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LARGE DEVIATIONS FOR A HEAVY-TAILED IID SEQUENCE

e We define heavy tails by regular variation of the tails.

e Assume that (X;) is iid regularly varying, i.e. there exists an
a > 0, constants p,q > 0 with p + g = 1 and a slowly varying

function L such that

L@ nd PX < —2) ~ g2

P(X >xz)~p
xTre xTre

as £ — OCQ.

e Define the partial sums
S,.=Xi1+---+X,,, n>1,

and assume EX = 0 if E|X| is finite.
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e Large deviations refer to sequences of rare events {b_ 'S, € A},
i.e. P(b. 'S, € A) — 0asn — oo.

e For example, if EX = 0 and A is bounded away from zero then
P(n=1'S, € A) — 0 as n — oo, e.g. P(|S,| > dn) — 0.

e Then the following relations hold for a > 0 and suitable

sequences b,, T 0o’

. P(S, > x)
lim sup

—p|l =0.
n—00 »>p, nP(|X| > 33)

e ['or fixed n and & — oo, the result is a trivial consequence of

regular variation (subexponentiality); e.g. Feller (1971).

2A.V. Nagaev (1969), S.V. Nagaev (1979), Cline and Hsing (1998), Heyde (1967)



o If p > 0, the result can be written in the form

. P(S, > x)
lim sup — 1, =0,
n—oo >4 | P(M,, > x)

where M,, = max(Xy,...,X,).

e If « > 2 one can choose b,, = \/anlogn, where a > o — 2, and

for o € (0,2], b, = n'/*° for any § > 0.

e In particular, one can always choose b,, = d n, § > 0, provided

E|X| < oo.

efor « >2and /n <z < /anlogn, a < a — 2, the probability
P(S, — ES,, > x) is approximated by the tail of a normal

distribution.



e A functional (Donsker) version for multivariate regularly

varying summands holds. Hult, Lindskog, M., Samorodnitsky (2005).

e Then, for example, P(max;<, S; > b,) ~ cpaxn P(|X| > b,)

provided b-'S, - 0.



e® The iid heavy tail large deviation heuristics: Large values of
the random walk occur in the most natural way: due to a

single large step.

e This means: In the presence of heavy tails it is very unlikely

that two steps X; and X, of the sum S,, are large.

® These results are in stark contrast with large deviation
probabilities when X has exponential moments (Cramér-type

large deviations). Then P(|S,, — ES,,| > en) decays

exponentially fast to zero.’

3Cramér-type large deviations are usually more difficult to prove than heavy-tailed large deviations.
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RUIN PROBABILITIES FOR AN IID SEQUENCE

e Assume the conditions of Nagaev’s Theorem: (Xj3) iid regularly
varying with index a > 1 and £EX = 0.
e For fixed u > 0 and any u > 0, consider the ruin probability

Y(u) = P(sup (S, — pmn) > u).

n>1
e It is in general impossible to calculate ¥ (u) exactly and
therefore most results on ruin study the asymptotic behavior of

Y (u) when u — oo.

e If the sequence (X;) is iid it is well known* that
uP(X > u)
P(u) ~
p(a—1)

1 oo
N—/ P(X >x)dx, u— oco.
pJu

4Embrechts and Veraverbeke (1982), also for subexponentials.



e There is a direct relation between large deviations and ruin:

uP(X > u)(1+ p)~* ~ P(Sp > [u] (1 + p))

< P(sup (S, — pn) > u)
n>1

P( sup  (S.—pn)> u)
M-1yu<n<Mu

P(S[u] > u).

Q

Q

~ uP(X > u)

e Lundberg (1905) and Cramér (1930s) proved that ¥ (u) decays

exponentially fast if X has exponential moments.

