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Sequential Importance Sampling
(SIS) Method

Sequential importance sampling (SIS) is importance sampling
carried out in a sequential manner. To explain, consider the
expected performance

! = Ef [S(X)] =

∫
S(x) f(x) dx , (1)

where S is the sample performance and f is the probability
density ofX .
Let g be another probability density such that S f is dominated
by g. That is, g(x) = 0 ⇒ S(x) f(x) = 0. We have

! =

∫
S(x)

f(x)

g(x)
g(x) dx = Eg

[
S(X)

f(X)

g(X)

]
. (2)
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SIS Method

Consequently, ifX1, . . . ,XN is a random sample from g, that
is,X1, . . . ,XN are iid random vectors with density g, then

!̂ =
1

N

N∑

k=1

S(Xk)
f(Xk)

g(Xk)
(3)

is an unbiased estimator of !. This estimator is called the
importance sampling estimator. The ratio of densities,

W (x) =
f(x)

g(x)
, (4)

is called the likelihood ratio.
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SIS Method

Suppose that (a)X is decomposable, that is, it can be written as
a vectorX = (X1, . . . , Xn), where each of the Xi may be
multi-dimensional, and (b) it is easy to sample from g(x)

sequentially. Specifically, suppose that g(x) is of the form

g(x) = g1(x1) g2(x2 |x1) · · · gn(xn |x1, . . . , xn−1). (5)

To further simplify the notation, we abbreviate (x1, . . . , xt) to
x1:t for all t. In particular, x1:n = x.
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SIS Method

By the product rule of probability, the target pdf f(x) can also be
written sequentially, that is,

f(x) = f(x1) f(x2 |x1) · · · f(xn |x1:n−1). (6)

We can write the likelihood ratio in product form as

W (x) =
f(x1) f(x2 |x1) · · · f(xn |x1:n−1)

g1(x1) g2(x2 |x1) · · · gn(xn |x1:n−1)
(7)
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SIS Method

If wt(x1:t) denotes the likelihood ratio up to time t, recursively
as

wt(x1:t) = ut wt−1(x1:t−1), t = 1, . . . , n , (8)

with initial weight w0(x1:0) = 1 and incremental weights
u1 = f(x1)/g1(x1) and

ut =
f(xt |x1:t−1)

gt(xt |x1:t−1)
=

f(x1:t)

f(x1:t−1) gt(xt |x1:t−1)
, t = 2, . . . , n .

(9)
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SIS Method

The final estimator is

!̂w =

∑N
k=1 S(Xk) Wk∑N

k=1 Wk

. (10)

Algorithm 0.1 (SIS Algorithm)
1. For each finite t = 1, . . . , n, sample Xt from gt(xt |x1:t−1).

2. Compute wt = ut wt−1, where w0 = 1 and ut is given
above.

3. Repeat N times and estimate ! via !̂ as above.
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Self-Avoiding Walk of Length
n = 130
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One-Step-Look-Ahead (OSLA) Procedure

OSLA is the state of the art procedure due to Rosenbluth and
Rosenbluth (1959).

1. Start from X0 = (0, 0). Set t = 1. Let dt be the number of
neighbors of Xt−1 that have not yet been visited. If dt > 0,
choose Xt with probability 1/dt from its neighbors. If
dt = 0 stop generating the path.

2. Stop if t = n. Otherwise increase t by 1 and go to step 2.

Note that the procedure either generates a SAW x of fixed length
n or the path gets value zero. The SIS pdf g(x) is

g(x) =
1

d1

1

d2
· · ·

1

dn

=
1

|̂X ∗|
, (|̂X ∗| = d1 . . . dn) . (11)
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Self-Avoiding Walk of Length
n = 130
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OSLA Algorithm for SAW

1. Generate independentlyM pathsX1, . . . ,XM via the
OSLA procedure.

2. For each SAWXk compute the corresponding |̂X ∗| as
above. For the other parts (which do not reach the value n)
set w(Xk) = 0.

3. Return

|̃X ∗| =
1

M

M∑

i=k

|̂X ∗| . (12)
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OSLA Looses Trajectories

A SAW (with arrows) trapped after 15 iterations. The
corresponding ν values (based on short lines without arrows) are

ν1 = 4, ν2 = 3, ν3 = 3, ν4 = 3, ν5 = 3, ν6 = 3, ν7 = 2, ν8 = 3,

ν9 = 3, ν10 = 3, ν11 = 2, ν12 = 3, ν13 = 2, ν14 = 1, ν15 = 0.
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OSLA Looses Trajectories

As for another situation where OSLA can be readily trapped
consider a directed graph below with source s and sink t.
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OSLA Looses Trajectories

The exception is the OSLA algorithm of Rasmussen for counting
the permanent. Rasmussen proofs that if the aij entries of the
permanent matrixA are Bernoulli outcomes each generated
randomly with probability p = 1/2 then OSLA estimator is
FPRAS.

This is quite a remarkable result!
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Extension of OSLA:
n-step-look-ahead Strategy

We next extend OSLA to k-step-look ahead and in particular to
n-step-look ahead, called nSLA. Here n denotes the size of the
problem, such as the number of variables (literals) in SAT and
the number of edges in a network. We assume that all n variables
x1, . . . , xn are binary, that is x ∈ {0, 1}.
The n-SLA (based an oracle) is very similar to OSLA.

Its major advantage versus OSLA: it never
looses a trajectory.
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Extension of OSLA: the nSLA
Method

Our main strategy (slogan) is as follows:
Use fast polynomial decision making oracles
to solve #P-sharp problems.
In particular use

Breadth first search (BFS) or Dijkstra’s decision making
algorithms for counting the number of paths in a network.

