Stochastic Enumeration Method for Counting NP-hard Problems

Technion
Reuven Rubinstein and Radislav Vaisman

Faculty of Industrial Engineering and Management, Technion, Israel

Contents

1. Sequential Importance Sampling (SIS) method
2. One Step Look-Ahead (OSLA) method for Self-Avoiding Walks (SAW).
3. Extensions of OSLA: n-Step-Look-Ahead and SE-OSLA Methods.
4. Stochastic Enumeration (SE) Method.
5. Applications of Stochastic Enumeration to

- Satisfiability,
- Counting the Number of Paths in a Network
- Counting the Number of Perfect Matchings

6. Convergence and Numerical Results.

Stochastic Enumeration Method for Counting NP-hard Prob

Sequential Importance Sampling (SIS) Method

Sequential importance sampling (SIS) is importance sampling carried out in a sequential manner. To explain, consider the expected performance

$$
\begin{equation*}
\ell=\mathbb{E}_{f}[S(\boldsymbol{X})]=\int S(\boldsymbol{x}) f(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} \tag{1}
\end{equation*}
$$

where S is the sample performance and f is the probability density of \boldsymbol{X}.
Let g be another probability density such that $S f$ is dominated by g. That is, $g(\boldsymbol{x})=0 \Rightarrow S(\boldsymbol{x}) f(\boldsymbol{x})=0$. We have

$$
\begin{equation*}
\ell=\int S(\boldsymbol{x}) \frac{f(\boldsymbol{x})}{g(\boldsymbol{x})} g(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=\mathbb{E}_{g}\left[S(\boldsymbol{X}) \frac{f(\boldsymbol{X})}{g(\boldsymbol{X})}\right] . \tag{2}
\end{equation*}
$$

Stochastic Enumeration Method for Counting NP-hard Prob

SIS Method

Consequently, if $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{N}$ is a random sample from g, that is, $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{N}$ are iid random vectors with density g, then

$$
\begin{equation*}
\hat{\ell}=\frac{1}{N} \sum_{k=1}^{N} S\left(\boldsymbol{X}_{k}\right) \frac{f\left(\boldsymbol{X}_{k}\right)}{g\left(\boldsymbol{X}_{k}\right)} \tag{3}
\end{equation*}
$$

is an unbiased estimator of ℓ. This estimator is called the importance sampling estimator. The ratio of densities,

$$
\begin{equation*}
W(\boldsymbol{x})=\frac{f(\boldsymbol{x})}{g(\boldsymbol{x})} \tag{4}
\end{equation*}
$$

is called the likelihood ratio.

SIS Method

Suppose that (a) \boldsymbol{X} is decomposable, that is, it can be written as a vector $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)$, where each of the X_{i} may be multi-dimensional, and (b) it is easy to sample from $g(\boldsymbol{x})$ sequentially. Specifically, suppose that $g(\boldsymbol{x})$ is of the form

$$
\begin{equation*}
g(\boldsymbol{x})=g_{1}\left(x_{1}\right) g_{2}\left(x_{2} \mid x_{1}\right) \cdots g_{n}\left(x_{n} \mid x_{1}, \ldots, x_{n-1}\right) \tag{5}
\end{equation*}
$$

To further simplify the notation, we abbreviate $\left(x_{1}, \ldots, x_{t}\right)$ to $\boldsymbol{x}_{1: t}$ for all t. In particular, $\boldsymbol{x}_{1: n}=\boldsymbol{x}$.

SIS Method

By the product rule of probability, the target pdf $f(\boldsymbol{x})$ can also be written sequentially, that is,

$$
\begin{equation*}
f(\boldsymbol{x})=f\left(x_{1}\right) f\left(x_{2} \mid x_{1}\right) \cdots f\left(x_{n} \mid \boldsymbol{x}_{1: n-1}\right) . \tag{6}
\end{equation*}
$$

We can write the likelihood ratio in product form as

$$
\begin{equation*}
W(\boldsymbol{x})=\frac{f\left(x_{1}\right) f\left(x_{2} \mid x_{1}\right) \cdots f\left(x_{n} \mid \boldsymbol{x}_{1: n-1}\right)}{g_{1}\left(x_{1}\right) g_{2}\left(x_{2} \mid x_{1}\right) \cdots g_{n}\left(x_{n} \mid \boldsymbol{x}_{1: n-1}\right)} \tag{7}
\end{equation*}
$$