11
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EXAMPLES OF REGULARLY VARYING STATIONARY SEQUENCES

Linear processes.
e Examples of linear processes are ARNMA processes with iid

noise (Z;), e.g. the AR(p) and MA (q) processes

X Zi+ o1 X1+ -+ @pXi—p,

Xy i +0nZi g+ -+ 0,74

e Linear processes constitute the class of time series which have
been applied most frequently in practice.
e Linear processes are regularly varying with index « if the iid

noise (Z;) is regularly varying with index a.
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e Linear processes
X = Z"»bjzt—jv t € Z,
J

with iid regularly varying noise (Z;) with index a > 0 and

EZ = 0 if E|Z| is finite:’

P(X > x)
P(|Z| > x)

~ 3 1P Lyyso +  Iyj<0)= IS, = — oo.
J

e Regular variation of X is in general not sufficient for regular

variation of Z. Jacobsen, M., Samorodnitsky, Rosinski (2009, 2011)

SDavis, Resnick (1985); M., Samorodnitsky (2000) under conditions which are close to those in the 3-series
theorem.
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Solutions to stochastic recurrence equation.

e For an iid sequence ((A;, B;))tcz, A > 0, the stochastic

recurrence equation
X =A Xy 1+ By, teZ,

has a unique stationary solution
t—1
Xi = B + Z Ao+ A By, teZ,

1=—00

provided Elog A < 0, E|log |B|| < oo.
e The sequence (X,) is regularly varying with index a which is
the unique positive solution to FA®" = 1 (given this solution

exists) Kesten (1973), Goldie (1991) and

P(X>z)~ctaz ™, P(X<-zx)~c_z™®, z— 0.



e The GARCH(1, 1) process’ satisfies a stochastic recurrence

equation: for an iid standard normal sequence (Z;)
0152 = Qg T (alZE—1 T 51)03—1 .
The process X; = 0:Z; is regularly varying with index «

satisfying E (o Z% + 3,)%/* = 1.

6Bollerslev (1986)

15
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LARGE DEVIATIONS FOR A REGULARLY VARYING LINEAR PROCESS

e Assume (Z;) iid, regularly varying with index a > 1 and
EZ = 0, hence EX = 0.

e Consider the linear process
Xy =) ¥jZi;, tel.
J
o Let my = ) ;v and [[]|g = >_; |90;*(P Ly;>0 + q Ty;<0)-

® Then M., Samorodnitsky (2000)
P(Sp>z)  p(my)T +q(my)?|
n P(|X| > x) ]

lim sup
n—oo iBan

e The threshold b,, is chosen as in the iid case.

17
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RUIN PROBABILITIES FOR A REGULARLY VARYING LINEAR PROCESS

e Assume (Z;) iid, regularly varying with index a > 1 and

EZ = 0, hence EX = 0.
e Also assume ) . |j1;| < oo, excluding long range dependence.

® Then for ;& > 0 M., Samorodnitsky (2000)

(u) = P(sup (Sn — pn) > u)

n>1
p(my)T +a(my)? uP(X > w)
11]2 p(a—1)
~ P (mw)ﬁ?;_ﬂg (my)2 Yima(u), v — 0.

e The proof is purely probabilistic.



e The constants |4 and p (my)S + g (my)® are crucial for
measuring the dependence in the linear process (X;) with

respect to large deviation behavior and the ruin functional.

e A quantity of interest in this context is related to the

maximum functional M, = max(X,,..., X,,).

e Assume P(|X| > a,) ~ n~'. Then, for x > 0,

- p max;(v;)$ + q max;(y;)

—x%log P(a_'M,, < x)
T l1lS

e The right-hand expression is the extremal index of (X;) and

measures the degree of extremal clustering in the sequence.

TRootzén (1978), Davis, Resnick (1985)
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LARGE DEVIATION PROBABILITIES FOR SOLUTIONS TO STOCHASTIC

RECURRENCE EQUATIONS

e Assume Kesten’s conditions for the stochastic recurrence
equation X; = A; X, 1 + By, t € Z, and A > 0. Then for some

a > 0, constants cffo > 0 such that ¢ +c¢c >0
PX<-z)~c_xz™® and P(X >z)~c xz™®*, x— oo.

