Risk Aggregation

Paul Embrechts

Department of Mathematics, ETH Zurich

Senior SFI Professor

www.math.ethz.ch/~embrechts/

Joint work with P. Arbenz and G. Puccetti

RiskLab”

ETH

Eidgendssische Technische Hochschule Ziirich

Swiss Federal Institute of Technology Zurich ShrliEEE



www.math.ethz.ch/~embrechts/

The background

Query by practitioner (2005):

Calculate VaR for the sum of three random variables with
given marginals (Pareto, gamma, lognormal) and across a
variety of dependence structures (copulas)

Research project:

Numerical evaluation of (generalized) copula convolutions,

leading to (G)AEP.
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Risk aggregation is relevant for:

v

portfolio analysis

v

understanding diversification & concentration

v

for regulatory capital calculations

> between risk categories
» within risk categories

within the Basel Ill, Solvency 2, SST frameworks

v

better understanding of diversification

v

we shall only touch upon some aspects



New publication by the Bank for International Settlements

Basel Committee
on Banking Supervision

Joint Forum

Developments in
Modelling Risk
Aggregation

October 2010

’\ BANK FOR INTERNATIONAL SETTLEMENTS
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A canonical set-up

> Xi,..., Xy one-period risks
» ¢ : RY — R aggregation function

» R a risk measure

Task: calculate R(¢(X1, ..., Xq))
Example: ¢(Xq,...,Xq) = X1+ Xo+ -+ Xq, R = VaR,, a € (0,1)

VaR, (X1 + Xo 4 -+ - 4+ Xy)

At best:
R < R(Y(X)) < Ry

depending on the underlying model assumptions!
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Key issues

» Conditions:

» Xi~Fii=1,...,d
known?/unknown?/unknowable?
risk versus uncertainty
statistical uncertainty
model uncertainty

vV vy vy

» Dimensionality:
» small: d <5, say, versus
> large: d ~ 100s

» Extremes matter:

» in the tails: Extreme Value Theory (EVT)
» in the interdependence: copulas (may) enter

I[D[Xl S X1yewo ,Xd S Xd] = C(Fl(Xl), ceey Fd(Xd))

6
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Return to canonical example:

VaR, (X1 + Xo + -+ - + Xy)
Issues:
» Relevance: sense or nonsense?
» Estimation, calculation

» additive (=) for comonotonic risks
subadditive (<) for elliptical risks
superadditive (>) for

> very heavy-tailed risks
> very skewed risks
> risks with a special interdependence

does it matter?

» measure of frequency (if), not severity (what if)
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VaR in finance and insurance

Concerning VaR-calculations in finance and insurance:

>

>

the VaR-number is just the final-final issue

getting the risk-factor-mapping, clean-P&L are far more
important

recall: VaR is a statistical estimate
often upper (lower) bounds can be found

find (best) worst case VaR given some side conditions



Example for an upper bound for VaR

Theorem (Embrechts-Puccetti)

Let (Xi,...,Xy) be continuous with equal margins F; = F,
i=1,...,d. Then for a € (0,1),

VaRo (X1 + -+ + Xq) < D711 - a),
where
(=701 F(x))dx

r

D = inf
a(s) re[IOr,]s/d) s/d—r




This talk (as an example):

Numerically calculate, for « close to 1,

VaRo (X1 + Xo + -+ - + Xg) (1)

or equivalently, calculate, typically for s large:

PX1+ Xo+ -+ Xg < 5] (2)

numerically in terms of Fq,..., F4y and C which are assumed to be
known analytically

Remark: in order to calculate (1) for a given «, use a root-finding
procedure based on (2)
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Standard solution

Monte Carlo: simulate i.i.d.
(X{, X3y, X)), i=1,...,n

and estimate
1o i i i
P[X1+X2+---+Xdgs]z;ZI{X1+X2+---+Xd§s}
i=1

(Dis)advantages:
» A sampling algorithm must be available
» The convergence rate is relatively slow: O(1/+/n)
» The convergence rate is independent of the dimension d

