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Large deviations for a heavy-tailed iid sequence

• We define heavy tails by regular variation of the tails.

• Assume that (Xt) is iid regularly varying, i.e. there exists an

α > 0, constants p, q ≥ 0 with p+ q = 1 and a slowly varying

function L such that

P (X > x) ∼ p
L(x)

xα
and P (X ≤ −x) ∼ q

L(x)

xα
as x → ∞.

• Define the partial sums

Sn = X1 + · · · +Xn , n ≥ 1 ,

and assume EX = 0 if E|X| is finite.
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• Large deviations refer to sequences of rare events {b−1
n Sn ∈ A},

i.e. P (b−1
n Sn ∈ A) → 0 as n → ∞.

• For example, if EX = 0 and A is bounded away from zero then

P (n−1Sn ∈ A) → 0 as n → ∞, e.g. P (|Sn| > δn) → 0.

• Then the following relations hold for α > 0 and suitable

sequences bn ↑ ∞2

lim
n→∞

sup
x≥bn

∣∣∣∣
P (Sn > x)

nP (|X| > x)
− p

∣∣∣∣ = 0 .

• For fixed n and x → ∞, the result is a trivial consequence of

regular variation (subexponentiality); e.g. Feller (1971).

2A.V. Nagaev (1969), S.V. Nagaev (1979), Cline and Hsing (1998), Heyde (1967)
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• If p > 0, the result can be written in the form

lim
n→∞

sup
x≥bn

∣∣∣∣
P (Sn > x)

P (Mn > x)
− 1

∣∣∣∣ = 0 ,

where Mn = max(X1, . . . , Xn).

• If α > 2 one can choose bn =
√
an logn, where a > α− 2, and

for α ∈ (0, 2], bn = n1/α+δ for any δ > 0.

• In particular, one can always choose bn = δ n, δ > 0, provided

E|X| < ∞.

• For α > 2 and
√
n ≤ x ≤ √

an logn, a < α− 2, the probability

P (Sn − ESn > x) is approximated by the tail of a normal

distribution.
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• A functional (Donsker) version for multivariate regularly

varying summands holds. Hult, Lindskog, M., Samorodnitsky (2005).

• Then, for example, P (maxi≤n Si > bn) ∼ cmax nP (|X| > bn)

provided b−1
n Sn

P→ 0.
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• The iid heavy tail large deviation heuristics: Large values of

the random walk occur in the most natural way: due to a

single large step.

• This means: In the presence of heavy tails it is very unlikely

that two steps Xi and Xj of the sum Sn are large.

• These results are in stark contrast with large deviation

probabilities when X has exponential moments (Cramér-type

large deviations). Then P (|Sn − ESn| > εn) decays

exponentially fast to zero.3

3Cramér-type large deviations are usually more difficult to prove than heavy-tailed large deviations.
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Ruin probabilities for an iid sequence

• Assume the conditions of Nagaev’s Theorem: (Xt) iid regularly

varying with index α > 1 and EX = 0.

• For fixed µ > 0 and any u > 0, consider the ruin probability

ψ(u) = P (sup
n≥1

(Sn − µn) > u) .

• It is in general impossible to calculate ψ(u) exactly and

therefore most results on ruin study the asymptotic behavior of

ψ(u) when u → ∞.

• If the sequence (Xt) is iid it is well known4 that

ψ(u) ∼ uP (X > u)

µ (α− 1)
∼ 1

µ

∫ ∞

u

P (X > x) dx , u → ∞ .

4Embrechts and Veraverbeke (1982), also for subexponentials.
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• There is a direct relation between large deviations and ruin:

uP (X > u)(1 + µ)−α ∼ P (S[u] > [u] (1 + µ))

≤ P (sup
n≥1

(Sn − µn) > u)

≈ P ( sup
M−1 u≤n≤M u

(Sn − µn) > u)

≈ P (S[u] > u) .

∼ uP (X > u)

• Lundberg (1905) and Cramér (1930s) proved that ψ(u) decays

exponentially fast if X has exponential moments.
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Examples of regularly varying stationary sequences

Linear processes.

• Examples of linear processes are ARMA processes with iid

noise (Zt), e.g. the AR(p) and MA(q) processes

Xt = Zt + ϕ1Xt−1 + · · · + ϕpXt−p ,

Xt = Zt + θ1Zt−1 + · · · + θqZt−q .

• Linear processes constitute the class of time series which have

been applied most frequently in practice.

