What is Typical?

Hermann Thorisson University of Iceland

Joint work with Günter Last

Conference celebrating SøREN

Let G be a compact second countable topological group equipped with the Borel σ-algebra \mathcal{G}.

For a measure μ on (G, \mathcal{G}) and a set $C \in \mathcal{G}$ such that $\mu(C)>0$, define $\mu(\cdot \mid C)$ by

$$
\mu(A \mid C)=\mu(A \cap C) / \mu(C), \quad A \in \mathcal{G}
$$

For $t \in G$, define $t \mu$ by $\quad t \mu(A):=\mu\left(t^{-1} A\right), \quad A \in \mathcal{G}$.
Let $\lambda \neq 0$ be a left-invariant Haar measure. Since G is compact, λ is finite and also right-invariant.

Let $(\Omega, \mathcal{F}, \mathbf{P})$ be the probability space supporting all random elements on this talk.

Let X be a random element in a space on which G acts, for instance $X=\left(X_{s}\right)_{s \in G}$ and $t X=\left(X_{t^{-1} s}\right)_{s \in G}$.

Call X stationary if $t X \stackrel{D}{=} X$ for each $t \in G$.
Call S a typical location in G if $\mathbf{P}(S \in \cdot)=\lambda(\cdot \mid G)$. And typical location for X if $\mathbf{P}(S \in \cdot \mid X)=\lambda(\cdot \mid G)$.

Theorem 1: If S is a typical location for X, then $S^{-1} X$ is stationary.

Proof: If S is a typical location for X then so is $S t^{-1}$ for each $t \in G$. Thus $\left(S t^{-1}\right)^{-1} X \stackrel{D}{=} S^{-1} X$.
But $\left(S t^{-1}\right)^{-1} X=t\left(S^{-1} X\right)$. Thus $t\left(S^{-1} X\right) \stackrel{D}{=} S^{-1} X$.

Call S a typical location in G if $\mathbf{P}(S \in \cdot)=\lambda(\cdot \mid G)$. And typical location for X if $\mathbf{P}(S \in \cdot \mid X)=\lambda(\cdot \mid G)$.

Call S a typical location in G if $\mathbf{P}(S \in \cdot)=\lambda(\cdot \mid G)$. And typical location for X if $\mathbf{P}(S \in \cdot \mid X)=\lambda(\cdot \mid G)$.
Call the origin a typical location for X if $S^{-1} X \stackrel{D}{\underline{D}} X$ where S is a typical location for X.

Call S a typical location in G if $\mathbf{P}(S \in \cdot)=\lambda(\cdot \mid G)$. And typical location for X if $\mathbf{P}(S \in \cdot \mid X)=\lambda(\cdot \mid G)$.

Call the origin a typical location for X if $S^{-1} X \stackrel{D}{\underline{D}} X$ where S is a typical location for X.

Theorem 2: The origin is a typical location for X if and only if X is stationary.

Call S a typical location in G if $\mathbf{P}(S \in \cdot)=\lambda(\cdot \mid G)$. And typical location for X if $\mathbf{P}(S \in \cdot \mid X)=\lambda(\cdot \mid G)$.

Call the origin a typical location for X if $S^{-1} X \stackrel{D}{=} X$ where S is a typical location for X.

Theorem 2: The origin is a typical location for X if and only if X is stationary.
Proof: Let S be typical location for X. If $S^{-1} X \stackrel{D}{=} X$ then X is stationary since $S^{-1} X$ is stationary. Conversely, if X is stationary then $S^{-1} X \stackrel{D}{=} X$ follows from stationarity and the independence of S and X.

Now let ξ be a nontrivial random measure on G. Call ξ stationary if $t \xi \stackrel{D}{=} \xi$ for all $t \in G$.

For $t \in G$ put $t(X, \xi)=(t X, t \xi)$.
Call (X, ξ) stationary if $t(X, \xi) \stackrel{D}{=}(X, \xi)$ for all $t \in G$.

Call S a typical location in the mass of ξ if

$$
\mathbf{P}(S \in \cdot \mid \xi)=\xi(\cdot \mid G)
$$

and call the origin a typical location in the mass of ξ if also

$$
S^{-1} \xi \stackrel{D}{=} \xi .
$$

Call S a typical location for X in the mass of ξ if

$$
\mathbf{P}(S \in \cdot \mid X, \xi)=\xi(\cdot \mid G)
$$

and call the origin a typical location for X in the mass of ξ if also

$$
S^{-1}(X, \xi) \stackrel{D}{=}(X, \xi) .
$$

The following theorem says that the origin is a typical location for X in the mass of ξ if and only if the same holds on sets C placed uniformly at random around the origin.

