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Gas - particle / droplet flows

• Pollutant dispersion : PM10s
• Aerosol formation

– Smoke - radioactive releases
• Weather - rain, mist and fog 

• Volcanic eruptions
• Fluidized beds
• Mixing & combustion
• Pneumatic conveying
• Fouling / deposition
• Spraying
• Planet formation from inter-stellar  dust

Dilute flows

Dense flows
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Outline
• Background

– Scope of the physics in gas particle droplet flows
• Role of inertia / Stokes number

• One-particle transport/dispersion
– PDF approach
– Dispersion in simple / complex flows
– Transport  in a turbulent boundary layer

• Deposition and concentration

• Two-particle transport 
– Methods and approaches 

• Segregation 
• collisions
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• Boundary conditions
– Bounce / resuspension

Condensation

Agglomerationcollisions

• Formation and growth
– Condensation / evaporation
– Collisions / agglomeration/coalescence

Gas-droplet / particle flows: scope of the physics

•Transport / dispersion
–Equation of motion
–Aerodynamic forces
–Stokes number  St=τp/τf

• Two way coupling
– interfacial drag/turbulence modification
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Unmixing by turbulent flows
particles vorticity

Wang & Maxey JFM 1993
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Need for a PDF approach
• Two-fluid approach

– Representing the dispersed phase as a fluid in same way 
as carrier flow

• What are the continuum equations-constitutive relations?
– Does it behave as a simple Newtonian  fluid?

• Boundary conditions (near wall behaviour)

• Particle segregation
– Interaction with turbulent structures
– Pair dispersion
– Collision processes 

• Need for a statistical  approach c.f. Kinetic theory of gases
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Closure approximations for 
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Moments of PDF Eqns
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Momentum Eqn from PDF Eqn.
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Momentum equation as a diffusion equation

turbophoresis
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Homogeneous stationary turbulence

Long time particle diffusion coefficient

 11υ       




x

u ddC

Momentum eqn.
Dt
D

xC



 1





 



t

stxYyp sytxuds
0 ),(

),(),( 

0s

tx,

),( stxY

Drift  due spatial inhomogeneity



Symposium Particle Transport, University of Aarhus 6-7 Nov, 2014

Diffusion coefficient versus particle inertia
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Particle kinetic stress transport equation
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Dispersion in a simple shear
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Predictions versus experimental  measurements
Simonin et al.
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Near-wall behaviour

PEQp 2/exp 

• p, the resuspension rate constant
•ω , the typical frequency of 
vibration, 
•Q  height of  adhesive potential well, 
• <PE> average potential energy of   
particle in the well.

particle resuspension

Q

Particle escape from potential well

boundary conditions
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influence of particle wall interactions
scattering & absorption/deposition/ bounce 
/resuspension
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Particle wall impacts with absorption 

turbulence

particle
Vg=5

Velocity v

P(v)

Critical impact velocity vc=5, settling velocity vg=5
(normalized on particle rms velocity for perfect reflection) 
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Deposition in turbulent boundary layer

 rapid decay of turbulence
near the wall

particle not in local
equilibrium with flow
break down of gradient

transport

comparison of PDF results
with experimental results
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Two-particle dispersion 
– Segregation/clustering 

• Full Lagrangian approach
– Compressibility of  a particle flow
– Singularities in particle concentraiosn

– Random uncorrelated motion
– 2-particle  PDF approach

• Radial distribution 
• Collision kernel

particles vorticity

Wang & Maxey JFM 1993
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Unmixing by turbulent flows
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Random uncorrelated  motion (RUM)

Février et. al JFM, 2005

Mesoscopic Eulerian
particle velocity field

Random uncorrelated 
motion (RUM)

MEPVF+RUM

222
ppp qqq  
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Compressibility of a particle flow

•zero for particles which follow an incompressible flow 
•non zero for particles with inertia
•measures the change in particle concentration

Divergence of the particle velocity 
field along a particle trajectory

particle
streamlines  
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Compressibility (rate of compression of elemental
particle volume along particle trajectory)

Falkovich, Elperin,Wilkinson, Reeks
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Measurement of the compressibility
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Deformation 
of elemental 
volume 

δV(t)/δV(0) – volume fraction of 
elemental volume of particles
along a particle trajectory

can be obtained directly from solution of particle  eqns. of motion

Avoids calculating the compressibility via the particle  velocity field

Can determine the statistics of ln J(t) easily.

- xp(t),vp(t),Jij(t),J(t)) - Full Lagrangian Method (FLM)

  J
dt
d

dt
dJJtxp ln,v 1

0  compessibility compression
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Particle trajectories in a periodic array of vortices 
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Deformation Tensor J
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Particle average compressibility

divergence

compression

For a given flow field, there is a threshold St below which the segregation
goes on indefinitely with time, and above which the dilation prevails over
segregation.

Compressibility of the pvf:  v||ln J
dt
d

DNS
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Moments of particle number density

St=0.1

• Particle number density is spatially strongly intermittent
• The segregation goes on with time!
• The peaks reveal the presence of singularities!

)(|)(| 1 tntJ    || Jn   || Jn
   11 || Jnn

St=0.5
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Singularities in the  ptcl concentration field
Singularities correspond to |J|=0 events
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Statistics of the compression C=ln|J|

• The PDF of the compression looks Gaussian but..it is not!
• Singularities correspond to ln|J|-> -inf..what is the cause for the 
deviation from Gaussianity visible on the left tail of the curve?

St=0.5 St=0.5
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The  effect of RUM on  C=ln|J|

• It is the RUM component of the compression which causes the deviation from Gaussianity! 
=>Singularities and RUM are intrinsically related

mesRUM
JJJ lnlnln 



Symposium Particle Transport, University of Aarhus 6-7 Nov, 2014

Trajectories

Velocity (RUM)

|J| (singularities)

Singularities and RUM
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Pair dispersion and segregation
Two colliding spheres radii r1 , r2

r1

r2

n

Collision sphere

r
g(r)~rα(St)

)()( Strrg 
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Agglomeration of inertial particles
Sundarim & Collins(1997) , Reade & Collins (2000): measurement of 
rdfs and impact velocities  as a function of Stokes number St

)(),(4),( 2
21 StwStrgrrrK rcc Net relative velocity between colliding 

spheres along their line of centres
RDF at rc
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PDF Equation for relative dispersion
(Zaichik and Alipchenkov  2003,2009 )
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w = relative velocity between identical particle pairs,  distance r apart
Δu(r,t) = relative  velocity between 2 fluid pts, distance r apart at time t
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PDF Equation predictions

mean of magnitude of relative velocity rwRDF radial distribution function
KrrStrg /  ,),( 

Zaichik and Alipchenkov, NJP 2009

mean of magnitude of relative velocity rw
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Caustics 

Multivalued particle velocities in a 
2-D random flow 

Particle density 
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Summary & conclusions

• Transport of inertial particles  turbulent flows
– Methods and approaches

• PDF approach / FLM 

– One particle dispersion
• homogeneous  and simple shear flows
• inhomogeneous – turbulent boundary layer

– Two particle dispersion
• Unmixing of particle flows

– compressibility of a particle flow
– Singularities /interemittency
– Formation of caustics



Symposium Particle Transport, University of Aarhus 6-7 Nov, 2014

THANKS FOR YOUR ATTENTION

Any questions?

Elena Meneguz ,  13th European Turbulence Conference,  12-15th September 2011                                                                           38


