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Physical Problem

B Bounded region X' = [0, L) of reacting
laminar flow.

W Particle type space ).
B Particles incepted with intensity 7 > 0.

B Particles undergo surface growth at rate
B8 =0

B Pairs of particles collide and coagulate
according to K > 0, which models

position

effects of diffusion.
B Particles drift at velocity u > 0.

B Particles simply flow out of the domain
from its end.

temperature
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Strong Equation

D et 2,) + Ve (wl@)elt,2,9))
= I(z,y) +ct,z,y — 0)B (z,y — ) — c(t,z,y)B (v, y)
// z,y1, x,y2) c(t, z, y1)c(t, ©, y2)dy1dy2
y1»y2€3’

Y1+y2=y

—C(t»ﬂb‘:y)/ K(w,y,x,yl)c(t,m,y1)dy1
y1€Y

B Boundary and initial conditions.

B Homogeneous form: M. von Smoluchowski, “Drei
Vortrage Uber Diffusion, Brownsche
Molekularbewegung und Koagulation von
Kolloidteilchen”, Physik. Zeitschr.,
XVI1:585-599,(1916).
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Why Stochatics?

A

B Complex particles mean high
dimensional phase space.

B Coagulation has terms like

c(t, z, y)/ K(z,y,z,11)
y1 €Y

c(t,z, y1)dyr.

position

B Moment closures are messy and
approximate.

B Complexity is exponential in phase
space discretisation length.

B Use Monte Carlo.

temperature
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Weak Equation 'Zﬁf’g

Weak formulation is natural for particle systems viewed through their empirical measures:

0

% é(z,y)c(t, z, y)dzdy
X XY

4 / $(2,9) Ve (u(@)elt, z,y)) dady
X XY
— [ owiydsdy
X XY

+ [<z5( Y +0) — d(x, y)] B (2,y) c(t, z,y)dzdy

M\H><\

//yw (z, 91 +y2) — ¢(z,y1) — d(z, y2)]

c(t,z, y1)c(t, z, y2)K(z, y1, T, y2) dyrdyada.
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Stochastic Methods

B Investigate methods that approximate the
PBE.

B Grid spacing Az, X = szl X;. e ‘
Ax

B Simplified models of the physical particle
system are good sources of ideas for 73>
numerical methods. '

B Overall goal is understanding the

I
0
3
o

convergence of the empirical measures.

B This work focuses on exit boundaries. = @
o . @
B Diffusion in coagulation kernel—model for = =,
smallest scale. c—e =
B For numerical purposes split transport OH oH O o
and reaction terms. c=—C . —=C

Coagulation—Advection Convergence - Aarhus, 7 November 2014 - Page 6 (28)



Existing Results xﬁ’g

B Infinite homogeneous box, no flow:

B Boltzmann setting: Wagner 92

B Coagulation: Jeon 98, Norris 99

B Famous review by Aldous 99

B More general interactions: Eibeck & Wagner 03, Kolokoltsov book 10

B Diffusion in infinite domain: via jump process Guiag 01

B Diffusion in infinite domain: via SDE Deaconu & Fournier 02

B Hammond, Rezakhanlou & co-workers 06-10

B Relative compactness in law for advection in 1-d finite domain: P. 13

B Gas dynamics.
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Markov Dynamics in One Cell 'Cff’g

Need a sequence of Markov Chains to study convergence; index 7.

Replace continuum with finite, computable number of particles.

Scaling factor n: Inverse of concentration represented by one computational particle.
Coagulation y1 and y2 at rate K (y1, y2)/2nAz (ignore = dependence).

Other delocalisation methods possible.

Formation of new particles at rate Axnl throughout the cell.

Velocity u > 0 bounded away from 0, ©’ bounded, streaming step split.

Particles absorbed at end of reactor.
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Notation

B Individual particle and position an
elementof X' = X x Y.

B Fock state space for the particle systems
E=U2, X"

B Lety : X’ — R and define
¥ E = Ry
PO (21, oan) = 5 P(xy).

B X, (t) is the E-valued process.

B N (Xn(t)) is the number of particles. (]

B Xn(t,i) € X" is the location and type Figure: The disjoint union E.
of the ¢-th particle.

