
Limit Theorems for Random Search

Peter W. Glynn

Stanford University

Conference in Honour of Soren Asmussen, Sandbjerg Estate, Denmark

August 1-5, 2011



This talk has a number of elements that are aligned with Søren’s
work:

simulation

sums of random variables

extreme values

large deviations

asymptotics



The Setting

min
θ∈Rd

α(θ)

where
α(θ) = EX (θ)

must be computed via (Monte Carlo) simulation

Assume that α(·) is smooth



The Class of Algorithms to be Studied

Randomly sample m points θ1, . . . , θm from Rd

Perform simulations at each of the m points

Estimate the minimum value of α(·) from the observations

Not much intelligent adaptation built into these algorithms (i.e.
simple random search)
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Why Study?

Because of their simplicity, they are easy to implement (and
are used in practice)

They can be viewed as “benchmark algorithms” (Any “good
algorithm” should beat the rates of convergence associated
with these random search algorithms.)

They are tractable mathematically, and provide insights into
more complex algorithms



Outline of Talk

Simple Random Search
• Consistency
• Optimal Convergence Rate
• Large Deviations

Simple Random Search with Gradient Information

Simple Random Search with Point-dependent Sample Size



A More Detailed Description of Simple Random Search

Randomly and independently sample m points θ1, . . . , θm from
Rd from a continuous positive density g

At each point θi , randomly generate n iid copies of X (θi )
(independent of the simulations at the other θ-values),
thereby computing X n(θi )

Given a computer (time) budget c , let n = �c/m�
Use the minimum of X n(θi ) as an estimator of the minimum
α(θ∗), where θ∗ is the minimizer of α(·)
Note that our estimator of the minimum is:

α̂(c) = min
1≤i≤m

X n(θi )

An extreme value statistic (but with a distribution depending
on n)



Consistency

If the number of points m is too large relative to the sample size n,
the extreme value may not be consistent as an estimator for α(θ∗)

Light-tailed Case: supθ E exp(γ|X (θ)|) < ∞ for some γ > 0

Theorem
1 If logm/n → 0 as c → ∞, then

α̂(c) ⇒ min
θ

α(θ) as c → ∞.

2 If logm/n → ∞ as c → ∞, then

α̂(c) ⇒ s as c → ∞,

where s = minθ s(θ), and s(θ) is the left end-point of support
of X (θ)



Theorem (continue)

3 Suppose logm/n → τ ∈ (0,∞) as c → ∞. Assume that for
each θ ∈ Rd , there exists a root γ̃ = γ̃(θ) > 0 satisfying

γ̃
∂

∂γ
ψ(θ, γ̃)− ψ(θ, γ̃) = τ,

where ψ(θ, γ) � logE exp(γX (θ)). Furthermore, suppose that
ψ is twice differentiable on Rd × [0, γ0], where γ0 > supθ γ̃(θ).
Then,

α̂(c) ⇒ min
θ

∂

∂γ
ψ(θ, γ̃) as c → ∞.



Heavy-tailed Case: With stable noise (1 < ν < 2), m/nν−1 must
converge to zero in order that our method consistently estimate
α(θ∗)



Assumptions

1 α has a unique minimizer θ∗

2 The Hessian of α, when evaluated at θ∗ (denoted H(θ∗)), is
positive definite

Theorem (Archetti et 1977, de Haan 1978, Chia and G 2011)

Assume 1 and 2. If X (θ) = α(θ) a.s. for all θ, then

c
2/d(α̂(c)− α(θ∗)) ⇒ Weibull(a, d/2)

as c → ∞, where Weibull(a, d/2) is a Weibull rv with shape
parameter d/2 and scale parameter a given by

a = 2π

�
g(θ∗)

Γ(d/2 + 1)
�
|detH(θ∗)|

�2/d

.



