Weierstrass Institute for

Convergence of Coagulation-Advection

 SimulationsRobert I. A. Patterson
joint work with Wolfgang Wagner, Berlin

■ Bounded region $\mathcal{X}=[0, L)$ of reacting laminar flow.

- Particle type space \mathcal{Y}.
- Particles incepted with intensity $I \geq 0$.
- Particles undergo surface growth at rate $\beta \geq 0$.
- Pairs of particles collide and coagulate according to $K \geq 0$, which models effects of diffusion.

■ Particles drift at velocity $u>0$.

- Particles simply flow out of the domain from its end.

$$
\begin{aligned}
\frac{\partial}{\partial t} c(t, x, y) & +\nabla_{x}(u(x) c(t, x, y)) \\
& =I(x, y)+c(t, x, y-\delta) \beta(x, y-\delta)-c(t, x, y) \beta(x, y) \\
& +\frac{1}{2} \iint_{\substack{y_{1}, y_{2} \in \mathcal{Y}: \\
y_{1}+y_{2}=y}} \mathrm{~K}\left(x, y_{1}, x, y_{2}\right) c\left(t, x, y_{1}\right) c\left(t, x, y_{2}\right) \mathrm{d} y_{1} \mathrm{~d} y_{2} \\
& \quad-c(t, x, y) \int_{y_{1} \in \mathcal{Y}} \mathrm{~K}\left(x, y, x, y_{1}\right) c\left(t, x, y_{1}\right) \mathrm{d} y_{1}
\end{aligned}
$$

- Boundary and initial conditions.

■ Homogeneous form: M. von Smoluchowski, "Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen", Physik. Zeitschr., XVII:585-599,(1916).

- Complex particles mean high dimensional phase space.
- Coagulation has terms like

$$
\begin{array}{r}
c(t, x, y) \int_{y_{1} \in \mathcal{Y}} \mathrm{~K}\left(x, y, x, y_{1}\right) \\
c\left(t, x, y_{1}\right) \mathrm{d} y_{1} .
\end{array}
$$

- Moment closures are messy and approximate.
- Complexity is exponential in phase space discretisation length.
- Use Monte Carlo.

Weak formulation is natural for particle systems viewed through their empirical measures:

$$
\begin{aligned}
& \frac{\partial}{\partial t} \int_{\mathcal{X} \times \mathcal{Y}} \phi(x, y) c(t, x, y) \mathrm{d} x \mathrm{~d} y \\
& \quad+\int_{\mathcal{X} \times \mathcal{Y}} \phi(x, y) \nabla_{x}(u(x) c(t, x, y)) \mathrm{d} x \mathrm{~d} y \\
& =\int_{\mathcal{X} \times \mathcal{Y}} \phi(x, y) I(x, y) \mathrm{d} x \mathrm{~d} y \\
& \quad+\int_{\mathcal{X} \times \mathcal{Y}}[\phi(x, y+\delta)-\phi(x, y)] \beta(x, y) c(t, x, y) \mathrm{d} x \mathrm{~d} y \\
& \quad+\frac{1}{2} \int_{\mathcal{X}} \int_{\mathcal{Y} \times \mathcal{Y}}\left[\phi\left(x, y_{1}+y_{2}\right)-\phi\left(x, y_{1}\right)-\phi\left(x, y_{2}\right)\right] \\
& c\left(t, x, y_{1}\right) c\left(t, x, y_{2}\right) \mathrm{K}\left(x, y_{1}, x, y_{2}\right) \mathrm{d} y_{1} \mathrm{~d} y_{2} \mathrm{~d} x
\end{aligned}
$$

- Investigate methods that approximate the PBE.

■ Grid spacing $\Delta x, \mathcal{X}=\bigcup_{j=1}^{J} \mathcal{X}_{j}$.

- Simplified models of the physical particle system are good sources of ideas for numerical methods.
- Overall goal is understanding the convergence of the empirical measures.
- This work focuses on exit boundaries.
- Diffusion in coagulation kernel-model for smallest scale.
- For numerical purposes split transport and reaction terms.

- Infinite homogeneous box, no flow:
- Boltzmann setting: Wagner 92

■ Coagulation: Jeon 98, Norris 99

- Famous review by Aldous 99
- More general interactions: Eibeck \& Wagner 03, Kolokoltsov book 10
- Diffusion in infinite domain: via jump process Guiaş 01

■ Diffusion in infinite domain: via SDE Deaconu \& Fournier 02

- Hammond, Rezakhanlou \& co-workers 06-10
- Relative compactness in law for advection in 1-d finite domain: P. 13
- Gas dynamics.

