Precise large deviation probabilities for a heavy-tailed random walk

Thomas Mikosch
University of Copenhagen www.math.ku.dk/~mikosch

[^0]

Large deviations for a heavy-tailed idd sequence

- We define heavy tails by regular variation of the tails.
- Assume that $\left(X_{t}\right)$ is iid regularly varying, i.e. there exists an $\alpha>0$, constants $p, q \geq 0$ with $p+q=1$ and a slowly varying function L such that

$$
P(X>x) \sim p \frac{L(x)}{x^{\alpha}} \quad \text { and } \quad P(X \leq-x) \sim q \frac{L(x)}{x^{\alpha}} \quad \text { as } x \rightarrow \infty
$$

- Define the partial sums

$$
S_{n}=X_{1}+\cdots+X_{n}, \quad n \geq 1
$$

and assume $E X=0$ if $E|X|$ is finite.

- Large deviations refer to sequences of rare events $\left\{b_{n}^{-1} S_{n} \in A\right\}$, i.e. $P\left(b_{n}^{-1} S_{n} \in A\right) \rightarrow 0$ as $n \rightarrow \infty$.
- For example, if $\boldsymbol{E} \boldsymbol{X}=0$ and \boldsymbol{A} is bounded away from zero then $P\left(n^{-1} S_{n} \in A\right) \rightarrow 0$ as $n \rightarrow \infty$, e.g. $P\left(\left|S_{n}\right|>\delta n\right) \rightarrow 0$.
- Then the following relations hold for $\alpha>0$ and suitable sequences $b_{n} \uparrow \infty^{2}$

$$
\lim _{n \rightarrow \infty} \sup _{x \geq b_{n}}\left|\frac{P\left(S_{n}>x\right)}{n P(|X|>x)}-p\right|=0
$$

- For fixed n and $x \rightarrow \infty$, the result is a trivial consequence of regular variation (subexponentiality); e.g. Feller (1971).

[^1]- If $p>0$, the result can be written in the form

$$
\lim _{n \rightarrow \infty} \sup _{x \geq b_{n}}\left|\frac{P\left(S_{n}>x\right)}{P\left(M_{n}>x\right)}-1\right|=0
$$

where $M_{n}=\max \left(X_{1}, \ldots, X_{n}\right)$.

- If $\alpha>2$ one can choose $b_{n}=\sqrt{a n \log n}$, where $a>\alpha-2$, and for $\alpha \in(0,2], b_{n}=n^{1 / \alpha+\delta}$ for any $\delta>0$.
- In particular, one can always choose $b_{n}=\delta n, \delta>0$, provided $\boldsymbol{E}|\boldsymbol{X}|<\infty$.
- For $\alpha>2$ and $\sqrt{n} \leq x \leq \sqrt{a n \log n}, a<\alpha-2$, the probability $P\left(S_{n}-E S_{n}>x\right)$ is approximated by the tail of a normal distribution.
- A functional (Donsker) version for multivariate regularly varying summands holds. Hult, Lindskog, M., Samorodnitsky (2005).
- Then, for example, $P\left(\max _{i \leq n} S_{i}>b_{n}\right) \sim c_{\max } n P\left(|X|>b_{n}\right)$ provided $b_{n}^{-1} S_{n} \xrightarrow{P} 0$.
- The iid heavy tail large deviation heuristics: Large values of the random walk occur in the most natural way: due to a single large step.
- This means: In the presence of heavy tails it is very unlikely that two steps X_{i} and X_{j} of the sum S_{n} are large.
- These results are in stark contrast with large deviation probabilities when \boldsymbol{X} has exponential moments (Cramér-type large deviations). Then $\boldsymbol{P}\left(\left|\boldsymbol{S}_{n}-\boldsymbol{E} \boldsymbol{S}_{n}\right|>\varepsilon \boldsymbol{n}\right)$ decays exponentially fast to zero. ${ }^{3}$

[^2]

