What is Typical?

HERMANN THORISSON UNIVERSITY OF ICELAND

JOINT WORK WITH GÜNTER LAST

CONFERENCE CELEBRATING SØREN

Let G be a compact second countable topological group equipped with the Borel σ -algebra G.

For a measure μ on (G, \mathcal{G}) and a set $C \in \mathcal{G}$ such that $\mu(C) > 0$, define $\mu(\cdot \mid C)$ by

$$\mu(A \mid C) = \mu(A \cap C)/\mu(C), \quad A \in \mathcal{G}.$$

For $t \in G$, define $t\mu$ by $t\mu(A) := \mu(t^{-1}A), A \in \mathcal{G}$.

Let $\lambda \neq 0$ be a left-invariant Haar measure. Since G is compact, λ is finite and also right-invariant.

Let $(\Omega, \mathcal{F}, \mathbf{P})$ be the probability space supporting all random elements on this talk.

Let X be a random element in a space on which G acts, for instance $X = (X_s)_{s \in G}$ and $tX = (X_{t-1_s})_{s \in G}$.

Call X stationary if $tX \stackrel{D}{=} X$ for each $t \in G$.

Call S a *typical* location in G if $\mathbf{P}(S \in \cdot) = \lambda(\cdot \mid G)$. And typical location *for* X if $\mathbf{P}(S \in \cdot \mid X) = \lambda(\cdot \mid G)$.

Theorem 1: If S is a typical location for X, then $S^{-1}X$ is stationary.

Proof: If S is a typical location for X then so is St^{-1} for each $t \in G$. Thus $(St^{-1})^{-1}X \stackrel{D}{=} S^{-1}X$. But $(St^{-1})^{-1}X = t(S^{-1}X)$. Thus $t(S^{-1}X) \stackrel{D}{=} S^{-1}X$. Call S a *typical* location in G if $\mathbf{P}(S \in \cdot) = \lambda(\cdot \mid G)$. And typical location *for* X if $\mathbf{P}(S \in \cdot \mid X) = \lambda(\cdot \mid G)$. Call S a *typical* location in G if $\mathbf{P}(S \in \cdot) = \lambda(\cdot \mid G)$. And typical location *for* X if $\mathbf{P}(S \in \cdot \mid X) = \lambda(\cdot \mid G)$.

Call the origin a typical location for X if $S^{-1}X \stackrel{D}{=} X$ where S is a typical location for X.

Call S a *typical* location in G if $P(S \in \cdot) = \lambda(\cdot \mid G)$. And typical location *for* X if $P(S \in \cdot \mid X) = \lambda(\cdot \mid G)$.

Call the origin a typical location for X if $S^{-1}X \stackrel{D}{=} X$ where S is a typical location for X.

Theorem 2: The origin is a typical location for X if and only if X is stationary.

Call S a *typical* location in G if $P(S \in \cdot) = \lambda(\cdot \mid G)$. And typical location *for* X if $P(S \in \cdot \mid X) = \lambda(\cdot \mid G)$.

Call the origin a typical location for X if $S^{-1}X \stackrel{D}{=} X$ where S is a typical location for X.

Theorem 2: The origin is a typical location for X if and only if X is stationary.

Proof: Let S be typical location for X. If $S^{-1}X \stackrel{D}{=} X$ then X is stationary since $S^{-1}X$ is stationary.

Conversely, if X is stationary then $S^{-1}X \stackrel{D}{=} X$ follows from stationarity and the independence of S and X.

Now let ξ be a nontrivial random measure on G. Call ξ stationary if $t\xi \stackrel{D}{=} \xi$ for all $t \in G$.

For $t \in G$ put $t(X, \xi) = (tX, t\xi)$. Call (X, ξ) stationary if $t(X, \xi) \stackrel{D}{=} (X, \xi)$ for all $t \in G$. Call S a *typical* location in the *mass* of ξ if

$$\mathbf{P}(S \in \cdot \mid \xi) = \xi(\cdot \mid G)$$

and call the origin a typical location in the mass of ξ if also

 $S^{-1}\xi \stackrel{D}{=} \xi.$

Call S a typical location for X in the mass of ξ if

$$\mathbf{P}(S \in \cdot \mid X, \xi) = \xi(\cdot \mid G)$$

and call the origin a typical location for X in the mass of ξ if also

$$S^{-1}(X,\xi) \stackrel{D}{=} (X,\xi).$$

The following theorem says that the origin is a typical location for X in the mass of ξ if and only if the same holds on sets C placed uniformly at random around the origin.