Theorem 3: The origin is a typical location for X in the mass of ξ if and only if for all $C \in \mathcal{G}, \lambda(C)>0$,

$$
\left(V_{C}^{-1}(X, \xi), U_{C} V_{C}\right) \stackrel{D}{=}\left((X, \xi), U_{C}\right)
$$

where U_{C} and V_{C} are such that

$$
\begin{aligned}
& \text { (i) } \mathbf{P}\left(U_{C} \in \cdot \mid X, \xi\right)=\lambda(\cdot \mid C) \\
& \text { (ii) } \mathbf{P}\left(V_{C} \in \cdot \mid X, \xi, U_{C}\right)=\xi\left(\cdot \mid U_{C}^{-1} C\right) .
\end{aligned}
$$

Proof of the only-if claim: Assume that the origin is a typical location for X in the mass of ξ. Fix the set C and a measurable $f \geqslant 0$. We must prove that

$$
\begin{equation*}
\mathbf{E}\left[f\left(V_{C}^{-1}(X, \xi), U_{C} V_{C}\right)\right]=\mathbf{E}\left[f\left((X, \xi), U_{C}\right)\right] . \tag{*}
\end{equation*}
$$

Use (i) $\mathbf{P}\left(U_{C} \in \cdot \mid X, \xi\right)=\lambda(\cdot \mid C)$

$$
\text { (ii) } \mathbf{P}\left(V_{C} \in \cdot \mid X, \xi, U_{C}\right)=\xi\left(\cdot \mid U_{C}^{-1} C\right)
$$

to take the first step towards establishing (\star) :
$\mathbf{E}\left[f\left(V_{C}^{-1}(X, \xi), U_{C} V_{C}\right)\right]$
$=\mathbf{E}\left[\iint 1_{\{u \in C\}} 1_{\left\{v \in u^{-1} C\right\}} f\left(v^{-1}(X, \xi), u v\right) \frac{\xi(d v)}{\xi\left(u^{-1} C\right)} \frac{\lambda(d u)}{\lambda(C)}\right]$

Take S such that $\mathbf{P}(S \in \cdot \mid X, \xi)=\xi(\cdot \mid G)$.
Then $S^{-1}(X, \xi) \stackrel{D}{=}(X, \xi)$ which yields the second step
$\mathbf{E}\left[\iint 1_{\{u \in C\}} 1_{\left\{v \in u^{-1} C\right\}} f\left(v^{-1}(X, \xi), u v\right) \frac{\xi(d v)}{\xi\left(u^{-1} C\right)} \frac{\lambda(d u)}{\lambda(C)}\right]$
$=\mathbf{E}\left[\iint 1_{\{u \in C\}} 1_{\left\{v \in u^{-1} C\right\}} f\left(v^{-1} S^{-1}(X, \xi), u v\right) \frac{S^{-1} \xi(d v)}{S^{-1} \xi\left(u^{-1} C\right)} \frac{\lambda(d u)}{\lambda(C)}\right]$

Rewriting yields the third step:
$\mathbf{E}\left[\iint 1_{\{u \in C\}} 1_{\left\{v \in u^{-1} C\right\}} f\left(v^{-1} S^{-1}(X, \xi), u v\right)\right.$

$$
\left.\frac{S^{-1} \xi(d v)}{S^{-1} \xi\left(u^{-1} C\right)} \frac{\lambda(d u)}{\lambda(C)}\right]
$$

$=\mathbf{E}\left[\iint 1_{\{u \in C\}} 1_{\left\{S^{-1} v \in u^{-1} C\right\}} f\left(\left(S^{-1} v\right)^{-1} S^{-1}(X, \xi), u S^{-1} v\right)\right.$ $\left.\frac{\xi(d v)}{S^{-1} \xi\left(u^{-1} C\right)} \frac{\lambda(d u)}{\lambda(C)}\right]$

Now use $\mathbf{P}(S \in \cdot \mid X, \xi)=\xi(\cdot \mid G)$ for the fourth step:

$$
\begin{array}{r}
\mathbf{E}\left[\iint 1_{\{u \in C\}} 1_{\left\{S^{-1} v \in u^{-1} C\right\}} f\left(\left(S^{-1} v\right)^{-1} S^{-1}(X, \xi), u S^{-1} v\right)\right. \\
\left.\frac{\xi(d v)}{S^{-1} \xi\left(u^{-1} C\right)} \frac{\lambda(d u)}{\lambda(C)}\right]
\end{array}
$$

$$
=\mathbf{E}\left[\iiint 1_{\{u \in C\}} 1_{\left\{s^{-1} v \in u^{-1} C\right\}} f\left(v^{-1}(X, \xi), u s^{-1} v\right)\right.
$$

$$
\left.\frac{\xi(d v)}{s^{-1} \xi\left(u^{-1} C\right)} \frac{\lambda(d u)}{\lambda(C)} \frac{\xi(d s)}{\xi(G)}\right]
$$