• Linear processes are regularly varying with index α if the iid

noise (Zt) is regularly varying with index α.
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• Linear processes

Xt =
∑

j

ψjZt−j, t ∈ Z,

with iid regularly varying noise (Zt) with index α > 0 and

EZ = 0 if E|Z| is finite:5

P (X > x)

P (|Z| > x)
∼

∑

j

|ψj|α(p Iψj>0 + q Iψj<0)= ‖ψ‖αα , x → ∞ .

• Regular variation of X is in general not sufficient for regular

variation of Z. Jacobsen, M., Samorodnitsky, Rosiński (2009, 2011)

5Davis, Resnick (1985); M., Samorodnitsky (2000) under conditions which are close to those in the 3-series
theorem.
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Solutions to stochastic recurrence equation.

• For an iid sequence ((At, Bt))t∈Z, A > 0, the stochastic

recurrence equation

Xt = AtXt−1 +Bt , t ∈ Z ,

has a unique stationary solution

Xt = Bt +

t−1∑

i=−∞
At · · ·Ai+1Bi , t ∈ Z,

provided E logA < 0, E| log |B|| < ∞.

• The sequence (Xt) is regularly varying with index α which is

the unique positive solution to EAκ = 1 (given this solution

exists) Kesten (1973), Goldie (1991) and

P (X > x) ∼ c+∞ x−α , P (X ≤ −x) ∼ c−
∞ x−α , x → ∞ .
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• The GARCH(1, 1) process6 satisfies a stochastic recurrence

equation: for an iid standard normal sequence (Zt)

σ2
t = α0 + (α1Z

2
t−1 + β1)σ

2
t−1 .

The process Xt = σtZt is regularly varying with index α

satisfying E(α1Z
2 + β1)

α/2 = 1.

6Bollerslev (1986)
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Large deviations for a regularly varying linear process

• Assume (Zt) iid, regularly varying with index α > 1 and

EZ = 0, hence EX = 0.

• Consider the linear process

Xt =
∑

j

ψjZt−j, t ∈ Z.

• Let mψ =
∑

j ψj and ‖ψ‖αα =
∑

j |ψj|α(p Iψj>0 + q Iψj<0).

• Then M., Samorodnitsky (2000)

lim
n→∞

sup
x≥bn

∣∣∣∣
P (Sn > x)

nP (|X| > x)
−
p (mψ)

α
+ + q (mψ)

α
−

‖ψ‖αα

∣∣∣∣ = 0 .

• The threshold bn is chosen as in the iid case.
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Ruin probabilities for a regularly varying linear process

• Assume (Zt) iid, regularly varying with index α > 1 and

EZ = 0, hence EX = 0.

• Also assume
∑
j |jψj| < ∞, excluding long range dependence.

• Then for µ > 0 M., Samorodnitsky (2000)

ψ(u) = P (sup
n≥1

(Sn − µn) > u)

∼
p (mψ)

α
+ + q (mψ)

α
−

‖ψ‖αα
uP (X > u)

µ (α− 1)

∼
p (mψ)

α
+ + q (mψ)

α
−

‖ψ‖αα
ψind(u) , u → ∞ .

• The proof is purely probabilistic.
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• The constants ‖ψ‖αα and p (mψ)
α
+ + q (mψ)

α
− are crucial for

measuring the dependence in the linear process (Xt) with

respect to large deviation behavior and the ruin functional.

• A quantity of interest in this context is related to the

maximum functional Mn = max(X1, . . . , Xn).

• Assume P (|X| > an) ∼ n−1. Then, for x > 0,7

−xα logP (a−1
n Mn ≤ x) →

p maxj(ψj)
α
+ + q maxj(ψj)

α
−

‖ψ‖αα
.

• The right-hand expression is the extremal index of (Xt) and

measures the degree of extremal clustering in the sequence.
7Rootzén (1978), Davis, Resnick (1985)
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Large deviation probabilities for solutions to stochastic

recurrence equations

• Assume Kesten’s conditions for the stochastic recurrence

equation Xt = AtXt−1 +Bt, t ∈ Z, and A > 0. Then for some

α > 0, constants c±
∞ ≥ 0 such that c+∞ + c−

∞ > 0

P (X ≤ −x) ∼ c−
∞ x−α and P (X > x) ∼ c+∞ x−α , x → ∞ .

