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Physical Problem

� Bounded region X = [0, L) of reacting

laminar flow.

� Particle type space Y .

� Particles incepted with intensity I ≥ 0.

� Particles undergo surface growth at rate

β ≥ 0.

� Pairs of particles collide and coagulate

according to K ≥ 0, which models

effects of diffusion.

� Particles drift at velocity u > 0.

� Particles simply flow out of the domain

from its end.
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Strong Equation

∂

∂t
c(t, x, y) +∇x (u(x)c(t, x, y))

= I(x, y) + c(t, x, y − δ)β (x, y − δ)− c(t, x, y)β (x, y)

+
1

2

∫∫
y1,y2∈Y:
y1+y2=y

K(x, y1, x, y2) c(t, x, y1)c(t, x, y2)dy1dy2

− c(t, x, y)

∫
y1∈Y

K(x, y, x, y1) c(t, x, y1)dy1

� Boundary and initial conditions.

� Homogeneous form: M. von Smoluchowski, “Drei

Vorträge über Diffusion, Brownsche

Molekularbewegung und Koagulation von

Kolloidteilchen”, Physik. Zeitschr.,

XVII:585–599,(1916).
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Why Stochatics?
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� Complex particles mean high

dimensional phase space.

� Coagulation has terms like

c(t, x, y)

∫
y1∈Y

K(x, y, x, y1)

c(t, x, y1)dy1.

� Moment closures are messy and

approximate.

� Complexity is exponential in phase

space discretisation length.

� Use Monte Carlo.
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Weak Equation

Weak formulation is natural for particle systems viewed through their empirical measures:

∂

∂t

∫
X×Y

φ(x, y)c(t, x, y)dxdy

+

∫
X×Y

φ(x, y)∇x (u(x)c(t, x, y)) dxdy

=

∫
X×Y

φ(x, y)I(x, y)dxdy

+

∫
X×Y

[φ(x, y + δ)− φ(x, y)]β (x, y) c(t, x, y)dxdy

+
1

2

∫
X

∫
Y×Y

[φ(x, y1 + y2)− φ(x, y1)− φ(x, y2)]

c(t, x, y1)c(t, x, y2)K(x, y1, x, y2) dy1dy2dx.
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Stochastic Methods

� Investigate methods that approximate the

PBE.

� Grid spacing ∆x, X =
⋃J
j=1 Xj .

� Simplified models of the physical particle

system are good sources of ideas for

numerical methods.

� Overall goal is understanding the

convergence of the empirical measures.

� This work focuses on exit boundaries.

� Diffusion in coagulation kernel—model for

smallest scale.

� For numerical purposes split transport

and reaction terms.
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Existing Results

� Infinite homogeneous box, no flow:

� Boltzmann setting: Wagner 92

� Coagulation: Jeon 98, Norris 99

� Famous review by Aldous 99

� More general interactions: Eibeck & Wagner 03, Kolokoltsov book 10

� Diffusion in infinite domain: via jump process Guiaş 01

� Diffusion in infinite domain: via SDE Deaconu & Fournier 02

� Hammond, Rezakhanlou & co-workers 06-10

� Relative compactness in law for advection in 1-d finite domain: P. 13

� Gas dynamics.
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Markov Dynamics in One Cell

� Need a sequence of Markov Chains to study convergence; index n.

� Replace continuum with finite, computable number of particles.

� Scaling factor n: Inverse of concentration represented by one computational particle.

� Coagulation y1 and y2 at rate K(y1, y2)/2n∆x (ignore x dependence).

� Other delocalisation methods possible.

� Formation of new particles at rate ∆xnI throughout the cell.

� Velocity u > 0 bounded away from 0, u′ bounded, streaming step split.

� Particles absorbed at end of reactor.
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Notation

� Individual particle and position an

element of X ′ = X × Y .

� Fock state space for the particle systems

E =
⋃∞
k=0 X

′k.

� Let ψ : X ′ → R and define

ψ⊕ : E → R by

ψ⊕ (x1, . . . xk) =
∑k
j=1 ψ(xj).

� Xn(t) is the E-valued process.

� N (Xn(t)) is the number of particles.

