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The background

Query by practitioner (2005):

Calculate VaR for the sum of three random variables with
given marginals (Pareto, gamma, lognormal) and across a
variety of dependence structures (copulas)

Research project:

Numerical evaluation of (generalized) copula convolutions,
leading to (G)AEP.
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Risk aggregation is relevant for:

I portfolio analysis

I understanding diversification & concentration

I for regulatory capital calculations
I between risk categories
I within risk categories

within the Basel III, Solvency 2, SST frameworks

I better understanding of diversification

I we shall only touch upon some aspects
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New publication by the Bank for International Settlements
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A canonical set-up

I X1, . . . ,Xd one-period risks

I ψ : Rd → R aggregation function

I R a risk measure

Task: calculate R(ψ(X1, . . . ,Xd))

Example: ψ(X1, . . . ,Xd) = X1 + X2 + · · ·+ Xd , R = VaRα, α ∈ (0, 1)

VaRα(X1 + X2 + · · ·+ Xd)

At best:
RL ≤ R(ψ(X)) ≤ RU

depending on the underlying model assumptions!

5 / 33



Key issues

I Conditions:
I Xi ∼ Fi , i = 1, . . . , d
I known?/unknown?/unknowable?
I risk versus uncertainty
I statistical uncertainty
I model uncertainty

I Dimensionality:
I small: d ≤ 5, say, versus
I large: d ∼ 100s

I Extremes matter:
I in the tails: Extreme Value Theory (EVT)
I in the interdependence: copulas (may) enter

P[X1 ≤ x1, . . . ,Xd ≤ xd ] = C (F1(x1), . . . ,Fd(xd))
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Return to canonical example:

VaRα(X1 + X2 + · · ·+ Xd)

Issues:

I Relevance: sense or nonsense?

I Estimation, calculation

I additive (=) for comonotonic risks
subadditive (≤) for elliptical risks
superadditive (>) for

I very heavy-tailed risks
I very skewed risks
I risks with a special interdependence

does it matter?

I measure of frequency (if), not severity (what if)
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VaR in finance and insurance

Concerning VaR-calculations in finance and insurance:

I the VaR-number is just the final-final issue

I getting the risk-factor-mapping, clean-P&L are far more
important

I recall: VaR is a statistical estimate

I often upper (lower) bounds can be found

I find (best) worst case VaR given some side conditions
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Example for an upper bound for VaR

Theorem (Embrechts-Puccetti)
Let (X1, . . . ,Xd) be continuous with equal margins Fi = F ,
i = 1, . . . , d . Then for α ∈ (0, 1),

VaRα(X1 + · · ·+ Xd) ≤ D−1d (1− α),

where

Dd(s) = inf
r∈[0,s/d)

∫ s−(d−1)r
r (1− F (x))dx

s/d − r
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This talk (as an example):

Numerically calculate, for α close to 1,

VaRα(X1 + X2 + · · ·+ Xd) (1)

or equivalently, calculate, typically for s large:

P[X1 + X2 + · · ·+ Xd ≤ s] (2)

numerically in terms of F1, . . . ,Fd and C which are assumed to be
known analytically

Remark: in order to calculate (1) for a given α, use a root-finding
procedure based on (2)
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Standard solution

Monte Carlo: simulate i.i.d.

(X i
1,X

i
2, . . . ,X

i
d), i = 1, . . . , n

and estimate

P [X1 + X2 + · · ·+ Xd ≤ s] ≈ 1

n

n∑
i=1

1
{
X i
1 + X i

2 + · · ·+ X i
d ≤ s

}
(Dis)advantages:

I A sampling algorithm must be available

I The convergence rate is relatively slow: O(1/
√
n)

I The convergence rate is independent of the dimension d
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The AEP algorithm: First assumption
First assumption:
The components of (X1,X2, . . . ,Xd) are positive: P[Xi > 0] = 1
(or bounded from below)

Consequence: Suppose d = 2. Due to X1 > 0 and X2 > 0 we get

P [X1 + X2 ≤ s] = P [(X1,X2) ∈ S]

x1

x2

S

s

s0

S = {(x1, x2) : x1 > 0, x2 > 0, x1 + x2 ≤ s}
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The AEP algorithm: Second assumption