Coagulation—Advection Convergence - Aarhus, 7 November 2014 - Page 9 (28)



The Generator 'Zﬁ@’g

Let X € E, X = (X(1),...,X (N(X))), then the generators A,, satisfy

N(X)

Amﬁm:ml§jmmm
=n/ yw(x7y>l(dw7dy>+<uw>@(X>+
N(X)

K (X (i1), X (i2)) . .
T Ay (X (i) L (X (i2)).
B Poissonian inception with rate 1,

B advection with velocity u,

B coagulations of X (1) and X (i2) atrate K (X (i1), X (i2)) /2nAx,

B exits at L require ¢ = 0 there.
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Numerical Tests 1 'Zﬁf’g

Simple problem, steady state concentration (zeroth moment) has closed form solution.
1 1 1 1 1 1

2000 -

1500 r
DSALn=2048 o

1000 ~ DSALn=16384 4 -
DSAL n=131072 +
DSA2 n=2048  x
DSA2 n=16384 ¢

500 DSA2 n=131072 v -
SWAN=2048 =
SWAnN=16384  *

o SWAN=131072 ¢ i

T T T T T T
0.00 0.02 0.04 X 0.06 0.08 0.10
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Numerical Tests 2

Second mass moment:
I I I I

DSA1 n=2048

4 DSA1 n=16384
DSA1 n=131072
DSA2 n=2048
DSA2 n=16384
3 DSA2 n=131072
SWA n=2048
SWA n=16384
SWA n=131072

$H*kRJIOX+ DO

0.06 0.07 X 0.08 0.09
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Numerical Tests 3

Standard deviation of concentration (zeroth mass moment) renormalised by mean and /n:
1 1 1 1 1 1
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14 8, =
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¢
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The Generator (repeated) 'Zﬁ@’g

Let X € E, X = (X(1),...,X (N(X))), then the generators A,, satisfy

N(X)

AP (X) = Au | D2 0 (X ()

=n Uz, y)I(dz, dy) + (uV)® (X)+

K (X (i1), X (i2)) . .
T Ay (X (i) L (X (i2)).
B Poissonian inception with rate 1,

B advection with velocity u,

B coagulations of X (1) and X (i2) atrate K (X (i1), X (i2)) /2nAx,

B exits at L require ¢ = 0 there.
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Measure-valued Processes . %

The empirical measure process, which is D(Rg, M(E)) valued, is given by

| NCEn(®)
p=- Z; 85X (1) -

Thus

% (Xn(t) = Y(z,y)pi (dz, dz).
X XY

and adapting the generator to measures find .A a martingale characterization

Y(z,y)p; (dz, dy) — Y(x, y)po (dz, dy)
X XY X XY

-/ [ | Ay, dy)ds = ME() + O(1/m)
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Measure-valued Processes . %

Theorem (P. 13)

If inception 1, velocity u, particle residence times, and coagulation kernel K are bounded, then

the ™ are weakly relatively compact in distribution so there is a limit with paths in
D(Ry, M(E)).

By Jakubowski (1986) it is sufficient to check

B the corresponding result for the real valued processes fXxJi Y(z, y)py (dz, dz),

B a tightness condition for the '

The tightness condition is established using the Poissonian nature of the inflow and the upper
bound on the residence times. O

| think one also has exponential tightness.
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Functional Strong Law 'Zﬁ@’g

Recall

Y(z, y)put (dz,dy) — Y(z,y)po (dz, dy)
XXY XXY

t
- [ ]t gz e, dyds = MY + O /m)
0 X XY
® E [sup,., M} (t)*] = O(1/n) so passing to the limit

(%, y)pe(dz, dy) — (%, y)po(dz, dy)
X XY XXy

f/ A ) (, g (de, dy)ds = 0.
0 X XY

B Equation has a unique solution (Banach ODE analysis).

B Processes converge to this unique solution with probability 1.
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Functional Central Limit Theorem

Recall the noise Martingale

M) = 107 000) - & [ 40”6 as

these can be decomposed as

Tn(t)

M) = > &ux+O(1/n).

k=1
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Functional Central Limit Theorem 'Zﬁ@’g

Recall the noise Martingale

MY = 6 () - [ 400 () as

these can be decomposed as

Tn(t)

M) = > &ux+O(1/n).

Already noted
B [sup 245 61 ~ 01/,

s<t

but by working a little harder

Tn (t)

nE [M:f(tf] =E | > (Vngur)®| +0(1/vn) — /O o (s)2ds.

k=1

(Note: o is explicit and deterministic.)