Theorem 3: The origin is a typical location for X in the mass of ξ if and only if for all $C \in \mathcal{G}$, $\lambda(C) > 0$,

$$\left(V_C^{-1}(X,\xi), U_C V_C\right) \stackrel{D}{=} ((X,\xi), U_C)$$

where U_C and V_C are such that

(i)
$$\mathbf{P}(U_C \in \cdot \mid X, \xi) = \lambda(\cdot \mid C)$$

(ii)
$$\mathbf{P}(V_C \in \cdot \mid X, \xi, U_C) = \xi(\cdot \mid U_C^{-1}C).$$

Proof of the only-if claim: Assume that the origin is a typical location for X in the mass of ξ . Fix the set C and a measurable $f \ge 0$. We must prove that

$$\mathbf{E}\left[f\left(V_C^{-1}(X,\xi),U_CV_C\right)\right] = \mathbf{E}\left[f\left((X,\xi),U_C\right)\right]. \tag{*}$$

Use (i)
$$\mathbf{P}(U_C \in \cdot \mid X, \xi) = \lambda(\cdot \mid C)$$

(ii)
$$\mathbf{P}(V_C \in \cdot \mid X, \xi, U_C) = \xi(\cdot \mid U_C^{-1}C)$$

to take the first step towards establishing (\star) :

$$\mathbf{E}\left[f\left(V_C^{-1}(X,\xi),U_CV_C\right)\right]$$

$$=\mathbf{E}\bigg[\iint \mathbf{1}_{\{u\in C\}} \mathbf{1}_{\{v\in u^{-1}C\}} f\left(v^{-1}(X,\xi),uv\right) \frac{\xi(dv)}{\xi(u^{-1}C)} \frac{\lambda(du)}{\lambda(C)}\bigg]$$

Take S such that $\mathbf{P}(S \in \cdot \mid X, \xi) = \xi(\cdot \mid G)$. Then $S^{-1}(X, \xi) \stackrel{D}{=} (X, \xi)$ which yields the second step

$$\mathbf{E} \left[\iint 1_{\{u \in C\}} 1_{\{v \in u^{-1}C\}} f(v^{-1}(X,\xi), uv) \frac{\xi(dv)}{\xi(u^{-1}C)} \frac{\lambda(du)}{\lambda(C)} \right]$$

$$= \mathbf{E} \left[\iint 1_{\{u \in C\}} 1_{\{v \in u^{-1}C\}} f(v^{-1}S^{-1}(X,\xi), uv) \frac{S^{-1}\xi(dv)}{S^{-1}\xi(u^{-1}C)} \frac{\lambda(du)}{\lambda(C)} \right]$$

Rewriting yields the third step:

$$\mathbf{E} \left[\iint 1_{\{u \in C\}} 1_{\{v \in u^{-1}C\}} f\left(v^{-1}S^{-1}(X,\xi), uv\right) \right.$$

$$\frac{S^{-1}\xi(dv)}{S^{-1}\xi(u^{-1}C)} \frac{\lambda(du)}{\lambda(C)} \right]$$

$$= \mathbf{E} \left[\iint 1_{\{u \in C\}} 1_{\{S^{-1}v \in u^{-1}C\}} f\left((S^{-1}v)^{-1}S^{-1}(X,\xi), uS^{-1}v\right) \right.$$

$$\frac{\xi(dv)}{S^{-1}\xi(u^{-1}C)} \frac{\lambda(du)}{\lambda(C)} \right]$$

Now use $P(S \in \cdot \mid X, \xi) = \xi(\cdot \mid G)$ for the fourth step:

$$\mathbf{E} \left[\iint 1_{\{u \in C\}} 1_{\{S^{-1}v \in u^{-1}C\}} f((S^{-1}v)^{-1}S^{-1}(X,\xi), uS^{-1}v) \right] \frac{\xi(dv)}{S^{-1}\xi(u^{-1}C)} \frac{\lambda(du)}{\lambda(C)}$$

$$= \mathbf{E} \left[\iiint 1_{\{u \in C\}} 1_{\{s^{-1}v \in u^{-1}C\}} f(v^{-1}(X, \xi), us^{-1}v) \frac{\xi(dv)}{s^{-1}\xi(u^{-1}C)} \frac{\lambda(du)}{\lambda(C)} \frac{\xi(ds)}{\xi(G)} \right]$$