Second assumption:
The joint distribution function (df)

H(x1, . . . , xd) = P [X1 ≤ x1,X2 ≤ x2, . . . ,Xd ≤ xd ]

is known analytically or can be numerically evaluated

Example: H is given by a copula model:

H(x1, . . . , xd) = C (F1(x1), . . . ,Fd(xd))
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The probability mass of a rectangle is easy to calculate

For d = 2

0 a

x2

d

c

b
x1

Q = (a, b]× (c , d ]

Then

P[(X1,X2) ∈ Q] = H(b, d)− H(a, d)− H(b, c) + H(a, c)

Idea behind the AEP algorithm: approximate the triangle S by
rectangles!
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First approximation (d = 2)
I Recall: S = {(x1, x2) ∈ R2 : x1 > 0, x2 > 0, x1 + x2 ≤ s}
I Set: Q = (0, 2/3s]× (0, 2/3s] (later: why 2/3)

Use Q as a first approximation of S

P [(X1,X2) ∈ S] ≈ P [(X1,X2) ∈ Q]︸ ︷︷ ︸
easy to calculate

0 s
x1

x2

s

Q = (0, 2/3s]× (0, 2/3s]
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Error of the first approximation

0 s
x1

x2

s

+P
[ ]

−P
[ ]

+P
[ ]

P [S] = P
[ ]

The error of the first approximation P [(X1,X2) ∈ Q] can again be
expressed in terms of triangles!
Idea: again approximate those triangles by squares!
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Approximate new triangles by squares

+ =
+
−
+

− =−
−
+
−

+ =
+
−
+

With these geometric approximations of S, define a sequence Pn of
approximations of P[X1 + X2 ≤ s] = P[(X1,X2) ∈ S]:

P1 = P
[ ]

...

+P
[ ]

−P
[ ]

+P
[ ]

P2 = P
[ ]
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Set representation of P1, P2 and P3

P1 P2 P3

Triangles are iteratively approximated by squares and the left over
triangles are then passed on to the next iteration

18 / 33



AEP algorithm for d = 3

In higher dimensions, the AEP can also be used.
For instance, for d = 3, the set representation of P1, P2 and P3 is

Analogous decomposition possible in any dimension d ∈ N,
but resulting simplexes are overlapping for d ≥ 4!
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Choice of the sidelengths of the approximating hypercubes

How to choose the sidelengths of the approximating hypercubes?

Answer: For an optimal rate of convergence, take a hypercube
with sidelength

h =
2

d + 1
× (sidelength of the triangle)

Hence the choice of Q = (0, 2/3s]× (0, 2/3s] before for d = 2
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Convergence

Theorem
Let d ≤ 5 and suppose (X1, . . . ,Xd) has a density in a
neighbourhood of {x ∈ Rd :

∑
xi = s}, then

lim
n→∞

Pn = P [X1 + · · ·+ Xd ≤ s]

Remark: reason for convergence problems in high dimensions:
simplex decomposition is overlapping for d ≥ 4
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Richardson extrapolation
Define the extrapolated estimator P∗n of P [X1 + · · ·+ Xd ≤ s] by

P∗n = Pn + a (Pn − Pn−1),

where a = 2−d(d + 1)d/d!− 1.
The additional term cancels the dominant error term of Pn

Theorem
Let d ≤ 8 and suppose (X1, . . . ,Xd) has a twice continuously
differentiable density in a neighbourhood of {x ∈ Rd :

∑
xi = s},

then
lim
n→∞

P∗n = P [X1 + · · ·+ Xd ≤ s]

Remark: for d > 8, higher order extrapolation may be useful for
proving convergence
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Convergence rates
Theorem

I Let d ≤ 5 and suppose (X1, . . . ,Xd) has a density in a
neighbourhood of {x ∈ Rd :

∑
xi = s}, then

|Pn − P [X1 + · · ·+ Xd ≤ s]| = O
(
(Ad)n

)
I Let d ≤ 8 and suppose (X1, . . . ,Xd) has a twice continuously

differentiable density in a neighbourhood of
{x ∈ Rd :

∑
xi = s}, then

|P∗n − P [X1 + · · ·+ Xd ≤ s]| = O
(
(A∗d)n

)

d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8

Ad 0.333 0.500 0.664 0.925 – – –
A∗d 0.037 0.125 0.234 0.358 0.498 0.656 0.8314
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Convergence rates, cont.