SIS Method

If $w_{t}\left(\boldsymbol{x}_{1: t}\right)$ denotes the likelihood ratio up to time t, recursively as

$$
\begin{equation*}
w_{t}\left(\boldsymbol{x}_{1: t}\right)=u_{t} w_{t-1}\left(\boldsymbol{x}_{1: t-1}\right), \quad t=1, \ldots, n \tag{8}
\end{equation*}
$$

with initial weight $w_{0}\left(\boldsymbol{x}_{1: 0}\right)=1$ and incremental weights $u_{1}=f\left(x_{1}\right) / g_{1}\left(x_{1}\right)$ and

$$
\begin{equation*}
u_{t}=\frac{f\left(x_{t} \mid \boldsymbol{x}_{1: t-1}\right)}{g_{t}\left(x_{t} \mid \boldsymbol{x}_{1: t-1}\right)}=\frac{f\left(\boldsymbol{x}_{1: t}\right)}{f\left(\boldsymbol{x}_{1: t-1}\right) g_{t}\left(x_{t} \mid \boldsymbol{x}_{1: t-1}\right)}, \quad t=2, \ldots, n . \tag{9}
\end{equation*}
$$

SIS Method

The final estimator is

$$
\begin{equation*}
\hat{\ell}_{w}=\frac{\sum_{k=1}^{N} S\left(\boldsymbol{X}_{k}\right) W_{k}}{\sum_{k=1}^{N} W_{k}} \tag{10}
\end{equation*}
$$

Algorithm 0.1 (SIS Algorithm)

1. For each finite $t=1, \ldots, n$, sample X_{t} from $g_{t}\left(x_{t} \mid \boldsymbol{x}_{1: t-1}\right)$.
2. Compute $w_{t}=u_{t} w_{t-1}$, where $w_{0}=1$ and u_{t} is given above.
3. Repeat N times and estimate ℓ via $\hat{\ell}$ as above.

Self-Avoiding Walk of Length

$$
n=130
$$

Stochastic Enumeration Method for Counting NP-hard Prob

One-Step-Look-Ahead (OSLA) Procedure

OSLA is the state of the art procedure due to Rosenbluth and Rosenbluth (1959).

1. Start from $X_{0}=(0,0)$. Set $t=1$. Let d_{t} be the number of neighbors of X_{t-1} that have not yet been visited. If $d_{t}>0$, choose X_{t} with probability $1 / d_{t}$ from its neighbors. If $d_{t}=0$ stop generating the path.
2. Stop if $t=n$. Otherwise increase t by 1 and go to step 2 .

Note that the procedure either generates a SAW \boldsymbol{x} of fixed length n or the path gets value zero. The SIS pdf $g(\boldsymbol{x})$ is

$$
\begin{equation*}
g(\boldsymbol{x})=\frac{1}{d_{1}} \frac{1}{d_{2}} \cdots \frac{1}{d_{n}}=\frac{1}{\left|\mathscr{X}^{*}\right|},\left(\widehat{\left|\mathscr{X}^{*}\right|}=d_{1} \ldots d_{n}\right) . \tag{11}
\end{equation*}
$$

Stochastic Enumeration Method for Counting NP-hard Prob

Self-Avoiding Walk of Length

$$
n=130
$$

Stochastic Enumeration Method for Counting NP-hard Prob

OSLA Algorithm for SAW

1. Generate independently M paths $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{M}$ via the OSLA procedure.
2. For each SAW \boldsymbol{X}_{k} compute the corresponding $\widehat{\left|\mathscr{X}^{*}\right|}$ as above. For the other parts (which do not reach the value n) set $w\left(\boldsymbol{X}_{k}\right)=0$.
3. Return

$$
\begin{equation*}
\widetilde{\left|\mathscr{X}^{*}\right|}=\frac{1}{M} \sum_{i=k}^{M} \widehat{\left|\mathscr{X}^{*}\right|} . \tag{12}
\end{equation*}
$$

OSLA Looses Trajectories

A SAW (with arrows) trapped after 15 iterations. The corresponding ν values (based on short lines without arrows) are

$$
\begin{gathered}
\nu_{1}=4, \nu_{2}=3, \nu_{3}=3, \nu_{4}=3, \nu_{5}=3, \nu_{6}=3, \nu_{7}=2, \nu_{8}=3 \\
\nu_{9}=3, \nu_{10}=3, \nu_{11}=2, \nu_{12}=3, \nu_{13}=2, \nu_{14}=1, \nu_{15}=0
\end{gathered}
$$

Stochastic Enumeration Method for Counting NP-hard Prob

OSLA Looses Trajectories

As for another situation where OSLA can be readily trapped consider a directed graph below with source s and $\operatorname{sink} t$.