■ Need a sequence of Markov Chains to study convergence; index n.

- Replace continuum with finite, computable number of particles.
- Scaling factor n : Inverse of concentration represented by one computational particle.
- Coagulation y_{1} and y_{2} at rate $K\left(y_{1}, y_{2}\right) / 2 n \Delta x$ (ignore x dependence).

■ Other delocalisation methods possible.

- Formation of new particles at rate $\Delta x n I$ throughout the cell.

■ Velocity $u>0$ bounded away from $0, u^{\prime}$ bounded, streaming step split.

- Particles absorbed at end of reactor.
- Individual particle and position an element of $\mathcal{X}^{\prime}=\mathcal{X} \times \mathcal{Y}$.
- Fock state space for the particle systems $E=\bigcup_{k=0}^{\infty} \mathcal{X}^{\prime k}$.

■ Let $\psi: \mathcal{X}^{\prime} \rightarrow \mathbb{R}$ and define $\psi^{\oplus}: E \rightarrow \mathbb{R}$ by $\psi^{\oplus}\left(x_{1}, \ldots x_{k}\right)=\sum_{j=1}^{k} \psi\left(x_{j}\right)$.

- $X_{n}(t)$ is the E-valued process.

■ $N\left(X_{n}(t)\right)$ is the number of particles.
■ $X_{n}(t, i) \in \mathcal{X}^{\prime}$ is the location and type of the i-th particle.

\varnothing

Figure: The disjoint union E.

Let $X \in E, X=(X(1), \ldots, X(N(X)))$, then the generators A_{n} satisfy

$$
\begin{aligned}
& A_{n} \psi^{\oplus}(X)=A_{n}\left(\sum_{i=1}^{N(X)} \psi(X(i))\right) \\
&=n \int_{\mathcal{X} \times \mathcal{Y}} \psi(x, y) I(\mathrm{~d} x, \mathrm{~d} y)+(u \nabla \psi)^{\oplus}(X)+ \\
& \frac{1}{2} \sum_{j=1}^{J} \sum_{\substack{i_{1}, i_{2}=1 \\
i_{1} \neq i_{2}}}^{N(X)}\left[\psi\left(X\left(i_{1}\right)+X\left(i_{2}\right)\right)-\psi\left(X\left(i_{1}\right)\right)-\psi\left(X\left(i_{2}\right)\right)\right] \\
& \frac{K\left(X\left(i_{1}\right), X\left(i_{2}\right)\right)}{n \Delta x} \mathbb{1}_{\mathcal{X}_{j}}\left(X\left(i_{1}\right)\right) \mathbb{1}_{\mathcal{X}_{j}}\left(X\left(i_{2}\right)\right) .
\end{aligned}
$$

- Poissonian inception with rate I,

■ advection with velocity u,

- coagulation of $X\left(i_{1}\right)$ and $X\left(i_{2}\right)$ at rate $K\left(X\left(i_{1}\right), X\left(i_{2}\right)\right) / 2 n \Delta x$,

■ exits at L require $\psi=0$ there.

Simple problem, steady state concentration (zeroth moment) has closed form solution.

Second mass moment:

Standard deviation of concentration (zeroth mass moment) renormalised by mean and \sqrt{n} :

Let $X \in E, X=(X(1), \ldots, X(N(X)))$, then the generators A_{n} satisfy

$$
\begin{aligned}
& A_{n} \psi^{\oplus}(X)=A_{n}\left(\sum_{i=1}^{N(X)} \psi(X(i))\right) \\
&=n \int_{\mathcal{X} \times \mathcal{Y}} \psi(x, y) I(\mathrm{~d} x, \mathrm{~d} y)+(u \nabla \psi)^{\oplus}(X)+ \\
& \frac{1}{2} \sum_{j=1}^{J} \sum_{\substack{i_{1}, i_{2}=1 \\
i_{1} \neq i_{2}}}^{N(X)}\left[\psi\left(X\left(i_{1}\right)+X\left(i_{2}\right)\right)-\psi\left(X\left(i_{1}\right)\right)-\psi\left(X\left(i_{2}\right)\right)\right] \\
& \frac{K\left(X\left(i_{1}\right), X\left(i_{2}\right)\right)}{n \Delta x} \mathbb{1}_{\mathcal{X}_{j}}\left(X\left(i_{1}\right)\right) \mathbb{1}_{\mathcal{X}_{j}}\left(X\left(i_{2}\right)\right) .
\end{aligned}
$$

- Poissonian inception with rate I,
- advection with velocity u,
- coagulation of $X\left(i_{1}\right)$ and $X\left(i_{2}\right)$ at rate $K\left(X\left(i_{1}\right), X\left(i_{2}\right)\right) / 2 n \Delta x$,

■ exits at L require $\psi=0$ there.