� Xn(t, i) ∈ X ′ is the location and type

of the i-th particle.
Figure: The disjoint union E.
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The Generator

Let X ∈ E, X = (X(1), . . . , X (N(X))), then the generators An satisfy

Anψ
⊕(X) = An

N(X)∑
i=1

ψ (X(i))


= n

∫
X×Y

ψ(x, y)I(dx,dy) + (u∇ψ)⊕ (X)+

1

2

J∑
j=1

N(X)∑
i1,i2=1
i1 6=i2

[
ψ
(
X(i1) +X(i2)

)
− ψ (X(i1))− ψ (X(i2))

]
K (X(i1), X(i2))

n∆x
1Xj (X(i1))1Xj (X(i2)) .

� Poissonian inception with rate I ,

� advection with velocity u,

� coagulations of X(i1) and X(i2) at rate K (X(i1), X(i2)) /2n∆x,

� exits at L require ψ = 0 there.
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Numerical Tests 1

Simple problem, steady state concentration (zeroth moment) has closed form solution.
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Numerical Tests 2

Second mass moment:
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Numerical Tests 3

Standard deviation of concentration (zeroth mass moment) renormalised by mean and
√
n:
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The Generator (repeated)

Let X ∈ E, X = (X(1), . . . , X (N(X))), then the generators An satisfy

Anψ
⊕(X) = An

N(X)∑
i=1

ψ (X(i))


= n

∫
X×Y

ψ(x, y)I(dx,dy) + (u∇ψ)⊕ (X)+

1

2

J∑
j=1

N(X)∑
i1,i2=1
i1 6=i2

[
ψ
(
X(i1) +X(i2)

)
− ψ (X(i1))− ψ (X(i2))

]
K (X(i1), X(i2))

n∆x
1Xj (X(i1))1Xj (X(i2)) .

� Poissonian inception with rate I ,

� advection with velocity u,

� coagulations of X(i1) and X(i2) at rate K (X(i1), X(i2)) /2n∆x,

� exits at L require ψ = 0 there.
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Measure-valued Processes

Definition

The empirical measure process, which is D(R+
0 ,M(E)) valued, is given by

µnt =
1

n

N(Xn(t))∑
i=1

δXn(t,i) .

Thus

ψ⊕ (Xn(t)) ≡
∫
X×Y

ψ(x, y)µnt (dx,dx).

and adapting the generator to measures findA a martingale characterization∫
X×Y

ψ(x, y)µnt (dx,dy)−
∫
X×Y

ψ(x, y)µn0 (dx, dy)

−
∫ t

0

∫
X×Y

A(µns )ψ(x, y)µns (dx,dy)ds = Mψ
n (t) +O(1/n).
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Measure-valued Processes

Theorem (P. 13)

If inception I , velocity u, particle residence times, and coagulation kernel K are bounded, then

the µn are weakly relatively compact in distribution so there is a limit with paths in

D(R+
0 ,M(E)).

Proof.

By Jakubowski (1986) it is sufficient to check

� the corresponding result for the real valued processes
∫
X×Y ψ(x, y)µnt (dx, dx),

� a tightness condition for the µnt .

The tightness condition is established using the Poissonian nature of the inflow and the upper

bound on the residence times.

I think one also has exponential tightness.
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Functional Strong Law

Recall∫
X×Y

ψ(x, y)µnt (dx,dy)−
∫
X×Y

ψ(x, y)µn0 (dx, dy)

−
∫ t

0

∫
X×Y

A(µns )ψ(x, y)µns (dx,dy)ds = Mψ
n (t) +O(1/n).

� E
[
sups≤tM

ψ
n (t)2

]
= O(1/n) so passing to the limit∫

X×Y
ψ(x, y)µt(dx,dy)−

∫
X×Y

ψ(x, y)µ0(dx,dy)

−
∫ t

0

∫
X×Y

A(µs)ψ(x, y)µs(dx,dy)ds = 0.

� Equation has a unique solution (Banach ODE analysis).

� Processes converge to this unique solution with probability 1.
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Functional Central Limit Theorem

Recall the noise Martingale

Mψ
n (t) :=

1

n
ψ⊕ (Xn(t))− 1

n

∫ t

0

Anψ
⊕ (Xn(s)) ds

these can be decomposed as

Mψ
n (t) =

Tn(t)∑
k=1

ξn,k +O(1/n).