Stochastic Enumeration Method for Counting NP-hard Prob

OSLA Looses Trajectories

The exception is the OSLA algorithm of Rasmussen for counting the permanent. Rasmussen proofs that if the $a_{i j}$ entries of the permanent matrix \boldsymbol{A} are Bernoulli outcomes each generated randomly with probability $p=1 / 2$ then OSLA estimator is FPRAS.

This is quite a remarkable result!

Extension of OSLA: n-step-look-ahead Strategy

We next extend OSLA to k-step-look ahead and in particular to n-step-look ahead, called n SLA. Here n denotes the size of the problem, such as the number of variables (literals) in SAT and the number of edges in a network. We assume that all n variables x_{1}, \ldots, x_{n} are binary, that is $x \in\{0,1\}$. The n-SLA (based an oracle) is very similar to OSLA.

Its major advantage versus OSLA: it never looses a trajectory.

Extension of OSLA: the n SLA Method

Our main strategy (slogan) is as follows:
 Use fast polynomial decision making oracles to solve \#P-sharp problems.

In particular use

- Breadth first search (BFS) or Dijkstra's decision making algorithms for counting the number of paths in a network.
- Hungarian decision making algorithm for counting the number of perfect matchings (permanent) in a bipartite graph.
- DPLL decision making algorithm for counting the number of valid assignments in 2-SAT.

Counting the Number of Paths in a Network

The goal is to count the number of paths $\left|\mathscr{X}^{*}\right|$ in a dodecahedron graph, say from node 1 to node 20 using BFS

Stochastic Enumeration Method for Counting NP-hard Prob

n SLA in Practice

To see how n SLA works consider a tree with the set of paths $\{000,001,100,110,111\}$.

Stochastic Enumeration Method for Counting NP-hard Prob

Extension of OSLA: the n SLA Method

The sub-trees $\{000,001\}$ (in bold) generated by n SLA using the oracle.

Stochastic Enumeration Method for Counting NP-hard Prob

nSLA as Splitting Method

Figure below presents the dynamics of the SE Algorithm for the first 3 iterations in a model with n variables using $N^{(e)}=1$. The accumulated weights are $\nu_{1}=2, \nu_{2}=2, \nu_{3}=1$.

Drawback of n SLA Method

Although n SLA never looses trajectories its main drawback is that the generated trajectories are not uniformly distributed. As results its estimators are heavily biased. To see this consider a graph with $n=4$ variables and $\left|\mathscr{X}^{*}\right|=5$. This is a 2-SAT model with clauses $C_{1} \wedge C_{2} \wedge, \ldots, \wedge C_{n}$, where $C_{i}=x_{i} \vee \bar{x}_{i+1} \geq 1$.

Stochastic Enumeration Method for Counting NP-hard Prob

Extension of n SLA - the SE Method

Straightforward calculation yield that for this particular case $\left(\left|\mathscr{X}^{*}\right|=5\right)$ variance reduction obtained from using $N^{(e)}=2$ instead of $N^{(e)}=1$ is about 150 times.
To overcome the drawback of high variance of n SLA we modify it as:
Instead of a single trajectory we ran in parallel multiple ones.
This will improve dramatically the non- uniformity issue.
Our strategy is similar to the one proposed by Albert Einstein:
Everything should be made as simple as possible, but not simpler

Stochastic Enumeration Method for Counting NP-hard Prob

The SE Method

SE in action. The sub-trees $\{100,000,001\}$ (in bold) of the original tree generated with $N^{(e)}=2$.

Stochastic Enumeration Method for Counting NP-hard Prob

SE Method

To see how SE improves n SLA consider again the 2 -SAT model with clauses $C_{1} \wedge C_{2} \wedge, \ldots, \wedge C_{n}$, where $C_{i}=x_{i} \vee \bar{x}_{i+1} \geq 1$.
Figure below presents a graph with $n=4$ variables and $\left|\mathscr{X}^{*}\right|=5$.

Stochastic Enumeration Method for Counting NP-hard Prob

Extension of n SLA: the SE Method

The table below corresponds to the above figure for $n=99$ and $\left|\mathscr{X}^{*}\right|=100$. It shows how bad SE works for $N^{(e)}=1$, (which is n SLA) and how SE improves for $N^{(e)}>1$. Here $N^{(e)}$ denotes the number of multiple trajectories and RE-relative error.