Make variable substitution $r = us^{-1}v$ $(u = rv^{-1}s)$ and use right-invariance of λ to take for the fifth step:

$$\mathbf{E} \left[\iiint 1_{\{u \in C\}} 1_{\{s^{-1}v \in u^{-1}C\}} f\left(v^{-1}(X,\xi), us^{-1}v\right) \right.$$

$$\frac{\xi(dv)}{s^{-1}\xi(u^{-1}C)} \frac{\lambda(du)\xi(ds)}{\lambda(C)} \left. \frac{\xi(dv)}{\xi(G)} \right]$$

$$= \mathbf{E} \left[\iiint 1_{\{v^{-1}s \in r^{-1}C\}} 1_{\{r \in C\}} f\left(v^{-1}(X,\xi), r\right) \right.$$

$$\frac{\xi(dv)}{v^{-1}\xi(r^{-1}C)} \frac{\lambda(dr)\xi(ds)}{\lambda(C)} \left. \frac{\xi(ds)}{\xi(G)} \right]$$

Rewrite to take the sixth step:

$$\begin{split} \mathbf{E} & \left[\iiint 1_{\{v^{-1}s \in r^{-1}C\}} 1_{\{r \in C\}} f\left(v^{-1}(X,\xi),r\right) \right. \\ & \left. \frac{\xi(dv)}{v^{-1}\xi(r^{-1}C)} \frac{\lambda(dr)}{\lambda(C)} \frac{\xi(ds)}{\xi(G)} \right] \\ & = \mathbf{E} \left[\iiint 1_{\{s \in r^{-1}C\}} 1_{\{r \in C\}} f\left(v^{-1}(X,\xi),r\right) \right. \\ & \left. \frac{\xi(dv)}{v^{-1}\xi(r^{-1}C)} \frac{\lambda(dr)}{\lambda(C)} \frac{v^{-1}\xi(ds)}{\xi(G)} \right] \end{split}$$

Use $P(S \in \cdot \mid X, \xi) = \xi(\cdot \mid C)$ for the seventh step:

$$\mathbf{E} \left[\iiint 1_{\{s \in r^{-1}C\}} 1_{\{r \in C\}} f\left(v^{-1}(X, \xi), r\right) - \frac{\xi(dv)}{v^{-1}\xi(r^{-1}C)} \frac{\lambda(dr)}{\lambda(C)} \frac{v^{-1}\xi(ds)}{\xi(G)} \right]$$

$$= \mathbf{E} \left[\iint 1_{\{s \in r^{-1}C\}} 1_{\{r \in C\}} f(S^{-1}(X, \xi), r) \frac{S^{-1}\xi(ds)}{S^{-1}\xi(r^{-1}C)} \frac{\lambda(dr)}{\lambda(C)} \right]$$

Now, use $S^{-1}(X,\xi) \stackrel{D}{=} (X,\xi)$ for the eighth step:

$$\mathbf{E} \left[\iint 1_{\{s \in r^{-1}C\}} 1_{\{r \in C\}} f\left(S^{-1}(X,\xi),r\right) \frac{S^{-1}\xi(ds)}{S^{-1}\xi(r^{-1}C)} \frac{\lambda(dr)}{\lambda(C)} \right]$$

$$=\mathbf{E}\bigg[\iint 1_{\{s\in r^{-1}C\}}1_{\{r\in C\}}f\big((X,\xi),r\big)\frac{\xi(ds)}{\xi(r^{-1}C)}\frac{\lambda(dr)}{\lambda(C)}\bigg]$$

Rewrite to take the ninth and tenth step:

$$\begin{split} &\mathbf{E} \left[\iint \mathbf{1}_{\{s \in r^{-1}C\}} \mathbf{1}_{\{r \in C\}} f\left((X, \xi), r\right) \frac{\xi(ds)}{\xi(r^{-1}C)} \frac{\lambda(dr)}{\lambda(C)} \right] \\ &= \mathbf{E} \left[\int \left(\int \mathbf{1}_{\{s \in r^{-1}C\}} \frac{\xi(ds)}{\xi(r^{-1}C)} \right) \mathbf{1}_{\{r \in C\}} f\left((X, \xi), r\right) \frac{\lambda(dr)}{\lambda(C)} \right] \\ &= \mathbf{E} \left[\int \mathbf{1}_{\{r \in C\}} f\left((X, \xi), r\right) \frac{\lambda(dr)}{\lambda(C)} \right] \end{split}$$

Finally, use (i) $\mathbf{P}(U_C \in \cdot \mid X, \xi) = \lambda(\cdot \mid C)$ for the eleventh step:

$$\mathbf{E}\left[\int 1_{\{r\in C\}} f((X,\xi),r) \frac{\lambda(dr)}{\lambda(C)}\right] = \mathbf{E}\left[f((X,\xi),U_C)\right],$$

that is, (\star) holds:

$$\mathbf{E}\left[f\left(V_C^{-1}(X,\xi),U_CV_C\right)\right] = \mathbf{E}\left[f\left((X,\xi),U_C\right)\right]. \quad (\star)$$

We have just established the following theorem.