11/33



The AEP algorithm: First assumption
First assumption:
The components of (X1, Xa, ..., Xy) are positive: P[X; > 0] =1
(or bounded from below)

Consequence: Suppose d = 2. Due to X; > 0 and X, > 0 we get
]P)[Xl + Xo < S] = P[(Xl,XQ) S S]

S={(a,x):x1>0,x>0x +x <s}

> X1
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The AEP algorithm: Second assumption

Second assumption:
The joint distribution function (df)

H(Xl,...,Xd):IP[Xl §X17X2 §X2,...,Xd SXd]

is known analytically or can be numerically evaluated

Example: H is given by a copula model:

H(x1,...,x4) = C(Fi(x1), ..., Fa(xq))
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The probability mass of a rectangle is easy to calculate

For d =2
X2
d
Q = (a, b] x (c,d|
c
0 3 5
Then

P[(X1, X2) € Q] = H(b,d) — H(a,d) — H(b,c) + H(a, c)

Idea behind the AEP algorithm: approximate the triangle S by
rectangles!
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First approximation (d = 2)
» Recall: S ={(x1,x) €ER?:x; >0,x >0,x +x < s}
» Set: @ =(0,2/3s] x (0,2/3s] (later: why 2/3)
Use O as a first approximation of S

]P)[(X]_,XQ) S S] ~ P[(X]_,XQ) € Q]

X2 easy to calculate

A

S

0 = (0,2/3s] x (0,2/3s]
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Error of the first approximation

X2

A

. P[S] =P
+P[N\ ]
-P[ Q.

0 s & —Hp)k

The error of the first approximation P [(X1, X2) € Q] can again be
expressed in terms of triangles!
Idea: again approximate those triangles by squares!

16
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Approximate new triangles by squares

.

‘ .+m +k.

With these geometric approximations of S, define a sequence P, of
approximations of P[X; + Xo < s] = P[(X1, X2) € S]:

-

P~

|

|+ P[] - P[] + ()
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Set representation of Py, P, and P3

Triangles are iteratively approximated by squares and the left over
triangles are then passed on to the next iteration
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AEP algorithm for d = 3

In higher dimensions, the AEP can also be used.
For instance, for d = 3, the set representation of Py, P and Ps is

Analogous decomposition possible in any dimension d € N,
but resulting simplexes are overlapping for d > 4!
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Choice of the sidelengths of the approximating hypercubes

How to choose the sidelengths of the approximating hypercubes?

Answer: For an optimal rate of convergence, take a hypercube
with sidelength

2 . .
h= J:1 " (sidelength of the triangle)

Hence the choice of Q = (0,2/3s] x (0,2/3s] before for d = 2

20/33



Convergence

Theorem
Let d <5 and suppose (Xi,...,Xy) has a density in a
neighbourhood of {x € RY: 3" x; = s}, then

Ii_)m P,=P[Xyg+- -+ X4 <5]

Remark: reason for convergence problems in high dimensions:
simplex decomposition is overlapping for d > 4
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Richardson extrapolation

Define the extrapolated estimator P} of P[X; 4 -+ + Xy < s] by
P::Pn+a(Pn_Pn—1)a

where a =279(d +1)9/d! — 1.
The additional term cancels the dominant error term of P,

Theorem
Let d < 8 and suppose (Xi,...,Xy) has a twice continuously
differentiable density in a neighbourhood of {x € RY : " x; = s},
then

[im P*:]P[Xl—i-"'—f-XdSS]

n
n—oo

Remark: for d > 8, higher order extrapolation may be useful for
proving convergence



Convergence rates
Theorem

» Let d <5 and suppose (X1, ...,Xy) has a density in a
neighbourhood of {x € RY : 3" x; = s}, then

|Pp—P[Xi+ -+ Xg < 5]l = O((Aq)")

» Let d < 8 and suppose (Xi,...,Xy) has a twice continuously
differentiable density in a neighbourhood of
{x € RY: 3 x; = s}, then

Py —P[Xi 4 -+ Xq < s]| = O((Ay)")

| d=2|d=3|d=4|d=5|d=6|d=7|d=38
Ag | 0333 [ 0.500 | 0.664 | 0.925 | - - -
A% | 0.037 | 0.125 | 0.234 | 0.358 | 0.498 | 0.656 | 0.8314
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Convergence rates, cont.