Hungarian decision making algorithm for counting the
number of perfect matchings (permanent) in a bipartite
graph.

DPLL decision making algorithm for counting the number
of valid assignments in 2-SAT.
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Counting the Number of Paths in a Network

The goal is to count the number of paths |X ∗| in a dodecahedron
graph, say from node 1 to node 20 using BFS
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nSLA in Practice

To see how nSLA works consider a tree with the set of paths
{000, 001, 100, 110, 111}.
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Extension of OSLA: the nSLA
Method

The sub-trees {000, 001} (in bold) generated by nSLA using the
oracle.
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nSLA as Splitting Method

Figure below presents the dynamics of the SE Algorithm for the
first 3 iterations in a model with n variables using N (e) = 1. The
accumulated weights are ν1 = 2, ν2 = 2, ν3 = 1.























Stochastic Enumeration Method for Counting NP-hard Problems



Drawback of nSLA Method

Although nSLA never looses trajectories its main drawback is
that the generated trajectories are not uniformly

distributed. As results its estimators are heavily biased. To see
this consider a graph with n = 4 variables and |X ∗| = 5. This is
a 2-SAT model with clauses C1 ∧ C2∧, . . . ,∧Cn, where
Ci = xi ∨ x̄i+1 ≥ 1.
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Extension of nSLA - the SE Method

Straightforward calculation yield that for this particular case
(|X ∗| = 5) variance reduction obtained from using N (e) = 2

instead of N (e) = 1 is about 150 times.
To overcome the drawback of high variance of nSLA we modify
it as:
Instead of a single trajectory we ran in
parallel multiple ones.
This will improve dramatically the non- uniformity issue.
Our strategy is similar to the one proposed by Albert Einstein:

Everything should be made as simple as

possible, but not simpler
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The SE Method

SE in action. The sub-trees {100, 000, 001} (in bold) of the
original tree generated with N (e) = 2.
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SE Method

To see how SE improves nSLA consider again the 2-SAT model
with clauses C1 ∧ C2∧, . . . ,∧Cn, where Ci = xi ∨ x̄i+1 ≥ 1.

Figure below presents a graph with n = 4 variables and
|X ∗| = 5.

 















 







    

Stochastic Enumeration Method for Counting NP-hard Problems



Extension of nSLA: the SE Method

The table below corresponds to the above figure for n =99 and
|X ∗| = 100. It shows how bad SE works for N (e) = 1, (which is
nSLA) and how SE improves for N (e) > 1. Here N (e) denotes
the number of multiple trajectories and RE-relative error.

(N (e), M) |X̃ ∗| RE

(N (e) = 1, M = 500) 11.110 0.296

(N (e) = 10, M = 50) 69.854 0.175

(N (e) = 50, M = 10) 100.11 0.032
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Numerical Results for SAT

Performance of SE Algorithm for the 3-SAT 75 × 325 model
with N (e)

t = 20 andM = 100

Run N0 Iterations |X̃ ∗| RE of |X̃ ∗| CPU

1 75 2359.780 0.045 2.74

2 75 2389.660 0.058 2.77

3 75 2082.430 0.078 2.79

4 75 2157.850 0.044 2.85

5 75 2338.100 0.035 2.88

Average 75 2247.077 0.040 2.83
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Numerical Results for SAT

Performance of SE for SAT 300 × 1080 model with N (e)
t = 300,

M = 300 and r = 1 with exact solution |X ∗| = 3.297E + 24.

Run N0 Iterations |X̃ ∗| RE of |X̃ ∗| CPU

1 300 3.30E+24 2.61E-03 2010.6

2 300 3.46E+24 5.10E-02 2271.8

3 300 3.40E+24 3.22E-02 2036.8

4 300 3.42E+24 4.00E-02 2275.8

5 300 3.39E+24 2.83E-02 2022.4

Average 300 3.36E+24 2.21E-02 2134.1
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Numerical Results for SAT

Comparison of the efficiencies of SE and standard splitting. It
follows that SE is about 50 times faster than splitting.

Instance Time SE SE RE Split Split RE

20x80 1 sec 15.0158 5.51E-03 14.97 3.96E-02

75x325 137 sec 2248.8 9.31E-03 2264.3 6.55E-02

75x270 122 sec 1.34E+06 1.49E-02 1.37E+06 3.68E-02

300x1080 1600 sec 3.32E+24 3.17E-02 3.27E+24 2.39E-01
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Counting the Number of Paths in a Network

The goal is to count the number of paths |X ∗| in a dodecahedron
graph from node 1 to node 20. Using full enumeration, we
obtained |X ∗| = 1338.
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Counting the Number of Paths in a Network

Performance of the SE Algorithm for the dodecahedron graph
with N (e)

t = 5 andM = 20. Based on 100 runs, we found that
RE = 0.0121.

Run N0 Iterations |X̃ ∗| CPU

1 15 1567.3 3.467
2 17 1644.8 3.252
3 15 1220.3 2.956
4 15 1364.4 2.992
5 17 1567.4 3.134
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Counting the Number of Perfect Matchings

(Permanent)

Consider the adjacency matrixA with |V | = 20, |E| = 78 and
the number of perfect matchings (permanent) |X ∗| = 255, 112,
obtained using full enumeration.
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Counting the Number of Perfect Matchings

(Permanent)

Performance of the SE Algorithm for the matrixA. The relative
error is near 0.0275.

Run N0 Iterations |X̃ ∗| CPU

1 10 2.59E+05 1.911
2 10 2.48E+05 1.882
3 10 2.67E+05 1.889
4 10 2.44E+05 1.887
5 10 2.53E+05 1.889
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Thank You

We hope that following Albert Einstein’s
suggestion we made everything as simple as
possible, but not simpler.

Thank You !!!
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