Coagulation—Advection Convergence - Aarhus, 7 November 2014 - Page 18 (28)



Functional Central Limit Theorem 'Zﬁ@"*é

B /nMY(t) — By so, informally

p(x,y)py (dz, dy) — Y(z, y)uo (dz, dy)
X XY X xY

t
n n 1
—/ A(ps )Y (z, y)ps (dz, dy)ds ~ \ﬁBw).
0 X XY n
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Functional Central Limit Theorem 'Zﬁ@";

B /nMY(t) — By so, informally

p(x,y)py (dz, dy) — Y(z, y)uo (dz, dy)
X XY X xY

t
n " 1
—/ A(ps )Y (z, y)ps (dz, dy)ds ~ \ﬁBw).
0 X XY n

B Even for large t, mistake to assume

Y(z, y)pi (dz, dy) = p(x, y)pe(da, dy) + \/%va

XXY XXY
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Mean Reversion 'Zﬁf’g

B Concentrate on large times (after burn—in) so v(t) x o’t.
B Useful simulation algorithms must drift towards true solution.
B Note that

p(x, ) (dz, dy) — Y(z, y)pe (dz, dy)
X XY X XY

~ [ t ( [ AUy . )

- A(ps) (2, y) ps (de, dy)) ds + \/%Bva)-

XxY
B Ornstein—Uhlenbeck is a plausible model for
Yi=Vn ( Y(@, y)pi (dz, dy) — Y(x, y)po (da, dy)) :
XXY X XY

which means
dY: =0 (m — Y;) dt + odW,.
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Linear Regression

B Suppose Y is O-U, then

Vi = Ytiefem—i—m (1 . 679At)
1 — e—20At
+o 20 %

where Z; are iid N(0, 1).

B Observe a functional at ¢; with spacing
At, call the observations Yz,

B As a concrete example: Number of
particles in [0.175, 0.2]:

m e 92" = 0.866 + 0.008
B m="7.76+0.56

B Mean reversion rate seems to depend on
functional.

B How good is the assumption of normally
distributed noise?
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Quartile Plot for Regression Residuals 'Zﬁ@’g

4e+05 —

2e+05 — -

0e+00 — —

—2e+05

|
I

—-4e+05 — —
I I I I I

-2 0 2

Straight line shows normal distribution matching 1st and 3rd quartiles of data.
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Estimating the Mean

B Recall samples Y; attimes ¢;, i = 1, ..., isqmp With spacing At.
B Estimate mean as )

1 lsamp

Iy

noia
B Simulation cost is “burn-in” + ¢ sqmpAt.

Variance of estimator is

isamp 2 —0At
1 o 2e 1
E Yi| = 1 O .
var isamp - ’ 2isamp9 ( + 1- 679At> * (igamp>

=1

For fixed cost, variance is monotone decreasing in isamp x 1/At.

Practical considerations will intervene before isqmp gets too big / At too small.
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Pain vs. Gain

1.0 |
5 —~—
S N—
©
o 0.8 |
2 \
>
g
E 06 B - ., . . B
8 initial correlation
) 0.1 _—
2 04 0.05 }
o 0.01
o
T T T T
5 10 15 20

sampling factor
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A Sooting Flame with Thermophoresis 'Zﬁf’g

Appel-Bockhorn-Frenklach soot model with spherical particles.
B Different transport models (increasing complexity)

B advection,
B advection with thermophoresis adjustment,
B advection and diffusion.

Uniform spatial grid (!) Ax.
Splitting time At.

Max particles per cell n.

Pre-calculated chemical conditions (including u) taken from an old study courtesy of
Jasdeep Singh.

B Weighted particles for performance reasons.
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Particle Distribution

25

N
=}
T

W Particle distribution
around

| x = 2.0625 x 1073,

B Difference in My
peaks shown here.

S oo B M is the right hand
no diffusion

random diffusion -—- end point of the
thermophoretic drift - --- - - curves.

=
3
T

=
=}
T

particle concentration / 10 m™
&
T

o
o
T

| | |
10—24 0—23 —22

1 1
particle mass / kg
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Particle Distribution

(2}
T

W Particle distribution
- around
x = 6.0625 x 1073,

~
T

B Note change of scales

from previous figure.

particle concentration / 10*° m™

2 |
no diffusion _— B Not yet able to assess
lt’ﬁglqnc’)]g]pﬂgf%?ilgrcljrift - statistical significance.
o |
| | | | |
10—24 10—23 10—22 10—21 10—20

particle mass / kg
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Conclusion

- ‘ B Ornstein-Uhlenbeck model for
Ax

fluctuations useful.

?63{79 AX B Decorrelation times can be estimated.

B Limited advantage when sampling

position

‘ already near optimal.
0] g B Results from a wider range of sampling
parameters can be interpreted.

(&)
= = B Open questions: Gradient flow, spectral

— gap, log Sobolev inequality.

C=(C
UH
o oH O o
C=(C c=—C
>
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