Limit Theorems for Random Search

Peter W. Glynn

Stanford University

Conference in Honour of Soren Asmussen, Sandbjerg Estate, Denmark August 1-5, 2011

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

This talk has a number of elements that are aligned with Søren's work:

simulation sums of random variables extreme values large deviations asymptotics

The Setting

 $\min_{\theta \in \mathbb{R}^d} \alpha(\theta)$

where

$$\alpha(\theta) = \mathbb{E} X(\theta)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

must be computed via (Monte Carlo) simulation

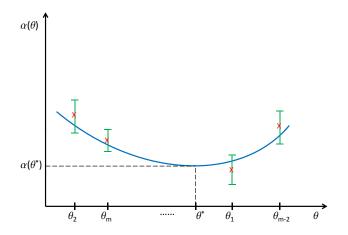
Assume that $\alpha(\cdot)$ is smooth

The Class of Algorithms to be Studied

- Randomly sample m points $heta_1,\ldots, heta_m$ from \mathbb{R}^d
- Perform simulations at each of the *m* points
- Estimate the minimum value of $\alpha(\cdot)$ from the observations

Not much intelligent adaptation built into these algorithms (i.e. simple random search)

(日) (日) (日) (日) (日) (日) (日) (日)



・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Because of their simplicity, they are easy to implement (and are used in practice)
- They can be viewed as "benchmark algorithms" (Any "good algorithm" should beat the rates of convergence associated with these random search algorithms.)
- They are tractable mathematically, and provide insights into more complex algorithms

Outline of Talk

- Simple Random Search
 - Consistency
 - Optimal Convergence Rate
 - Large Deviations
- Simple Random Search with Gradient Information
- Simple Random Search with Point-dependent Sample Size

A More Detailed Description of Simple Random Search

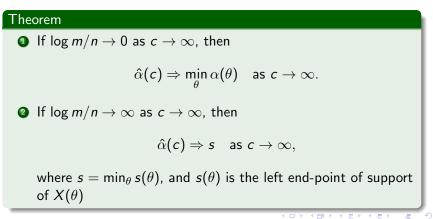
- Randomly and independently sample *m* points $\theta_1, \ldots, \theta_m$ from \mathbb{R}^d from a continuous positive density *g*
- At each point θ_i, randomly generate n iid copies of X(θ_i) (independent of the simulations at the other θ-values), thereby computing X_n(θ_i)
- Given a computer (time) budget c, let $n = \lfloor c/m \rfloor$
- Use the minimum of $\overline{X}_n(\theta_i)$ as an estimator of the minimum $\alpha(\theta^*)$, where θ^* is the minimizer of $\alpha(\cdot)$
- Note that our estimator of the minimum is:

$$\hat{\alpha}(c) = \min_{1 \leq i \leq m} \overline{X}_n(\theta_i)$$

An extreme value statistic (but with a distribution depending on n)

If the number of points *m* is too large relative to the sample size *n*, the extreme value may not be consistent as an estimator for $\alpha(\theta^*)$

Light-tailed Case: $\sup_{\theta} \mathbb{E} \exp(\gamma |X(\theta)|) < \infty$ for some $\gamma > 0$



Theorem (continue)

Suppose $\log m/n \to \tau \in (0, \infty)$ as $c \to \infty$. Assume that for each $\theta \in \mathbb{R}^d$, there exists a root $\tilde{\gamma} = \tilde{\gamma}(\theta) > 0$ satisfying

$$\tilde{\gamma} \frac{\partial}{\partial \gamma} \psi(\theta, \tilde{\gamma}) - \psi(\theta, \tilde{\gamma}) = \tau,$$

where $\psi(\theta, \gamma) \triangleq \log \mathbb{E} \exp(\gamma X(\theta))$. Furthermore, suppose that ψ is twice differentiable on $\mathbb{R}^d \times [0, \gamma_0]$, where $\gamma_0 > \sup_{\theta} \tilde{\gamma}(\theta)$. Then,

$$\hat{lpha}({m c}) \Rightarrow \min_{ heta} rac{\partial}{\partial \gamma} \psi(heta, ilde{\gamma}) \quad ext{as } {m c} o \infty.$$

