to choose the sidelengths of the approximating hypercubes (rectangles)? Paper proposes different possibilities
- ▶ Performance: Similar to AEP, very good for d = 2, 3, acceptable for d = 4 and not competitive for d ≥ 5

#### Open problems:

- A proof for an optimal choice of the hypercube sidelengths
- Extension of the extrapolation technique as used for AEP

### References

- P. Arbenz, P. Embrechts, G. Puccetti: The AEP algorithm for the fast computation of the distribution of the sum of dependent random variables. Bernoulli 17(2), 2011, 562–591
- P. Arbenz, P. Embrechts, G. Puccetti: The GAEP algorithm for the fast computation of the distribution of a function of dependent random variables. (Forthcoming in Stochastics, 2011)
- P. Embrechts, G. Puccetti: Risk Aggregation. In: Copula Theory and its Applications, P. Jaworski, F. Durante, W. Haerdle, and T. Rychlik (Eds.). Lecture Notes in Statistics -Proceedings 198, Springer Berlin/Heidelberg, pp. 111-126
- ▶ Software (C++ code) to be obtained through the authors

## Thank you