

Environmental Simulators

DET NATURVIDENSKABELIGE FAKULTET AARHUS UNIVERSITET

Jon Merrison Jens Jacob Iversen **Stefano Alois**

Aarhus Environmental Wind Tunnel Simulator (AWTS II)

Wind speed and Turbulence

• Characterisation and calibration of wind flow using a combination of sensor technologies and over a wide range of environmental conditions.

Temperature and Humidity

Temperature at liquid nitrogen inlet on upper plate [°C]

Laser Doppler Velocimeter (Anemometer)

Environmental Simulator(s)

Two types of experiment

- 1. Aerosolizer (suspended dust)
- 2. Entrainment (sand/dust transport)

Control;

- Fluid flow (wind speed, turbulence level;)
- Fluid density (gas pressure)
- Molecular Viscosity (composition)
- Temperature (future...2016)

Environmental Simulator(s)

Sense (optically);

- Suspended grain velocity (specific space/time)
- Wind speed/turbulence (broad frequency range)
- Suspended concentration (t)
- Deposited dust concentration (t, U,)

AWTS - I

High dust concentrations, (deposition), High speed

Fan Drive Frequency Hz

Smaller, Poor vacuum Poor temp. control

Prototype Dust deposition (electrification) sensor (Laser based)

Experimental; "**Bursting**"/flurries/ejections/sweeps (Coherent ejection structures in space/time)

Energy spectrum coherent vortices (Robinson 1991, Ibrahim et al. 2004)

Detachment Threshold: Force Balance Equation

Drag : Lift and Torque

$$F_{lift} + F_{Torque} = F_g + F_{adh}$$

Dust dominated by Adhesion + drag

Adhesion dominated by water bridging at ordinary RH

Gravity (density):Not always knownDrag lift and Torque:Empirically determined, poorly defined (power law fit)Adhesion:Not known but = C.d

Wind Tunnel Simulator Experiment

Entrainment threshold wind speed

Greeley + Iversen 1985

Detachment Threshold (boundary layer model)

Entrainment / Transport studies

- Flow Threshold
- Transport/removal rate
- Trajectories
- Size/velocity sand
- Aggregate dispersion

Keld Rasmussen Anthony Rondeau

wind speeds > 10m/s

Wind Speed

International Thermonuclear Experimental Reactor

(Jean-Christophe Sabroux)

10s kg dust (Be, W, C) as a result of the erosion of the vacuum chamber walls by the plasma.

2013 studies (Anthony Rondeau IRSN); Dust re-entrainment studies

china eu india japan korea russia usa

Aerosol studies

P= 0.5mbar – 30mbar d= 250nm – 40µm (silica microspheres)

> -1.5 Velocity (cm/s)

-2

-1

-0.5

0

-2.5

- Aggregation/dispersion
- Electrification

Andreas Jakobsen

Aerosol settling Studies

0.5 µm spheres

$$R_e = \frac{\rho U r}{\mu}$$

- ρ pressure
- U measured/controlled
- r microspheres
- μ composition

Aerodynamic Drag SETTLING SPEEDS

Aerodynamic Drag

Epstein

Stokes

Newton

 $U = \sqrt{\frac{8\rho_p}{3\rho}\frac{r}{C_d}}$ $U = \frac{r\rho_p}{\rho} \sqrt{\frac{m_{mol}}{KT}}$ $U=\frac{2\rho_p r^2}{9\mu}$

Electrification dust/sand

Tribo-electrification (frictional-electrification)

Triboelectric Series

fracto-electrification

Contact Electrification

 $Q < 0.1 \text{ mC/m}^2$

Electrification dust/sand

 $Q = +/-10^3 - 10^5 e$

Electrification – aggregation (electrostatic self assembly)

Less electrified with time
Less electrified with concentration
No gas dependence
Dispersion insensitive
Weak mineral dependence

Electrification - aggregation

Electrified dust aggregates! (partially dispersed)