$\left(N^{(e)}, M\right)$	$\left\|\widetilde{\mathscr{X}^{*}}\right\|$	$R E$
$\left(N^{(e)}=1, M=500\right)$	11.110	0.296
$\left(N^{(e)}=10, M=50\right)$	69.854	0.175
$\left(N^{(e)}=50, M=10\right)$	100.11	0.032

Numerical Results for SAT

Performance of SE Algorithm for the 3-SAT 75×325 model with $N_{t}^{(e)}=20$ and $M=100$

Run N_{0}	Iterations	$\left\|\widetilde{\mathscr{X}}^{*}\right\|$	RE of $\left\|\widetilde{\mathscr{X}}^{*}\right\|$	CPU
1	75	2359.780	0.045	2.74
2	75	2389.660	0.058	2.77
3	75	2082.430	0.078	2.79
4	75	2157.850	0.044	2.85
5	75	2338.100	0.035	2.88
Average	75	2247.077	0.040	2.83

Stochastic Enumeration Method for Counting NP-hard Prob

Numerical Results for SAT

Performance of SE for SAT 300×1080 model with $N_{t}^{(e)}=300$, $M=300$ and $r=1$ with exact solution $\left|\mathscr{X}^{*}\right|=3.297 E+24$.

Run N_{0}	Iterations	$\left\|\widetilde{\mathscr{K}^{*}}\right\|$	RE of $\left\|\widetilde{\mathscr{X}}^{*}\right\|$	CPU
1	300	$3.30 \mathrm{E}+24$	$2.61 \mathrm{E}-03$	2010.6
2	300	$3.46 \mathrm{E}+24$	$5.10 \mathrm{E}-02$	2271.8
3	300	$3.40 \mathrm{E}+24$	$3.22 \mathrm{E}-02$	2036.8
4	300	$3.42 \mathrm{E}+24$	$4.00 \mathrm{E}-02$	2275.8
5	300	$3.39 \mathrm{E}+24$	$2.83 \mathrm{E}-02$	2022.4
Average	300	$3.36 \mathrm{E}+24$	$2.21 \mathrm{E}-02$	2134.1

Numerical Results for SAT

Comparison of the efficiencies of SE and standard splitting. It follows that SE is about 50 times faster than splitting.

Instance	Time	SE	SE RE	Split	Split RE
20×80	1 sec	15.0158	$5.51 \mathrm{E}-03$	14.97	$3.96 \mathrm{E}-02$
75×325	137 sec	2248.8	$9.31 \mathrm{E}-03$	2264.3	$6.55 \mathrm{E}-02$
75×270	122 sec	$1.34 \mathrm{E}+06$	$1.49 \mathrm{E}-02$	$1.37 \mathrm{E}+06$	$3.68 \mathrm{E}-02$
300×1080	1600 sec	$3.32 \mathrm{E}+24$	$3.17 \mathrm{E}-02$	$3.27 \mathrm{E}+24$	$2.39 \mathrm{E}-01$

Counting the Number of Paths in a Network

The goal is to count the number of paths $\left|\mathscr{X}^{*}\right|$ in a dodecahedron graph from node 1 to node 20 . Using full enumeration, we obtained $\left|\mathscr{X}^{*}\right|=1338$.

Stochastic Enumeration Method for Counting NP-hard Prob

Counting the Number of Paths in a Network

Performance of the SE Algorithm for the dodecahedron graph with $N_{t}^{(e)}=5$ and $M=20$. Based on 100 runs, we found that $R E=0.0121$.

Run N_{0}	Iterations	$\left\|\widetilde{\mathscr{X}}^{*}\right\|$	CPU
1	15	1567.3	3.467
2	17	1644.8	3.252
3	15	1220.3	2.956
4	15	1364.4	2.992
5	17	1567.4	3.134

Stochastic Enumeration Method for Counting NP-hard Prob

Counting the Number of Perfect Matchings

(Permanent)

Consider the adjacency matrix \boldsymbol{A} with $|V|=20,|E|=78$ and the number of perfect matchings (permanent) $\left|\mathscr{X}^{*}\right|=255,112$, obtained using full enumeration.

$$
\left(\begin{array}{llllllllll}
0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 \tag{13}\\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right)
$$

Counting the Number of Perfect Matchings

(Permanent)

Performance of the SE Algorithm for the matrix \boldsymbol{A}. The relative error is near 0.0275 .

Run N_{0}	Iterations	$\left\|\widetilde{\mathscr{X}^{*}}\right\|$	CPU
1	10	$2.59 \mathrm{E}+05$	1.911
2	10	$2.48 \mathrm{E}+05$	1.882
3	10	$2.67 \mathrm{E}+05$	1.889
4	10	$2.44 \mathrm{E}+05$	1.887
5	10	$2.53 \mathrm{E}+05$	1.889

Thank You

We hope that following Albert Einstein's suggestion we made everything as simple as possible, but not simpler.
Thank You !!!

Stochastic Enumeration Method for Counting NP-hard Prob