® Then Buraczewski, Damek, M., Zienkiewicz (2011) if Ci_o > 0

lim sup — Cx| =0,
n—o0 p < p<lesn n P(X > CU)

where b, = n'/*(logn)™, M > 2, for a € (1, 2], and

b, = c¢,n""logn, ¢, — oo, for « > 2, c., corresponds to the

case B =1, and s,,/n — 0.
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e Write 1I,; = A;---A;. Then X; = 11;; X, + )A(/z-, where

X; =1y;B, +113;B, +---+11;B, 1 +B;, +>1,

and

Sn = XOZHM‘FZZ-
1=1 1=1

The summands )A(/z are chopped into distinct parts of length
log x and sums are taken over disjoint blocks of length log x.
Then Nagaev-Fuk and Prokhorov inequalities for independent

summands apply.



e The condition s,,/n — 0 is essential.

® Also notice that Embrechts and Veraverbeke (1982)

P(XOZHM- >x) < P(XOZHM- >x)~cx “logx.
i=1

=1

e Then

P(Xo> I, > x) . r~%logz logx
n P(X > x) - nr= n

23
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RUIN PROBABILITIES FOR SOLUTIONS TO STOCHASTIC RECURRENCE

EQUATIONS

® Under Kesten’s conditions for the stochastic recurrence

equation X; = A, X, | + B, t € Z, with A, B > 0, for u > 0,

Y(u) = P(sup (S, — ES,, — un) > u)

n>1
uP(X > u)

T (e — 1)

~ Coo Yind(u), u— o0,

with Goldie’s constant
B E[(AX 4+ 1) — (AX)“] B E(AX + U)O‘_1
B aFEA%>log A ~ EAclogA

Coo
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e The extremal index of the sequence (X;) de Haan, Rootzén, Resnick, de

Vries (1989)

—xz*log P(a,'M,, < ) — ca/ P(m>af< I, <y Hy *'dy.
1 nz
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SOME OTHER EXAMPLES

e In the case of dependent stationary (X;), assuming regular
variation conditions with some index o < 2, Jakubowski (1993,1997),

Davis, Hsing (1995) show the existence of a sequence (c,) such that

1 P o P(S’TL > c’n) o o .
c.*Sp — 0 and lim,, exists and is positve.
n P(|X| > cn)

® Konstantinides, M. (2005) prove precise Nagaev-type large deviations

and ruin bounds for the solution to the stochastic recurrence

27

equation X; = A;X; | + B; in the non-Kesten case when (B;) is

iid regularly varying with index o« > 1 and FA~ < 1.
e In this case, the B-sequence determines the tail behavior of
(S5,) and the A-sequence gets averaged.

® The results are similar to the linear process case.
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® M., Samorodnitsky (2000) prove precise ruin bounds for an ergodic

stationary symmetric a-stable (sas) sequence

X, = [ fi@) M(ds), tez.
E
where M is an sas random measure with control measure u

and a € (1, 2).

e Then (Xj;) is regularly varying with index a and in particular

P(X>xz)=P( X< —2x)~czx *, xT— 00.

e Conditions on (f;) ensuring ergodicity and stationarity were

proved by Rosinski (1995).
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e Tail bounds (large deviations) are trivial: for any * = x,, — oo,
" 1/
and m,, = (fE ‘ Py ft(w)‘ u(da:)) , for an sas random

variable M,

P(S, >=z) = P(/Ezf:ft(iﬁ)M(dCB) > ac)
= P(mn]\20 > x)

~ mgP(M0>ZE).

e By ergodicity, m,, = o(n).

o If m,, = o(n”) (mixing), some B3 € (0,1), bounds of the type

Y(u) ~u'"*"7L(u) for v < o — 1 are possible.
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e For continuous-time processes (S;):>0 with stationary
increments proof techniques for ruin can often be translated to
other subadditive functionals acting on the sample paths of a
random walk with negative drift without too much extra work.
Braverman, M., Samorodnitsky (2002).

e Subadditivity of a functional f acting on the sample paths

mearis

fx+y) < F(x)+ fy).

e Examples: the supremum functional, the length of the period
until the process is eventually negative, the length of the

period the process is positive.
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