Mineral	τ (+) (s)	d (+) (µm)	τ (–) (s)	d (-) (µm)
Glass 1-8 µm	123 ± 13	1.5	23 ± 19	5.4
Glass 10 µm	167 ± 46	1.1	16 ± 4	7.7
$ m Quartz < 2\mu m$	81 ± 17	2.2	21 ± 6	5.4
$ m Quartz < 63\mu m$	71 ± 10	2.5	30 ± 7	3.9
CaCO ₃	123 ± 19	1.4	19	6.0
HWMK101	117 ± 26	1.6	18	6.8
Gufunes	140 ± 57	1.2	29 ± 4	3.8

0V on electrodes;

Mineral	au (+) (s)	d (+) (µm)	τ (–) (s)	d (-) (µm)
Glass 1-8 μm	34 ± 5	5.4	29 ± 6	4.3

Modelling

Prof. Jörn Sesterhenn, TU Berlin

CFD + particle tracking

- Collisions during aerosolization (needed for electrification/aggregation)
- Fluid stresses, flow structure/rates, grain trajectories
- Vary parameters we cannot in the lab (T,P, etc..)

Plans for future (2015-2018)

- Aggregation (Electrification) studies (with VERTIGO)
- Dust detachment/resuspension studies (with VERTIGO + IRSN)
- Fast Camera + PIV system (Assuming EUROPLANET funded) [individual particle tracking]
- Gas cooling system = air temperature control (Assuming EUROPLANET funded)
- Dust trapping (electrostatic/EM traps) ????
- Measure surface shear stress (directly ????)

Volcanology, Aeolian studies

- Extremely turbulent (no nice boundary layer)
- Intense sedimentation / entrainment
- High ('saturate') aerosol concentration
- High wind speeds

Summary of Operational parameters Table 4. Operational parameters relevant to the AWTSI and AWTSI simulation wind tunnel facilities

	AWTS II	AWTSI
Dimension chamber	w = 2.5m, h = 2.5m, l =	Dia. = 1.0m, I = 2.5m
	10.0m	
Dimension Test Section	w = 1.81m, h = 0.995m, l =	Dia. = 0.4m, l = 0.5m
volume	2.00m	
Pressure Low	0.07 mbar	0.3 mbar
Pressure High	1000 mbar	1000 mbar
Gas Purity	<1% impurity	<5% impurity
Evacuation Time (to	24 minutes	40 minutes
10mbar)		
Temperature Low	-120 (±10) °C	-60 (±20) °C
Temperature High	+80 °C	+25 °C
Wind generation Low	0.8 m/s (50 RPM)	1.5 m/s (2Hz)
Wind generation High	20 m/s (1200RPM)	15 m/s (50Hz)
Wind Sensor Ranges	LDA/LAMDA (0-15m/s),	LDA/LAMDA (0-15m/s),
	Pitot tube (3-30m/s)	
Dust (Salten Skov I);	0 – 1200 mg/min.	0 – 1200 mg/min.
Injection Rate	(manual/automated)	(manual)
Dust Suspension Time	30 - 300 secs (10-1 m/s)	20 - 200 secs (10-1 m/s)
(wind speed)		
Concentration (per	3.7×10 ⁴ m ⁻³ mg ⁻¹ .	4.3×10 ⁵ m ⁻³ mg ⁻¹
injected mass unit)		
Deposition (per injected	2000 mg/%	463 mg/%
mass unit)		
Optical Lighting Irradiance	0.1 W/m²/nm	none
(400nm-700nm)		
Wind Turbulence	4 – 18%	3 – 16%

Volcanology Network ESRs

• ESR 10 -electrification/aggregation, suspension/deposition Aerosol experiments, Entrainement experiments WT exps at AU, Modelling TUB (+UNIGE, MVO) (Jonathan Merrison (AU), co-supervisors: Ulrich Kueppers (LMU), Jörn Sesterhenn (TUB))

• ESR 1 -electrification/aggregation, (relating to field obs.) 2mnths WT exps at AU

• ESR 5 -aggregation, (effects of atmosphere - humidity) 2mnths WT exps at AU

• ESR 7 - mineral activation (erosion simulations) 2mnths erosion exps at AU

• ESR 13 - aerosol ash types (testing CAS-DPOL) 3mnths WT exps at AU

WT