- Assume the conditions of Nagaev's Theorem: $\left(\boldsymbol{X}_{\boldsymbol{t}}\right)$ iid regularly varying with index $\alpha>1$ and $E \boldsymbol{X}=0$.
- For fixed $\mu>0$ and any $u>0$, consider the ruin probability

$$
\psi(u)=P\left(\sup _{n \geq 1}\left(S_{n}-\mu n\right)>u\right)
$$

- It is in general impossible to calculate $\psi(u)$ exactly and therefore most results on ruin study the asymptotic behavior of $\psi(u)$ when $u \rightarrow \infty$.
- If the sequence $\left(X_{t}\right)$ is iid it is well known 4 that

$$
\psi(u) \sim \frac{u P(X>u)}{\mu(\alpha-1)} \sim \frac{1}{\mu} \int_{u}^{\infty} P(X>x) d x, \quad u \rightarrow \infty
$$

[^3]- There is a direct relation between large deviations and ruin:

$$
\begin{aligned}
u P(X>u)(\mathbb{1}+\mu)^{-\alpha} & \sim P\left(S_{[u]}>[u](\mathbb{1}+\mu)\right) \\
& \leq P\left(\sup _{n \geq 1}\left(S_{n}-\mu n\right)>u\right) \\
& \approx P\left(\sup _{M^{-1} u \leq n \leq M u}\left(S_{n}-\mu n\right)>u\right) \\
& \approx P\left(S_{[u]}>u\right) \\
& \sim u P(X>u)
\end{aligned}
$$

- Lundberg (1905) and Cramér (1930s) proved that $\psi(u)$ decays exponentially fast if \boldsymbol{X} has exponential moments.

Linear processes.

- Examples of linear processes are ARMA processes with iid noise $\left(Z_{t}\right)$, e.g. the $\mathrm{AR}(p)$ and $\mathrm{MA}(q)$ processes

$$
\begin{aligned}
& X_{t}=Z_{t}+\varphi_{1} X_{t-1}+\cdots+\varphi_{p} X_{t-p} \\
& X_{t}=Z_{t}+\theta_{1} Z_{t-1}+\cdots+\theta_{q} Z_{t-q}
\end{aligned}
$$

- Linear processes constitute the class of time series which have been applied most frequently in practice.
- Linear processes are regularly varying with index α if the iid noise $\left(Z_{t}\right)$ is regularly varying with index α.
- Linear processes

$$
X_{t}=\sum_{j} \psi_{j} Z_{t-j}, \quad t \in \mathbb{Z}
$$

with iid regularly varying noise $\left(Z_{t}\right)$ with index $\alpha>0$ and $E Z=0$ if $E|Z|$ is finite: ${ }^{5}$

$$
\frac{P(X>x)}{P(|Z|>x)} \sim \sum_{j}\left|\psi_{j}\right|^{\alpha}\left(p I_{\psi_{j}>0}+q I_{\psi_{j}<0}\right)=\|\psi\|_{\alpha}^{\alpha}, \quad x \rightarrow \infty
$$

- Regular variation of \boldsymbol{X} is in general not sufficient for regular variation of Z. Jacobsen, M., Samorodnitsky, Rosiński (2009, 2011)

[^4]Solutions to stochastic recurrence equation.

- For an iid sequence $\left(\left(A_{t}, B_{t}\right)\right)_{t \in \mathbb{Z}}, A>0$, the stochastic recurrence equation

$$
\boldsymbol{X}_{t}=\boldsymbol{A}_{t} \boldsymbol{X}_{t-1}+\boldsymbol{B}_{t}, \quad t \in \mathbb{Z}
$$

has a unique stationary solution

$$
X_{t}=B_{t}+\sum_{i=-\infty}^{t-1} A_{t} \cdots A_{i+1} B_{i}, \quad t \in \mathbb{Z}
$$

provided $E \log A<0, E|\log | B| |<\infty$.

- The sequence $\left(X_{t}\right)$ is regularly varying with index α which is the unique positive solution to $E A^{\kappa}=1$ (given this solution exists) Kesten (1973), Goldie (1991) and

$$
P(X>x) \sim c_{\infty}^{+} x^{-\alpha}, \quad P(X \leq-x) \sim c_{\infty}^{-} x^{-\alpha}, \quad x \rightarrow \infty
$$

- The $\operatorname{GARCH}(1,1)$ process 6 satisfies a stochastic recurrence equation: for an iid standard normal sequence $\left(Z_{t}\right)$

$$
\sigma_{t}^{2}=\alpha_{0}+\left(\alpha_{1} Z_{t-1}^{2}+\beta_{1}\right) \sigma_{t-1}^{2} .
$$

The process $X_{t}=\sigma_{t} Z_{t}$ is regularly varying with index α satisfying $E\left(\alpha_{1} Z^{2}+\beta_{1}\right)^{\alpha / 2}=1$.