Heavy-tailed Case: With stable noise $(1 < \nu < 2)$, $m/n^{\nu-1}$ must converge to zero in order that our method consistently estimate $\alpha(\theta^*)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Assumptions

- $\begin{tabular}{ll} \bullet & \alpha \end{tabular} \begin{tabular}{ll} \bullet & \alpha \end{tabular} \begin{tabular}{ll} \bullet & \alpha \end{tabular} \end{tabular} \end{tabular} \begin{tabular}{ll} \bullet & \alpha \end{tabular} \end{tabular} \end{tabular} \begin{tabular}{ll} \bullet & \alpha \end{tabular} \end{tabula$
- The Hessian of α, when evaluated at θ* (denoted H(θ*)), is positive definite

Theorem (Archetti et 1977, de Haan 1978, Chia and G 2011)

Assume 1 and 2. If $X(\theta) = \alpha(\theta)$ a.s. for all θ , then

$$c^{2/d}(\hat{\alpha}(c) - \alpha(\theta^*)) \Rightarrow \mathsf{Weibull}(a, d/2)$$

as $c \to \infty$, where Weibull(a, d/2) is a Weibull rv with shape parameter d/2 and scale parameter *a* given by

$$a = 2\pi \left(rac{g(heta^*)}{\Gamma(d/2+1)\sqrt{|\mathrm{det}H(heta^*)|}}
ight)^{2/d}$$

The Optimal Convergence Rate in the Noisy Setting

Heuristic Argument:

- Noise in the function evaluations: $n^{-1/2}$
- Closest point to θ^* : $m^{-1/d}$
- Function value relative to $lpha(heta^*)$ at closest point: $m^{-2/d}$
- For optimal rate, balance two errors: $n^{-1/2} pprox m^{-2/d}$
- With mn = c:

$$m \sim rc^{d/(d+4)}$$

 $n \sim r^{-1}c^{4/(d+4)}$

for $r \in (0, 1)$

Assumptions

• The collection of distributions $\{F(\theta, \cdot) : \theta \in \mathbb{R}^d\}$ is weakly continuous over \mathbb{R}^d

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• $\operatorname{var}(X(\theta^*)) > 0$

Theorem (Chia and G 2011)

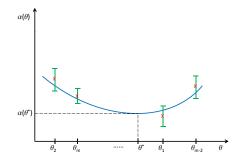
Assume 1 through 4. Suppose $\sup_{\theta} \mathbb{E}|X(\theta)|^p < \infty$ for $p > \max(3, d^3/2)$. Then,

$$c^{2/(d+4)}(\hat{\alpha}(c) - \alpha(\theta^*)) \Rightarrow \beta,$$

as $c \to \infty$, where, letting $\sigma(\theta^*) = \sqrt{\operatorname{var}(X(\theta^*))}$,

$$\begin{split} \mathbb{P}(\beta \leq x) = \exp\left(-\frac{2r^{(d+4)/4}g(\theta^*)\pi^{d/2}}{\Gamma(d/2)\sqrt{|\det H(\theta^*)|}} \\ \times \int_0^\infty \mathbb{P}(\mathcal{N}(0,1) > \frac{2x+y}{2\sigma(\theta^*)})y^{d/2-1} \mathrm{d}y\right) \end{split}$$

Large Deviations Analysis



- Large deviations below can be caused by unusually large deviations at any one of $\theta_1, \ldots, \theta_m$
- Large deviations above requires unusual behavior at all m of $\theta_1, \ldots, \theta_m$ ("cheapest way" is that we were unlucky in the placement of the m sample points)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

Theorem (Subramanian and G 2011)