Definition

The empirical measure process, which is $\mathbb{D}\left(\mathbb{R}_{0}^{+}, \mathcal{M}(E)\right)$ valued, is given by

$$
\mu_{t}^{n}=\frac{1}{n} \sum_{i=1}^{N\left(X_{n}(t)\right)} \delta_{X_{n}(t, i)}
$$

Thus

$$
\psi^{\oplus}\left(X_{n}(t)\right) \equiv \int_{\mathcal{X} \times \mathcal{Y}} \psi(x, y) \mu_{t}^{n}(\mathrm{~d} x, \mathrm{~d} x)
$$

and adapting the generator to measures find \mathcal{A} a martingale characterization

$$
\begin{aligned}
& \int_{\mathcal{X} \times \mathcal{Y}} \psi(x, y) \mu_{t}^{n}(\mathrm{~d} x, \mathrm{~d} y)-\int_{\mathcal{X} \times \mathcal{Y}} \psi(x, y) \mu_{0}^{n}(\mathrm{~d} x, \mathrm{~d} y) \\
&-\int_{0}^{t} \int_{\mathcal{X} \times \mathcal{Y}} \mathcal{A}\left(\mu_{s}^{n}\right) \psi(x, y) \mu_{s}^{n}(\mathrm{~d} x, \mathrm{~d} y) \mathrm{d} s=M_{n}^{\psi}(t)+\mathcal{O}(1 / n)
\end{aligned}
$$

Theorem (P. 13)
If inception I, velocity u, particle residence times, and coagulation kernel K are bounded, then the μ^{n} are weakly relatively compact in distribution so there is a limit with paths in $\mathbb{D}\left(\mathbb{R}_{0}^{+}, \mathcal{M}(E)\right)$.

Proof.

By Jakubowski (1986) it is sufficient to check

- the corresponding result for the real valued processes $\int_{\mathcal{X} \times \mathcal{Y}} \psi(x, y) \mu_{t}^{n}(\mathrm{~d} x, \mathrm{~d} x)$,
- a tightness condition for the μ_{t}^{n}.

The tightness condition is established using the Poissonian nature of the inflow and the upper bound on the residence times.

I think one also has exponential tightness.

Recall

$$
\begin{aligned}
& \int_{\mathcal{X} \times \mathcal{Y}} \psi(x, y) \mu_{t}^{n}(\mathrm{~d} x, \mathrm{~d} y)-\int_{\mathcal{X} \times \mathcal{Y}} \psi(x, y) \mu_{0}^{n}(\mathrm{~d} x, \mathrm{~d} y) \\
&-\int_{0}^{t} \int_{\mathcal{X} \times \mathcal{Y}} \mathcal{A}\left(\mu_{s}^{n}\right) \psi(x, y) \mu_{s}^{n}(\mathrm{~d} x, \mathrm{~d} y) \mathrm{d} s=M_{n}^{\psi}(t)+\mathcal{O}(1 / n)
\end{aligned}
$$

$\square \mathbb{E}\left[\sup _{s \leq t} M_{n}^{\psi}(t)^{2}\right]=\mathcal{O}(1 / n)$ so passing to the limit

$$
\begin{aligned}
\int_{\mathcal{X} \times \mathcal{Y}} \psi(x, y) \mu_{t}(\mathrm{~d} x, \mathrm{~d} y)- & \int_{\mathcal{X} \times \mathcal{Y}} \psi(x, y) \mu_{0}(\mathrm{~d} x, \mathrm{~d} y) \\
& -\int_{0}^{t} \int_{\mathcal{X} \times \mathcal{Y}} \mathcal{A}\left(\mu_{s}\right) \psi(x, y) \mu_{s}(\mathrm{~d} x, \mathrm{~d} y) \mathrm{d} s=0
\end{aligned}
$$

- Equation has a unique solution (Banach ODE analysis).
- Processes converge to this unique solution with probability 1.