[^5]

- Assume (Z_{t}) iid, regularly varying with index $\alpha>1$ and $E Z=0$, hence $E X=0$.
- Consider the linear process

$$
X_{t}=\sum_{j} \psi_{j} Z_{t-j}, \quad t \in \mathbb{Z}
$$

- Let $m_{\psi}=\sum_{j} \psi_{j}$ and $\|\psi\|_{\alpha}^{\alpha}=\sum_{j}\left|\psi_{j}\right|^{\alpha}\left(\boldsymbol{p} \boldsymbol{I}_{\psi_{j}>0}+\boldsymbol{q} \boldsymbol{I}_{\psi_{j}<0}\right)$.
- Then m., Samorodnitsky (2000)

$$
\lim _{n \rightarrow \infty} \sup _{x \geq b_{n}}\left|\frac{P\left(S_{n}>x\right)}{n P(|X|>x)}-\frac{p\left(m_{\psi}\right)_{+}^{\alpha}+q\left(m_{\psi}\right)_{-}^{\alpha}}{\|\psi\|_{\alpha}^{\alpha}}\right|=0 .
$$

- The threshold b_{n} is chosen as in the iid case.
- Assume (Z_{t}) iid, regularly varying with index $\alpha>1$ and $E Z=0$, hence $E X=0$.
- Also assume $\sum_{j}\left|j \psi_{j}\right|<\infty$, excluding long range dependence.
- Then for $\mu>0 \mathrm{M}$. , Samorodnitsky (2000)

$$
\begin{aligned}
\psi(u) & =P\left(\sup _{n \geq 1}\left(S_{n}-\mu n\right)>u\right) \\
& \sim \frac{p\left(m_{\psi}\right)_{+}^{\alpha}+q\left(m_{\psi}\right)_{-}^{\alpha}}{\|\psi\|_{\alpha}^{\alpha}} \frac{u P(X>u)}{\mu(\alpha-1)} \\
& \sim \frac{p\left(m_{\psi}\right)_{+}^{\alpha}+q\left(m_{\psi}\right)_{-}^{\alpha}}{\|\psi\|_{\alpha}^{\alpha}} \psi_{\text {ind }}(u), \quad u \rightarrow \infty
\end{aligned}
$$

- The proof is purely probabilistic.
- The constants $\|\psi\|_{\alpha}^{\alpha}$ and $p\left(m_{\psi}\right)_{+}^{\alpha}+q\left(m_{\psi}\right)_{-}^{\alpha}$ are crucial for measuring the dependence in the linear process $\left(X_{t}\right)$ with respect to large deviation behavior and the ruin functional.
- A quantity of interest in this context is related to the maximum functional $M_{n}=\max \left(\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}\right)$.
- Assume $P\left(|X|>a_{n}\right) \sim n^{-1}$. Then, for $x>0,{ }^{7}$

$$
-x^{\alpha} \log P\left(a_{n}^{-1} M_{n} \leq x\right) \rightarrow \frac{p \max _{j}\left(\psi_{j}\right)_{+}^{\alpha}+q \max _{j}\left(\psi_{j}\right)_{-}^{\alpha}}{\|\psi\|_{\alpha}^{\alpha}}
$$

- The right-hand expression is the extremal index of $\left(X_{t}\right)$ and measures the degree of extremal clustering in the sequence.