Already noted

E
[
sup
s≤t

Mψ
n (s)2

]
∼ O(1/n),

but by working a little harder

nE
[
Mψ
n (t)2

]
= E

Tn(t)∑
k=1

(√
nξn,k

)2+O(1/
√
n)→

∫ t

0

σ(s)2ds.

(Note: σ is explicit and deterministic.)
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Functional Central Limit Theorem

�
√
nMψ

n (t)→ Bv(t) so, informally∫
X×Y

ψ(x, y)µnt (dx,dy)−
∫
X×Y

ψ(x, y)µn0 (dx,dy)

−
∫ t

0

∫
X×Y

A(µns )ψ(x, y)µns (dx,dy)ds ≈
√

1

n
Bv(t).

� Even for large t, mistake to assume∫
X×Y

ψ(x, y)µnt (dx,dy) ≈
∫
X×Y

ψ(x, y)µt(dx,dy) +

√
1

n
Bv(t).
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Mean Reversion

� Concentrate on large times (after burn–in) so v(t) ∝ σ2t.

� Useful simulation algorithms must drift towards true solution.

� Note that∫
X×Y

ψ(x, y)µnt (dx,dy)−
∫
X×Y

ψ(x, y)µt(dx,dy)

≈
∫ t

0

(∫
X×Y

A(µns )ψ(x, y)µns (dx,dy)

−
∫
X×Y

A(µs)ψ(x, y)µs(dx,dy)

)
ds+

√
1

n
Bv(t).

� Ornstein–Uhlenbeck is a plausible model for

Yt =
√
n

(∫
X×Y

ψ(x, y)µnt (dx,dy)−
∫
X×Y

ψ(x, y)µn0 (dx, dy)

)
,

which means

dYt = θ (m− Yt) dt+ σdWt.
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Linear Regression

� Suppose Y is O-U, then

Yti+1 = Ytie
−θ∆t+m

(
1− e−θ∆t

)
+ σ

√
1− e−2θ∆t

2θ
Zi

where Zi are iid N(0, 1).

� Observe a functional at ti with spacing

∆t, call the observations Yti

� As a concrete example: Number of

particles in [0.175, 0.2]:

� e−θ∆t = 0.866± 0.008

� m = 7.76± 0.56

� Mean reversion rate seems to depend on

functional.

� How good is the assumption of normally

distributed noise?
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Quartile Plot for Regression Residuals
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●

Straight line shows normal distribution matching 1st and 3rd quartiles of data.
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Estimating the Mean

� Recall samples Yi at times ti, i = 1, . . . , isamp with spacing ∆t.

� Estimate mean as

1

n

isamp∑
i=1

Yi.

� Simulation cost is “burn-in” + isamp∆t.

� Variance of estimator is

var

 1

isamp

isamp∑
i=1

Yi

 =
σ2

2isampθ

(
1 +

2e−θ∆t

1− e−θ∆t

)
+O

(
1

i2samp

)
.

� For fixed cost, variance is monotone decreasing in isamp ∝ 1/∆t.

� Practical considerations will intervene before isamp gets too big / ∆t too small.
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Pain vs. Gain
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A Sooting Flame with Thermophoresis

� Appel-Bockhorn-Frenklach soot model with spherical particles.

� Different transport models (increasing complexity)

� advection,

� advection with thermophoresis adjustment,

� advection and diffusion.

� Uniform spatial grid (!) ∆x.

� Splitting time ∆t.

� Max particles per cell n.

� Pre-calculated chemical conditions (including u) taken from an old study courtesy of

Jasdeep Singh.

� Weighted particles for performance reasons.
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Particle Distribution
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� Particle distribution

around

x = 2.0625× 10−3.

� Difference in M0

peaks shown here.

� M0 is the right hand

end point of the

curves.
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Particle Distribution
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� Particle distribution

around

x = 6.0625× 10−3.

� Note change of scales

from previous figure.

� Not yet able to assess

statistical significance.
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Conclusion

� Ornstein–Uhlenbeck model for

fluctuations useful.

� Decorrelation times can be estimated.

� Limited advantage when sampling

already near optimal.

� Results from a wider range of sampling

parameters can be interpreted.

� Open questions: Gradient flow, spectral

gap, log Sobolev inequality.
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