Theorem 3: The origin is a typical location for X in the mass of ξ if and only if for all $C \in \mathcal{G}$, $\lambda(C) > 0$,

$$\left(V_C^{-1}(X,\xi), U_C V_C\right) \stackrel{D}{=} ((X,\xi), U_C)$$

where U_C and V_C are such that

(i)
$$\mathbf{P}(U_C \in \cdot \mid X, \xi) = \lambda(\cdot \mid C)$$

(ii)
$$\mathbf{P}(V_C \in \cdot \mid X, \xi, U_C) = \xi(\cdot \mid U_C^{-1}C).$$

Now let G be only locally compact. Then λ and ξ are only σ -finite so the previous typicality definitions do not work.

Definition 1: Call the origin a *typical* location *for* X in the *mass* of ξ if for all relatively compact λ -continuity sets $C \in \mathcal{G}$ with $\lambda(C) > 0$,

$$\left(V_C^{-1}(X,\xi), U_C V_C\right) \stackrel{D}{=} \left((X,\xi), U_C\right)$$

where U_C and V_C are such that

(i)
$$\mathbf{P}(U_C \in \cdot \mid X, \xi) = \lambda(\cdot \mid C)$$

(ii)
$$\mathbf{P}(V_C \in \cdot \mid X, \xi, U_C) = \xi(\cdot \mid U_C^{-1}C).$$

Definition 1: Call the origin a *typical* location *for* X in the *mass* of ξ if for all relatively compact λ -continuity sets $C \in \mathcal{G}$ with $\lambda(C) > 0$,

$$\left(V_C^{-1}(X,\xi), U_C V_C\right) \stackrel{D}{=} ((X,\xi), U_C) \tag{*}$$

where (i) $\mathbf{P}(U_C \in \cdot \mid X, \xi) = \lambda(\cdot \mid C)$

(ii)
$$\mathbf{P}(V_C \in \cdot \mid X, \xi, U_C) = \xi(\cdot \mid U_C^{-1}C).$$

We choose to restrict C to be a λ -continuity set because then (\star) is exactly the property used in Last and Thorisson (Ann. Probab. 2009) to define $mass-stationarity: (X,\xi)$ is called mass-stationary if the origin is a typical location for X in the mass of ξ in the sense of Definition 1. Recall that we are now only assuming that G is locally compact.

Theorem: (X, λ) is mass-stationary if and only if X is stationary

Thus mass-stationarity is a generalization of the concept of stationarity.

Recall that we are now only assuming that G is locally compact.

Theorem: (X, λ) is mass-stationary if and only if X is stationary

Thus mass-stationarity is a generalization of the concept of stationarity. In general:

Recall that we are now only assuming that G is locally compact.

```
Theorem: (X, \lambda) is mass-stationary if and only if X is stationary
```

Thus mass-stationarity is a generalization of the concept of stationarity. In general:

```
Theorem: (X, \xi) is mass-stationary
if and only if
(X, \xi) is the Palm version of a stationary (Y, \eta)
```

Recall that a pair (X, ξ) is called a **Palm version** of a **stationary** pair (Y, η) if for all measurable $f \ge 0$ and all compact $A \in \mathcal{G}$ with $\lambda(A) > 0$,

$$\mathbf{E}[f(X,\xi)] = \mathbf{E}\Big[\int_A f\big(t^{-1}(Y,\eta)\big)\eta(dt)\Big] \Big/ \lambda(A).$$

In this definition (X, ξ) and (Y, η) are allowed to have distributions that are only σ -finite and not necessarily probability measures.

The distribution of (X, ξ) is finite if and only if η has finite intensity, that is, if and only if $\mathbf{E}[\eta(A)] < \infty$ for compact A. In this case the distribution of (X, ξ) can be normalized to a probability measure.

Tillykke Søren

Tillykke Søren

Tak for os