Functional Central Limit Theorem

Recall the noise Martingale

$$
M_{n}^{\psi}(t):=\frac{1}{n} \psi^{\oplus}\left(X_{n}(t)\right)-\frac{1}{n} \int_{0}^{t} A_{n} \psi^{\oplus}\left(X_{n}(s)\right) \mathrm{d} s
$$

these can be decomposed as

$$
M_{n}^{\psi}(t)=\sum_{k=1}^{T_{n}(t)} \xi_{n, k}+\mathcal{O}(1 / n)
$$

Functional Central Limit Theorem

Recall the noise Martingale

$$
M_{n}^{\psi}(t):=\frac{1}{n} \psi^{\oplus}\left(X_{n}(t)\right)-\frac{1}{n} \int_{0}^{t} A_{n} \psi^{\oplus}\left(X_{n}(s)\right) \mathrm{d} s
$$

these can be decomposed as

$$
M_{n}^{\psi}(t)=\sum_{k=1}^{T_{n}(t)} \xi_{n, k}+\mathcal{O}(1 / n)
$$

Already noted

$$
\mathbb{E}\left[\sup _{s \leq t} M_{n}^{\psi}(s)^{2}\right] \sim \mathcal{O}(1 / n)
$$

but by working a little harder

$$
n \mathbb{E}\left[M_{n}^{\psi}(t)^{2}\right]=\mathbb{E}\left[\sum_{k=1}^{T_{n}(t)}\left(\sqrt{n} \xi_{n, k}\right)^{2}\right]+\mathcal{O}(1 / \sqrt{n}) \rightarrow \int_{0}^{t} \sigma(s)^{2} \mathrm{~d} s
$$

(Note: σ is explicit and deterministic.)

Functional Central Limit Theorem

■ $\sqrt{n} M_{n}^{\psi}(t) \rightarrow B_{v(t)}$ so, informally

$$
\begin{aligned}
& \int_{\mathcal{X} \times \mathcal{Y}} \psi(x, y) \mu_{t}^{n}(\mathrm{~d} x, \mathrm{~d} y)-\int_{\mathcal{X} \times \mathcal{Y}} \psi(x, y) \mu_{0}^{n}(\mathrm{~d} x, \mathrm{~d} y) \\
&-\int_{0}^{t} \int_{\mathcal{X} \times \mathcal{Y}} \mathcal{A}\left(\mu_{s}^{n}\right) \psi(x, y) \mu_{s}^{n}(\mathrm{~d} x, \mathrm{~d} y) \mathrm{d} s \approx \sqrt{\frac{1}{n}} B_{v(t)}
\end{aligned}
$$

■ $\sqrt{n} M_{n}^{\psi}(t) \rightarrow B_{v(t)}$ so, informally

$$
\begin{aligned}
\int_{\mathcal{X} \times \mathcal{Y}} \psi(x, y) \mu_{t}^{n}(\mathrm{~d} x & , \mathrm{d} y)-\int_{\mathcal{X} \times \mathcal{Y}} \psi(x, y) \mu_{0}^{n}(\mathrm{~d} x, \mathrm{~d} y) \\
& -\int_{0}^{t} \int_{\mathcal{X} \times \mathcal{Y}} \mathcal{A}\left(\mu_{s}^{n}\right) \psi(x, y) \mu_{s}^{n}(\mathrm{~d} x, \mathrm{~d} y) \mathrm{d} s \approx \sqrt{\frac{1}{n}} B_{v(t)}
\end{aligned}
$$

- Even for large t, mistake to assume

$$
\int_{\mathcal{X} \times \mathcal{Y}} \psi(x, y) \mu_{t}^{n}(\mathrm{~d} x, \mathrm{~d} y) \approx \int_{\mathcal{X} \times \mathcal{Y}} \psi(x, y) \mu_{t}(\mathrm{~d} x, \mathrm{~d} y)+\sqrt{\frac{1}{n}} B_{v(t)}
$$

- Concentrate on large times (after burn-in) so $v(t) \propto \sigma^{2} t$.

■ Useful simulation algorithms must drift towards true solution.