Make variable substitution $r=u s^{-1} v \quad\left(u=r v^{-1} s\right)$ and use right-invariance of λ to take for the fifth step:

$$
\begin{array}{r}
\mathbf{E}\left[\iiint 1_{\{u \in C\}} 1_{\left\{s^{-1} v \in u^{-1} C\right\}} f\left(v^{-1}(X, \xi), u s^{-1} v\right)\right. \\
\left.\frac{\xi(d v)}{s^{-1} \xi\left(u^{-1} C\right)} \frac{\lambda(d u)}{\lambda(C)} \frac{\xi(d s)}{\xi(G)}\right] \\
=\mathbf{E}\left[\iiint 1_{\left\{v^{-1} s \in r^{-1} C\right\}} 1_{\{r \in C\}} f\left(v^{-1}(X, \xi), r\right)\right. \\
\left.\frac{\xi(d v)}{v^{-1} \xi\left(r^{-1} C\right)} \frac{\lambda(d r)}{\lambda(C)} \frac{\xi(d s)}{\xi(G)}\right]
\end{array}
$$

Rewrite to take the sixth step:

$$
\begin{array}{r}
\mathbf{E}\left[\iiint 1_{\left\{v^{-1} s \in r^{-1} C\right\}} 1_{\{r \in C\}} f\left(v^{-1}(X, \xi), r\right)\right. \\
\left.\frac{\xi(d v)}{v^{-1} \xi\left(r^{-1} C\right)} \frac{\lambda(d r)}{\lambda(C)} \frac{\xi(d s)}{\xi(G)}\right] \\
=\mathbf{E}\left[\iiint 1_{\left\{s \in r^{-1} C\right\}} 1_{\{r \in C\}} f\left(v^{-1}(X, \xi), r\right)\right. \\
\left.\frac{\xi(d v)}{v^{-1} \xi\left(r^{-1} C\right)} \frac{\lambda(d r)}{\lambda(C)} \frac{v^{-1} \xi(d s)}{\xi(G)}\right]
\end{array}
$$

Use $\mathbf{P}(S \in \cdot \mid X, \xi)=\xi(\cdot \mid C)$ for the seventh step:

$$
\begin{array}{r}
\mathbf{E}\left[\iiint 1_{\left\{s \in r^{-1} C\right\}} 1_{\{r \in C\}} f\left(v^{-1}(X, \xi), r\right)\right. \\
\left.\frac{\xi(d v)}{v^{-1} \xi\left(r^{-1} C\right)} \frac{\lambda(d r)}{\lambda(C)} \frac{v^{-1} \xi(d s)}{\xi(G)}\right] \\
=\mathbf{E}\left[\iint 1_{\left\{s \in r^{-1} C\right\}} 1_{\{r \in C\}} f\left(S^{-1}(X, \xi), r\right)\right. \\
\left.\frac{S^{-1} \xi(d s)}{S^{-1} \xi\left(r^{-1} C\right)} \frac{\lambda(d r)}{\lambda(C)}\right]
\end{array}
$$

Now, use $S^{-1}(X, \xi) \stackrel{D}{=}(X, \xi)$ for the eighth step:

$$
\begin{array}{r}
\mathbf{E}\left[\iint 1_{\left\{s \in r^{-1} C\right\}} 1_{\{r \in C\}} f\left(S^{-1}(X, \xi), r\right)\right. \\
\left.\frac{S^{-1} \xi(d s)}{S^{-1} \xi\left(r^{-1} C\right)} \frac{\lambda(d r)}{\lambda(C)}\right] \\
=\mathbf{E}\left[\iint 1_{\left\{s \in r^{-1} C\right\}} 1_{\{r \in C\}} f((X, \xi), r) \frac{\xi(d s)}{\xi\left(r^{-1} C\right)} \frac{\lambda(d r)}{\lambda(C)}\right]
\end{array}
$$

Rewrite to take the ninth and tenth step:
$\mathbf{E}\left[\iint 1_{\left\{s \in r^{-1} C\right\}} 1_{\{r \in C\}} f((X, \xi), r) \frac{\xi(d s)}{\xi\left(r^{-1} C\right)} \frac{\lambda(d r)}{\lambda(C)}\right]$
$=\mathbf{E}\left[\int\left(\int 1_{\left\{s \in r^{-1} C\right\}} \frac{\xi(d s)}{\xi\left(r^{-1} C\right)}\right) 1_{\{r \in C\}} f((X, \xi), r) \frac{\lambda(d r)}{\lambda(C)}\right]$
$=\mathbf{E}\left[\int 1_{\{r \in C\}} f((X, \xi), r) \frac{\lambda(d r)}{\lambda(C)}\right]$