The Optimal Convergence Rate in the Noisy Setting

Heuristic Argument:

Noise in the function evaluations: n−1/2

Closest point to θ∗: m−1/d

Function value relative to α(θ∗) at closest point: m−2/d

For optimal rate, balance two errors: n−1/2 ≈ m
−2/d

With mn = c :

m ∼ rc
d/(d+4)

n ∼ r
−1

c
4/(d+4)

for r ∈ (0, 1)



Assumptions

3 The collection of distributions {F (θ, ·) : θ ∈ Rd} is weakly
continuous over Rd

4 var(X (θ∗)) > 0



Theorem (Chia and G 2011)

Assume 1 through 4. Suppose supθ E|X (θ)|p < ∞ for
p > max(3, d3/2). Then,

c
2/(d+4)(α̂(c)− α(θ∗)) ⇒ β,

as c → ∞, where, letting σ(θ∗) =
�

var(X (θ∗)),

P(β ≤ x) = exp

�
− 2r (d+4)/4

g(θ∗)πd/2

Γ(d/2)
�

|detH(θ∗)|

×
� ∞

0

P(N (0, 1) >
2x + y

2σ(θ∗)
)yd/2−1dy

�



Large Deviations Analysis
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Large deviations below can be caused by unusually large
deviations at any one of θ1, . . . , θm

Large deviations above requires unusual behavior at all m of
θ1, . . . , θm (“cheapest way” is that we were unlucky in the
placement of the m sample points)



The Lower Large Deviations Result

Theorem (Subramanian and G 2011)

Let ψ(θ; t) = logEetX (θ) and I(θ; x) be the large deviations rate
function for n−1

�n
i=1

Xi (θ). Then,

P(α̂(c) < α(θ∗)− x)

=
md

2

�
πψ��(θ∗; θ(x))

xn

�d/2

× exp(−nI(θ∗; x))�
2πψ��(θ∗; θ(x))|detH(θ∗)|

g(θ∗)(1 + o(1)),

as c → ∞.



The Upper Large Deviations Result

Theorem (Subramanian and G 2011)

P(α̂(c) > α(θ∗) + x) = (1− p)m exp



−m

k�

j=1

bj

nj
+ o(1)



 ,

as c → ∞, where k is the smallest integer such that mn
−k+1 → 0

as c → ∞.



Note that

P(α̂(c) ≥ α(θ∗) + x)

=P(X n(θi ) ≥ α(θ∗) + x)m

=P(α(θi ) ≥ α(θ∗) + x)m exp

�
m log

�
1− pn − p

1− p

��

where

pn = P(X n(θi ) ≤ α(θ∗) + x) = p +
k�

j=1

aj

nj
+ o(n−k)

(Lee and G 99)



Simple Random Search with Gradient Information

At each point θ1, . . . , θm, estimate both α(θi ) and ∇α(θi )

Let ∇X n(θi ) be our estimator for ∇α(θi ) based on:
likelihood ratio gradient estimation (often unbiased)

infinitesimal perturbation analysis (often unbiased)

(noisy) finite difference approximation based on central
differences (always biased)

Assume α(·) is strictly convex



The Estimator
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Theorem (Wu and G 2011)

Suppose that n ∼ βc2p for β > 0 as c → ∞, where p = 2/(d + 4).
Then,

c
p(α̂(c)− α(θ∗)) ⇒ W

as c → ∞.

W can be described in terms of a limiting Poisson random
field with randomly generated hyperplanes/function values at
each Poisson point

Heart of the argument: Showing that the estimator ultimately
depends on “local behavior” of Poisson random field

Generalizes to setting of biased gradient estimators



Simple Random Search with Point-dependent Sample Size

What happens if you do not use common sample size n across all
the θi ’s?
More intelligent approach:

Begin sampling simultaneously at each θi value

Continue sampling until it is clear the θi value is clearly not
optimal

Focus sampling on the “best”

Note that it is pointless to let n−1/2 � m
2/d , even for the

most promising points

Conclusions:

One gets a convergence rate arbitrarily close to c
−2/d

Optimal rate is close to that in noiseless setting



Extensions

What about if one applies common random numbers for the
simulations at each of the points θ1, . . . , θm?

What happens in the presence of constraints?

What about similarly descriptive limit theorems for more
intelligent search?