[^6]

RECURRENCE EQUATIONS

- Assume Kesten's conditions for the stochastic recurrence equation $X_{t}=A_{t} X_{t-1}+B_{t}, t \in \mathbb{Z}$, and $A>0$. Then for some $\alpha>0$, constants $c_{\infty}^{ \pm} \geq 0$ such that $c_{\infty}^{+}+c_{\infty}^{-}>0$

$$
P(X \leq-x) \sim c_{\infty}^{-} x^{-\alpha} \quad \text { and } \quad P(X>x) \sim c_{\infty}^{+} x^{-\alpha}, \quad x \rightarrow \infty
$$

- Then Buraczewski, Damek, M., Zienkiewicz (2011) if $c_{\infty}^{+}>0$

$$
\lim _{n \rightarrow \infty} \sup _{b_{n} \leq x \leq \mathrm{e}^{s_{n}}}\left|\frac{P\left(S_{n}-E S_{n}>x\right)}{n P(X>x)}-c_{\infty}\right|=0
$$

where $b_{n}=n^{1 / \alpha}(\log n)^{M}, M>2$, for $\alpha \in(1,2]$, and $b_{n}=c_{n} n^{0.5} \log n, c_{n} \rightarrow \infty$, for $\alpha>2, c_{\infty}$ corresponds to the case $B=1$, and $s_{n} / n \rightarrow 0$.
\bullet Write $\Pi_{i j}=A_{i} \cdots A_{j}$. Then $X_{i}=\Pi_{1 i} X_{0}+\widetilde{X}_{i}$, where

$$
\widetilde{\boldsymbol{X}}_{i}=\Pi_{2 i} \boldsymbol{B}_{1}+\Pi_{3 i} B_{2}+\cdots+\Pi_{i i} B_{i-1}+B_{i}, \quad i \geq 1
$$

and

$$
S_{n}=\boldsymbol{X}_{0} \sum_{i=1}^{n} \Pi_{1 i}+\sum_{i=1}^{n} \widetilde{\boldsymbol{X}}_{i}
$$

The summands \widetilde{X}_{i} are chopped into distinct parts of length $\log x$ and sums are taken over disjoint blocks of length $\log x$. Then Nagaev-Fuk and Prokhorov inequalities for independent summands apply.

- The condition $s_{n} / n \rightarrow 0$ is essential.
- Also notice that Embrechts and Veraverbeke (1982)

$$
P\left(X_{0} \sum_{i=1}^{n} \Pi_{1 i}>x\right) \leq P\left(X_{0} \sum_{i=1}^{\infty} \Pi_{1 i}>x\right) \sim c x^{-\alpha} \log x
$$

- Then

$$
\frac{P\left(X_{0} \sum_{i=1}^{n} \Pi_{1 i}>x\right)}{n P(X>x)} \quad " \leq " \quad \frac{x^{-\alpha} \log x}{n x^{-\alpha}}=\frac{\log x}{n}
$$

EQUATIONS

- Under Kesten's conditions for the stochastic recurrence equation $X_{t}=A_{t} X_{t-1}+B_{t}, t \in \mathbb{Z}$, with $A, B>0$, for $\mu>0$,

$$
\begin{aligned}
\psi(u) & =P\left(\sup _{n \geq 1}\left(S_{n}-E S_{n}-\mu n\right)>u\right) \\
& \sim c_{\infty} \frac{u P(X>u)}{\mu(\alpha-1)} \\
& \sim c_{\infty} \psi_{\mathrm{ind}}(u), \quad u \rightarrow \infty
\end{aligned}
$$

with Goldie's constant

$$
c_{\infty}=\frac{\boldsymbol{E}\left[(A \boldsymbol{X}+1)^{\alpha}-(A \boldsymbol{X})^{\alpha}\right]}{\alpha \boldsymbol{E} A^{\alpha} \log \boldsymbol{A}}=\frac{\boldsymbol{E}(\boldsymbol{A X}+\boldsymbol{U})^{\alpha-1}}{\boldsymbol{E} \boldsymbol{A}^{\alpha} \log \boldsymbol{A}}
$$

- The extremal index of the sequence $\left(\boldsymbol{X}_{\boldsymbol{t}}\right)$ de Haan, Rootzén, Resnick, de

Vries (1989)
$-x^{\alpha} \log P\left(a_{n}^{-1} M_{n} \leq x\right) \rightarrow c \boldsymbol{\alpha} \int_{1}^{\infty} P\left(\max _{n \geq 1} \Pi_{1 n} \leq y^{-1}\right) y^{-\alpha-1} d y$.