Let $\psi(\theta; t) = \log \mathbb{E}e^{tX(\theta)}$ and $\mathcal{I}(\theta; x)$ be the large deviations rate function for $n^{-1} \sum_{i=1}^{n} X_i(\theta)$. Then,

$$\begin{split} & \mathbb{P}(\hat{\alpha}(c) < \alpha(\theta^*) - x) \\ &= \frac{md}{2} \left(\frac{\pi \psi''(\theta^*; \theta(x))}{xn} \right)^{d/2} \\ & \times \frac{\exp(-n\mathcal{I}(\theta^*; x))}{\sqrt{2\pi \psi''(\theta^*; \theta(x)) |\det H(\theta^*)|}} g(\theta^*)(1 + o(1)), \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

as $c \to \infty$.

Theorem (Subramanian and G 2011)

$$\mathbb{P}(\hat{lpha}(c) > lpha(heta^*) + x) = (1-p)^m \exp\left(-m\sum_{j=1}^k rac{b_j}{n^j} + o(1)
ight),$$

as $c \to \infty$, where k is the smallest integer such that $mn^{-k+1} \to 0$ as $c \to \infty$.

Note that

$$\mathbb{P}(\hat{\alpha}(c) \ge \alpha(\theta^*) + x)$$

= $\mathbb{P}(\overline{X}_n(\theta_i) \ge \alpha(\theta^*) + x)^m$
= $\mathbb{P}(\alpha(\theta_i) \ge \alpha(\theta^*) + x)^m \exp\left(m \log\left(1 - \frac{p_n - p}{1 - p}\right)\right)$

where

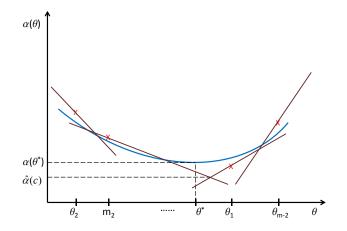
$$p_n = \mathbb{P}(\overline{X}_n(\theta_i) \le \alpha(\theta^*) + x) = p + \sum_{j=1}^k \frac{a_j}{n^j} + o(n^{-k})$$

(Lee and G 99)

Simple Random Search with Gradient Information

- At each point $\theta_1, \ldots, \theta_m$, estimate both $\alpha(\theta_i)$ and $\nabla \alpha(\theta_i)$
- Let $\nabla \overline{X}_n(\theta_i)$ be our estimator for $\nabla \alpha(\theta_i)$ based on:
 - likelihood ratio gradient estimation (often unbiased)
 - infinitesimal perturbation analysis (often unbiased)
 - (noisy) finite difference approximation based on central differences (always biased)

• Assume $\alpha(\cdot)$ is strictly convex



Theorem (Wu and G 2011)

Suppose that $n \sim \beta c^{2p}$ for $\beta > 0$ as $c \to \infty$, where p = 2/(d+4). Then,

$$c^{p}(\hat{\alpha}(c) - \alpha(\theta^{*})) \Rightarrow W$$

as $c \to \infty$.

- *W* can be described in terms of a limiting Poisson random field with randomly generated hyperplanes/function values at each Poisson point
- Heart of the argument: Showing that the estimator ultimately depends on "local behavior" of Poisson random field

• Generalizes to setting of biased gradient estimators

What happens if you do not use common sample size *n* across all the θ_i 's?

More intelligent approach:

- Begin sampling simultaneously at each θ_i value
- Continue sampling until it is clear the θ_i value is clearly not optimal
- Focus sampling on the "best"
- Note that it is pointless to let $n^{-1/2} \ll m^{2/d}$, even for the most promising points

Conclusions:

- One gets a convergence rate arbitrarily close to $c^{-2/d}$
- Optimal rate is close to that in noiseless setting

Extensions

- What about if one applies common random numbers for the simulations at each of the points θ₁,...,θ_m?
- What happens in the presence of constraints?
- What about similarly descriptive limit theorems for more intelligent search?