The calculation of P, and P} requires N(n) = O ((Bq)")
evaluations of the joint distribution function
|d=2|d=3|d=4|d=5|d=6|d=7|d=38
Bs| 3 | 4 | 15 | 21 | 63 | 92 | 255

Both convergence rate and numerical complexity of P, and P}, are
exponential. Combining both, we get

\H—PWrP~+XQ§$:o<mmﬂﬁ
Py —P[Xi 4+ Xy < s]| = O(N(n)—v§>

where 74 and v} determine the rate of convergence.
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Convergence rates, cont.

The following table shows v4 and ~}

|d=2|d=3|d=4|d=5|d=6|d=7
Yo | 1 05 | 015 | 0.05 | - —
v 3 15 | 054 | 034 | 017 | 0.09

» Convergence rate of Monte Carlo: O (N~%%),
where N is the number of simulations.

BUT: a (complex?) sampling algorithm must be available.
» Convergence rate of Quasi Monte Carlo O (N~*(log N)9).

BUT: the algorithm must be tailored for each application.

» AEP does not need any tailoring or simulation.
Only requirement: able to evaluate the joint distribution
function of (Xi,..., Xy).
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Numerical example

absolute error

vV VvyVvyVvyy

d=234

X; are Pareto(i) distributed (P[X; < x] =1 — (14 x)7)
Clayton copula with 6 = 2 (pairwise Kendall's tau = 0.5)

s =100

plot shows logarithm absolute errors: difference between
estimate (extrapolated AEP & MC) and reference value
x-axis, execution time on log scale

AEP
——a—.—u\-
—— =2
d=3
—w— (=4
0.1msec 10msec 1sec

execution time

absolute error

Monte Carlo

’\Av\

1o
A WN

—d
d
—d

0.1lmsec 10msec 1sec

execution time 26 /33



Numerical example: Conclusion

» In two and three dimensions, AEP is much faster than Monte
Carlo

» For d > 4, Monte Carlo beats AEP

» Memory requirements to calculate P, with AEP grow
exponentially in n and in the dimension d, hence only low
dimensions are numerically feasible

AEP in general:
INPUT:

» marginal dfs F;

» copula C

> threshold s
OUTPUT:

> sequence P, of estimates of P[X; + - + Xy < 5]
SOFTWARE: available in C++
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Open problem

Recall: using Richardson extrapolation,
P:;: Pn+a(P,,—P,,,1)

for some a € R converges faster and in higher dimensions than P,
Further work:

Extend Richardson extrapolation to cancel higher order error terms!
Possibly through estimators of the following form?

Py" = Pat bi(Po = Po-1) + ba(Pa-1 = Pa-2)
Py = Pp+ ai(Pn — Pn1) + @2(Pn—1 — Pp—2) + c3(Pn—2 — Pn-3)
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The GAEP algorithm
GAEP (Generalized AEP) concerns more general aggregation
functionals, i.e. the estimation of

P[¢(X1, e ,Xd) S 5],

where 1) : RY — R is a continuous function that is strictly
increasing in each coordinate.

This probability can be represented as the mass of some
“generalized triangle”:

X2

{x € R : ¢(x) = s}
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GAEP generalized triangle decomposition

Analogous to the AEP algorithm, we can decompose a generalized
triangle into a rectangle and further generalized triangles:
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GAEP: short summary

> Issue: how to choose the sidelengths of the approximating
hypercubes (rectangles)? Paper proposes different possibilities

» Performance: Similar to AEP, very good for d = 2,3,
acceptable for d = 4 and not competitive for d > 5

» Open problems:

» A proof for an optimal choice of the hypercube sidelengths
» Extension of the extrapolation technique as used for AEP
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Thank you