- Note that

$$
\begin{aligned}
& \int_{\mathcal{X} \times \mathcal{Y}} \psi(x, y) \mu_{t}^{n}(\mathrm{~d} x, \mathrm{~d} y)-\int_{\mathcal{X} \times \mathcal{Y}} \psi(x, y) \mu_{t}(\mathrm{~d} x, \mathrm{~d} y) \\
& \approx \int_{0}^{t}\left(\int_{\mathcal{X} \times \mathcal{Y}} \mathcal{A}\left(\mu_{s}^{n}\right) \psi(x, y) \mu_{s}^{n}(\mathrm{~d} x, \mathrm{~d} y)\right. \\
& \left.\quad-\int_{\mathcal{X} \times \mathcal{Y}} \mathcal{A}\left(\mu_{s}\right) \psi(x, y) \mu_{s}(\mathrm{~d} x, \mathrm{~d} y)\right) \mathrm{d} s+\sqrt{\frac{1}{n}} B_{v(t)}
\end{aligned}
$$

- Ornstein-Uhlenbeck is a plausible model for

$$
Y_{t}=\sqrt{n}\left(\int_{\mathcal{X} \times \mathcal{Y}} \psi(x, y) \mu_{t}^{n}(\mathrm{~d} x, \mathrm{~d} y)-\int_{\mathcal{X} \times \mathcal{Y}} \psi(x, y) \mu_{0}^{n}(\mathrm{~d} x, \mathrm{~d} y)\right)
$$

which means

$$
\mathrm{d} Y_{t}=\theta\left(m-Y_{t}\right) \mathrm{d} t+\sigma \mathrm{d} W_{t}
$$

- Suppose Y is $\mathrm{O}-\mathrm{U}$, then

$$
\begin{aligned}
Y_{t_{i+1}}=Y_{t_{i}} & e^{-\theta \Delta t}+m\left(1-e^{-\theta \Delta t}\right) \\
& +\sigma \sqrt{\frac{1-e^{-2 \theta \Delta t}}{2 \theta}} Z_{i}
\end{aligned}
$$

where Z_{i} are iid $N(0,1)$.
■ Observe a functional at t_{i} with spacing Δt, call the observations $Y_{t_{i}}$

- As a concrete example: Number of particles in [0.175, 0.2]:
■ $e^{-\theta \Delta t}=0.866 \pm 0.008$
■ $m=7.76 \pm 0.56$
- Mean reversion rate seems to depend on functional.
- How good is the assumption of normally distributed noise?

Straight line shows normal distribution matching 1st and 3rd quartiles of data.

■ Recall samples Y_{i} at times $t_{i}, i=1, \ldots, i_{\text {samp }}$ with spacing Δt.

- Estimate mean as

$$
\frac{1}{n} \sum_{i=1}^{i_{\text {samp }}} Y_{i}
$$

- Simulation cost is "burn-in" $+i_{\text {samp }} \Delta t$.
- Variance of estimator is

$$
\operatorname{var}\left(\frac{1}{i_{\text {samp }}} \sum_{i=1}^{i_{\text {samp }}} Y_{i}\right)=\frac{\sigma^{2}}{2 i_{\text {samp }} \theta}\left(1+\frac{2 e^{-\theta \Delta t}}{1-e^{-\theta \Delta t}}\right)+\mathcal{O}\left(\frac{1}{i_{\text {samp }}^{2}}\right)
$$

- For fixed cost, variance is monotone decreasing in $i_{\text {samp }} \propto 1 / \Delta t$.
- Practical considerations will intervene before $i_{\text {samp }}$ gets too big / Δt too small.

Pain vs. Gain

- Appel-Bockhorn-Frenklach soot model with spherical particles.

■ Different transport models (increasing complexity)

- advection,

■ advection with thermophoresis adjustment,

- advection and diffusion.

■ Uniform spatial grid (!) Δx.

- Splitting time Δt.
- Max particles per cell n.
- Pre-calculated chemical conditions (including u) taken from an old study courtesy of Jasdeep Singh.

■ Weighted particles for performance reasons.

- Particle distribution around $x=2.0625 \times 10^{-3}$.
- Difference in M_{0} peaks shown here.
- M_{0} is the right hand end point of the curves.

- Particle distribution around
$x=6.0625 \times 10^{-3}$.
- Note change of scales from previous figure.
- Not yet able to assess statistical significance.

■ Ornstein-Uhlenbeck model for fluctuations useful.

- Decorrelation times can be estimated.
- Limited advantage when sampling already near optimal.
- Results from a wider range of sampling parameters can be interpreted.
- Open questions: Gradient flow, spectral gap, log Sobolev inequality.