• Then Buraczewski, Damek, M., Zienkiewicz (2011) if c+∞ > 0

lim
n→∞

sup
bn≤x≤esn

∣∣∣∣
P (Sn − ESn > x)

nP (X > x)
− c∞

∣∣∣∣ = 0 ,

where bn = n1/α(logn)M , M > 2, for α ∈ (1, 2], and

bn = cnn
0.5 logn, cn → ∞, for α > 2, c∞ corresponds to the

case B = 1, and sn/n → 0.
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• Write Πij = Ai · · ·Aj. Then Xi = Π1iX0 + X̃i, where

X̃i = Π2iB1 + Π3iB2 + · · · + ΠiiBi−1 +Bi , i ≥ 1 ,

and

Sn = X0

n∑

i=1

Π1i +
n∑

i=1

X̃i .

The summands X̃i are chopped into distinct parts of length

log x and sums are taken over disjoint blocks of length logx.

Then Nagaev-Fuk and Prokhorov inequalities for independent

summands apply.
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• The condition sn/n → 0 is essential.

• Also notice that Embrechts and Veraverbeke (1982)

P (X0

n∑

i=1

Π1i > x) ≤ P (X0

∞∑

i=1

Π1i > x) ∼ c x−α log x .

• Then

P (X0

∑n
i=1 Π1i > x)

nP (X > x)
“≤”

x−α log x

nx−α =
log x

n
.
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Ruin probabilities for solutions to stochastic recurrence

equations

• Under Kesten’s conditions for the stochastic recurrence

equation Xt = AtXt−1 +Bt, t ∈ Z, with A,B > 0, for µ > 0,

ψ(u) = P (sup
n≥1

(Sn − ESn − µn) > u)

∼ c∞
uP (X > u)

µ (α− 1)

∼ c∞ ψind(u) , u → ∞ ,

with Goldie’s constant

c∞ =
E[(AX + 1)α − (AX)α]

αEAα logA
=
E(AX + U)α−1

EAα logA
.
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• The extremal index of the sequence (Xt) de Haan, Rootzén, Resnick, de

Vries (1989)

−xα logP (a−1
n Mn ≤ x) → cα

∫ ∞

1

P (max
n≥1

Π1n ≤ y−1) y−α−1dy .
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Some other examples

• In the case of dependent stationary (Xt), assuming regular

variation conditions with some index α < 2, Jakubowski (1993,1997),

Davis, Hsing (1995) show the existence of a sequence (cn) such that

c−1
n Sn

P→ 0 and limn→∞
P (Sn > cn)

nP (|X| > cn)
exists and is positve.

• Konstantinides, M. (2005) prove precise Nagaev-type large deviations

and ruin bounds for the solution to the stochastic recurrence

equation Xt = AtXt−1 +Bt in the non-Kesten case when (Bt) is

iid regularly varying with index α > 1 and EAα < 1.

• In this case, the B-sequence determines the tail behavior of

(Sn) and the A-sequence gets averaged.

• The results are similar to the linear process case.
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• M., Samorodnitsky (2000) prove precise ruin bounds for an ergodic

stationary symmetric α-stable (sαs) sequence

Xt =

∫

E

ft(x)M(dx) , t ∈ Z ,

where M is an sαs random measure with control measure µ

and α ∈ (1, 2).

• Then (Xt) is regularly varying with index α and in particular

P (X > x) = P (X ≤ −x) ∼ c0 x
−α , x → ∞ .

• Conditions on (ft) ensuring ergodicity and stationarity were

proved by Rosiński (1995).
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• Tail bounds (large deviations) are trivial: for any x = xn → ∞,

and mn =
( ∫

E

∣∣∣
∑n
i=1 ft(x)

∣∣∣
α

µ(dx)
)1/α

, for an sαs random

variable M0,

P (Sn > x) = P
( ∫

E

n∑

t=1

ft(x)M(dx) > x
)

= P (mnM0 > x)

∼ mα
n P (M0 > x) .

• By ergodicity, mn = o(n).

• If mn = o(nβ) (mixing), some β ∈ (0, 1), bounds of the type

ψ(u) ∼ u1−α+γL(u) for γ ≤ α− 1 are possible.
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• For continuous-time processes (St)t≥0 with stationary

increments proof techniques for ruin can often be translated to

other subadditive functionals acting on the sample paths of a

random walk with negative drift without too much extra work.

Braverman, M., Samorodnitsky (2002).

• Subadditivity of a functional f acting on the sample paths

means

f(x + y) ≤ f(x) + f(y) .

• Examples: the supremum functional, the length of the period

until the process is eventually negative, the length of the

period the process is positive.
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