- In the case of dependent stationary $\left(X_{t}\right)$, assuming regular variation conditions with some index $\alpha<2$, Jakubowski (1993,1997), Davis, Hsing (1995) show the existence of a sequence $\left(c_{n}\right)$ such that $c_{n}^{-1} S_{n} \xrightarrow{P} 0$ and $\lim _{n \rightarrow \infty} \frac{P\left(S_{n}>c_{n}\right)}{n P\left(|X|>c_{n}\right)}$ exists and is positve.
- Konstantinides, M. (2005) prove precise Nagaev-type large deviations and ruin bounds for the solution to the stochastic recurrence equation $X_{t}=A_{t} X_{t-1}+B_{t}$ in the non-Kesten case when $\left(B_{t}\right)$ is iid regularly varying with index $\alpha>1$ and $E A^{\alpha}<1$.
- In this case, the B-sequence determines the tail behavior of $\left(S_{n}\right)$ and the \boldsymbol{A}-sequence gets averaged.
- The results are similar to the linear process case.
- M., Samorodnitsky (2000) prove precise ruin bounds for an ergodic stationary symmetric α-stable (s α s) sequence

$$
X_{t}=\int_{E} f_{t}(x) M(d x), \quad t \in \mathbb{Z}
$$

where M is an s α s random measure with control measure μ and $\alpha \in(1,2)$.

- Then $\left(X_{t}\right)$ is regularly varying with index α and in particular

$$
P(X>x)=P(X \leq-x) \sim c_{0} x^{-\alpha}, \quad x \rightarrow \infty
$$

- Conditions on $\left(f_{t}\right)$ ensuring ergodicity and stationarity were proved by Rosiński (1995).
- Tail bounds (large deviations) are trivial: for any $x=x_{n} \rightarrow \infty$, and $m_{n}=\left(\int_{E}\left|\sum_{i=1}^{n} f_{t}(x)\right|^{\alpha} \mu(d x)\right)^{1 / \alpha}$, for an s α s random variable M_{0},

$$
\begin{aligned}
\boldsymbol{P}\left(S_{n}>x\right) & =P\left(\int_{E} \sum_{t=1}^{n} f_{t}(x) M(d x)>x\right) \\
& =P\left(m_{n} M_{0}>x\right) \\
& \sim \boldsymbol{m}_{n}^{\alpha} \boldsymbol{P}\left(M_{0}>x\right)
\end{aligned}
$$

- By ergodicity, $m_{n}=o(n)$.
- If $m_{n}=o\left(n^{\beta}\right)$ (mixing), some $\beta \in(0,1)$, bounds of the type $\psi(u) \sim u^{1-\alpha+\gamma} L(u)$ for $\gamma \leq \alpha-1$ are possible.
- For continuous-time processes $\left(S_{t}\right)_{t \geq 0}$ with stationary increments proof techniques for ruin can often be translated to other subadditive functionals acting on the sample paths of a random walk with negative drift without too much extra work.

Braverman, M., Samorodnitsky (2002).

- Subadditivity of a functional f acting on the sample paths means

$$
f(\mathrm{x}+\mathrm{y}) \leq f(\mathrm{x})+f(\mathrm{y})
$$

- Examples: the supremum functional, the length of the period until the process is eventually negative, the length of the period the process is positive.

Til lykke

[^0]: ${ }^{1}$ Conference in Honor of Søren Asmussen, Sandbjerg, August 1-5, 2011

[^1]: 2A.V. Nagaev (1969), S.V. Nagaev (1979), Cline and Hsing (1998), Heyde (1967)

[^2]: ${ }^{3}$ Cramér-type large deviations are usually more difficult to prove than heavy-tailed large deviations.

[^3]: ${ }^{4}$ Embrechts and Veraverbeke (1982), also for subexponentials.

[^4]: ${ }^{5}$ Davis, Resnick (1985); M., Samorodnitsky (2000) under conditions which are close to those in the 3-series theorem.

[^5]: 6Bollerslev (1986)

[^6]: ${ }^{7}$ Rootzén (1978), Davis, Resnick (1985)