Finally, use $(i) \mathbf{P}\left(U_{C} \in \cdot \mid X, \xi\right)=\lambda(\cdot \mid C)$ for the eleventh step:

$$
\mathbf{E}\left[\int 1_{\{r \in C\}} f((X, \xi), r) \frac{\lambda(d r)}{\lambda(C)}\right]=\mathbf{E}\left[f\left((X, \xi), U_{C}\right)\right]
$$

that is, (\star) holds:

$$
\mathbf{E}\left[f\left(V_{C}^{-1}(X, \xi), U_{C} V_{C}\right)\right]=\mathbf{E}\left[f\left((X, \xi), U_{C}\right)\right]
$$

We have just established the following theorem.
Theorem 3: The origin is a typical location for X in the mass of ξ if and only if for all $C \in \mathcal{G}, \lambda(C)>0$,

$$
\left(V_{C}^{-1}(X, \xi), U_{C} V_{C}\right) \stackrel{D}{=}\left((X, \xi), U_{C}\right)
$$

where U_{C} and V_{C} are such that

$$
\begin{aligned}
& \text { (i) } \mathbf{P}\left(U_{C} \in \cdot \mid X, \xi\right)=\lambda(\cdot \mid C) \\
& \text { (ii) } \mathbf{P}\left(V_{C} \in \cdot \mid X, \xi, U_{C}\right)=\xi\left(\cdot \mid U_{C}^{-1} C\right) .
\end{aligned}
$$

Now let G be only locally compact.
Then λ and ξ are only σ-finite
so the previous typicality definitions do not work.
Definition 1: Call the origin a typical location for X in the mass of ξ if for all relatively compact λ-continuity sets $C \in \mathcal{G}$ with $\lambda(C)>0$,

$$
\left(V_{C}^{-1}(X, \xi), U_{C} V_{C}\right) \stackrel{D}{=}\left((X, \xi), U_{C}\right)
$$

where U_{C} and V_{C} are such that
(i) $\mathbf{P}\left(U_{C} \in \cdot \mid X, \xi\right)=\lambda(\cdot \mid C)$
(ii) $\mathbf{P}\left(V_{C} \in \cdot \mid X, \xi, U_{C}\right)=\xi\left(\cdot \mid U_{C}^{-1} C\right)$.

Definition 1: Call the origin a typical location for X in the mass of ξ if for all relatively compact λ-continuity sets $C \in \mathcal{G}$ with $\lambda(C)>0$,

$$
\left(V_{C}^{-1}(X, \xi), U_{C} V_{C}\right) \stackrel{D}{=}\left((X, \xi), U_{C}\right)
$$

where $(i) \mathbf{P}\left(U_{C} \in \cdot \mid X, \xi\right)=\lambda(\cdot \mid C)$

$$
\text { (ii) } \mathbf{P}\left(V_{C} \in \cdot \mid X, \xi, U_{C}\right)=\xi\left(\cdot \mid U_{C}^{-1} C\right)
$$

We choose to restrict C to be a λ-continuity set because then (\star) is exactly the property used in Last and Thorisson (Ann. Probab. 2009) to define mass-stationarity: (X, ξ) is called mass-stationary if the origin is a typical location for X in the mass of ξ in the sense of Definition 1 .

Recall that we are now only assuming that G is locally compact.

Theorem: (X, λ) is mass-stationary if and only if X is stationary

Thus mass-stationarity is a generalization of the concept of stationarity.

Recall that we are now only assuming that G is locally compact.

Theorem: (X, λ) is mass-stationary if and only if X is stationary

Thus mass-stationarity is a generalization of the concept of stationarity. In general:

Recall that we are now only assuming that G is locally compact.

Theorem: (X, λ) is mass-stationary if and only if
X is stationary
Thus mass-stationarity is a generalization of the concept of stationarity. In general:

Theorem: (X, ξ) is mass-stationary if and only if
(X, ξ) is the Palm version of a stationary (Y, η)

Recall that a pair (X, ξ) is called a Palm version of a stationary pair (Y, η) if for all measurable $f \geqslant 0$ and all compact $A \in \mathcal{G}$ with $\lambda(A)>0$,

$$
\mathbf{E}[f(X, \xi)]=\mathbf{E}\left[\int_{A} f\left(t^{-1}(Y, \eta)\right) \eta(d t)\right] / \lambda(A)
$$

In this definition (X, ξ) and (Y, η) are allowed to have distributions that are only σ-finite and not necessarily probability measures.

The distribution of (X, ξ) is finite ifand only if η has finite intensity, that is, if and only if $\mathbf{E}[\eta(A)]<\infty$ for compact A. In this case the distribution of (X, ξ) can be normalized to a probability measure.

Tillykke Søren

Tillykke Søren

Tak for os

