FNSNF Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

ON THE DRAG COEFFICIENT OF NON-SPHERICAL PARTICLES

Gholamhossein Bagheri¹ Costanza Bonadonna¹ Irene Manzella¹ Piero Pontelandolfo² Pierre Vonlanthen³ Patrick Haas²

¹Section of Earth Science, University of Geneva, Switzerland ²hepia/CMEFE, Geneva, Switzerland ³Institut des sciences de la Terre, Lausanne, 1015, Switzerland

Outline

- Introduction
- objectives
- Methodology
 - Analytical solutions (Re << 1)
 - Settling columns ($10 < \text{Re} < 10^3$)
 - Vertical wind tunnel $(10^3 < \text{Re} < 10^5)$
- Results

Particle size and shape

- The most important factors to determine particle velocity and its atmospheric residence time
- Particle terminal velocity can be evaluated if its drag coefficient (C_D) is known

Objectives

• Effect of particle shape and surface vesicularity on the drag force?

- Benchmarking existing models and shape descriptors
- Presenting a new model based on easy-tomeasure shape descriptors

Sphere drag

Methodology

Approaching the problem

 C_D of any arbitrary shape particle at intermediate Re is a function of its C_D at very low Re and very high Re

Approaching the problem

 In other words: C_D=f (Re, K₁, K₂) where K₁ and K₂ are functions of particles shape

Approaching the problem

 In other words: C_D=f (Re, K₁, K₂) where K₁ and K₂ are functions of particles shape

Approaching the problem

Methodology

Re<<1

 Analytical solution exists only for sphere and ellipsoid

10<Re <10³

- Experiments in settling columns
- 117 particles (100 volcanic), 150 µm< diameter< 1 mm

Particle Characterization

- 117 particles (100 volcanic)
- 150 *µm* < diameter< 1 *mm*
- SEM micro-CT and Image analysis

Bagheri et al., Powder Technology (2014), 270(A)

10⁴<*Re* <10⁵

- Experiments in vertical wind tunnel
- 177 particles (116 volcanic), 11 mm< diameter< 36 mm

Bagheri et al., Rev. Sci. Instrum. (2013), 84 (5)

Particle Characterization

- 177 particles (116 volcanic)
- 11 *mm* < diameter < 36 *mm*
- 3D laser scan and Image analysis

Bagheri et al., Powder Technology (2014), 270(A)

Why vertical wind tunnel?

- Falling columns: A **spherical** particle with
- diameter of 2 cm and density of 2700 kgm⁻³

Water (*density ratio* = 2.7)

Air (density ratio = 2700)

Particle secondary motion

25 frame per second

Bagheri et al., Rev. Sci. Instrum. (2013), 84 (5)

Particle secondary motion

Bagheri et al., Rev. Sci. Instrum. (2013), 84 (5)

Particle secondary motion

Wind Tunnel setup

Bagheri et al., Rev. Sci. Instrum. (2013), 84 (5)

Particle tracking code

Bagheri et al., Rev. Sci. Instrum. (2013), 84 (5)

Which shape descriptor correlates with K₁?

Which shape descriptor correlates with K₁?

Which shape descriptor correlates better with K₁?

Surface roughness effects at Re<<1

• Hill & Power theorem (1956):

Which shape descriptor correlates with K₂?

Which shape descriptor correlates with K₂?

Which shape descriptor correlates better with K₂?

Surface roughness effect at high Re

At least at high Re the effect of surface roughness is almost negligible (< 7 %)

Results

Intermediate Re: estimations vs. measurements

Intermediate Re: estimations vs. measurements

Intermediate Re: estimations vs. measurements

New drag coefficient model

- First model of drag coefficient for freely moving non-spherical particles in air
 - > Valid in a wide range of Reynolds number (Re<10⁵)
 - > Valid for spherical, regular and irregular particles
 - Easy-to-measure shape factors (for low and high Re)
 - Lowest value of estimation error and uncertainty