The calculation of Pn and P∗n requires N(n) = O
(
(Bd)n

)
evaluations of the joint distribution function

d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8

Bd 3 4 15 21 63 92 255

Both convergence rate and numerical complexity of Pn and P∗n are
exponential. Combining both, we get

|Pn − P [X1 + · · ·+ Xd ≤ s]| = O
(
N(n)−γd

)
|P∗n − P [X1 + · · ·+ Xd ≤ s]| = O

(
N(n)−γ

∗
d

)
where γd and γ∗d determine the rate of convergence.
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Convergence rates, cont.

The following table shows γd and γ∗d

d = 2 d = 3 d = 4 d = 5 d = 6 d = 7

γd 1 0.5 0.15 0.05 – –
γ∗d 3 1.5 0.54 0.34 0.17 0.09

I Convergence rate of Monte Carlo: O
(
N−0.5

)
,

where N is the number of simulations.
BUT: a (complex?) sampling algorithm must be available.

I Convergence rate of Quasi Monte Carlo O
(
N−1(logN)d

)
.

BUT: the algorithm must be tailored for each application.

I AEP does not need any tailoring or simulation.
Only requirement: able to evaluate the joint distribution
function of (X1, . . . ,Xd).
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Numerical example
I d = 2, 3, 4
I Xi are Pareto(i) distributed (P[Xi ≤ x ] = 1− (1 + x)−i )
I Clayton copula with θ = 2 (pairwise Kendall’s tau = 0.5)
I s = 100
I plot shows logarithm absolute errors: difference between

estimate (extrapolated AEP & MC) and reference value
x-axis, execution time on log scale
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Numerical example: Conclusion

I In two and three dimensions, AEP is much faster than Monte
Carlo

I For d ≥ 4, Monte Carlo beats AEP

I Memory requirements to calculate Pn with AEP grow
exponentially in n and in the dimension d , hence only low
dimensions are numerically feasible

AEP in general:
INPUT:

I marginal dfs Fi
I copula C

I threshold s

OUTPUT:

I sequence Pn of estimates of P[X1 + · · ·+ Xd ≤ s]

SOFTWARE: available in C++
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Open problem

Recall: using Richardson extrapolation,

P∗n = Pn + a(Pn − Pn−1)

for some a ∈ R converges faster and in higher dimensions than Pn

Further work:
Extend Richardson extrapolation to cancel higher order error terms!
Possibly through estimators of the following form?

P∗∗n = Pn + b1(Pn − Pn−1) + b2(Pn−1 − Pn−2)

P∗∗∗n = Pn + c1(Pn − Pn−1) + c2(Pn−1 − Pn−2) + c3(Pn−2 − Pn−3)

...
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The GAEP algorithm
GAEP (Generalized AEP) concerns more general aggregation
functionals, i.e. the estimation of

P[ψ(X1, . . . ,Xd) ≤ s],

where ψ : Rd → R is a continuous function that is strictly
increasing in each coordinate.
This probability can be represented as the mass of some
“generalized triangle”:

{x ∈ R2
+ : ψ(x) = s}

x2

x10
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GAEP generalized triangle decomposition

Analogous to the AEP algorithm, we can decompose a generalized
triangle into a rectangle and further generalized triangles:

0

x2

x1

x2

x10

{x ∈ R2
+ : ψ(x) = s}
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GAEP: short summary

I Issue: how to choose the sidelengths of the approximating
hypercubes (rectangles)? Paper proposes different possibilities

I Performance: Similar to AEP, very good for d = 2, 3,
acceptable for d = 4 and not competitive for d ≥ 5

I Open problems:
I A proof for an optimal choice of the hypercube sidelengths
I Extension of the extrapolation technique as used for AEP
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Thank you
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