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Splitting methods for particle transport problems are
interesting tools to solve deterministic/stochastic partial
differential equations.

Reduction of computational amount (decomposition
into a deterministic and stochastic part).
Concentrating on each individual term (e.g., transport
and collision part).
Multiscale-Splitting: Decomposing to slow- and fast
time or spatial scales (dynamical view-point).
Parallelisation-Idea
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Solver-Toolbox and Idea

Splitting schemes are solver methods for deterministic
and stochastic differential equations
Main idea of the schemes: partitioning of full operators
into a quantity of simpler and faster computable
operators, e.g., partitioning into deterministic and
stochastic parts
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Numerical Challenges of Splitting schemes

Reduction of the numerical error: Each splitting method
has a numerical error (splitting error). To reduce the
error, we apply adaptivity or higher order splitting
schemes.
Conservation of the underlying physics: for example
particle transport problems need long term evolutions,
means conservation of the dynamics, e.g.,
symplecticity of the schemes
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Particle Transport: Characterizing the Model
problem

Microscopic model (each particle is treated via an
individual equation (transport and collision operators)).
Plasma simulations are done with particle transport
models, where ionized particles are transported via an
electromagnetic field and particles can be collide.

Different problems:
Forward problem: All parameters of the model-equation
(e.g. stochastic differential equation) are known, e.g.,
physical laws, heuristics etc.
Backward problem: An experimental data-set of the
particles are given and we reconstruct the parameters,
e.g., drag, diffusion, potential, etc. of the underlying
model-equation (e.g., ambit stochastics, inverse
modeling)
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Classification of Decomposition Methods based
on the Splitting Aspect

We have the three different methodological ideas:
Domain-Decomposition, i.e., Partitioning of large
spatial-domains in smaller and computable
spatial-domains, each smaller domain can be
computed parallel, e.g.,
Schwartz-Waveform-Relaxation (Relaxation-Idea)
Time-Decomposition, i.e., Partitioning of large
time-intervals in smaller and computable time-intervals,
each smaller time-intervals can be computed parallel,
e.g., Parareal-algorithm (Predictor-Corrector-Idea)
Operator-Splitting, i.e., Partitioning of the large operator
(e.g., deterministic and stochastic operator) into simpler
and smaller operators, which can be handled in
separate operator equations and can also be computed
in parallel, e.g., Splitt-up algorithms.
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Domain-Decomposition (Overlapping and
Nonoverlapping)
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Time-Decomposition (Partitioning and
Windowing of Time-Intervals)

1.) Windowing:

tn

Processor 1 Processor 2 Processor 3

t t tt t tn+4 n+7 n+11 n+15 n+19

Window 1
Window 2

Figure: Parallelization with Parareal, windowing of the parallel
process.
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Splitt-up Algorithms (Parallelisation of
Operators)

2.) Splitting-up of a full operator Afull =
∑m

i=1 Ai .
We deal with m parallel sub-problem given as:

∂c1(t)
∂t

= A1c1(t) , with c1(tn) = c(tn) , (1)

∂c2(t)
∂t

= A2c2(t) , with c2(tn) = c(tn) , (2)

... (3)
∂cm(t)
∂t

= Amcm(t) , with cm(tn) = c(tn) , (4)

and one additive step that couples the independent sub-steps:

c(tn+1) = c(tn) +
m∑

i=1

(ci (tn+1)− c(tn)), n = 1,2, . . . ,N, c(0) = c0.

The local splitting error of the parallel scheme is O(τ).
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Particle Transport Model: Langevin-like
Equations

Idea: Particle Simulation Algorithms for Coulomb-Collision
in Plasmas with Langevin equations.
Coulomb Collision Approach:

Remark

Coulomb Collisions can be approximated via defining test
and field particles. The test-particle velocity is subjected to
drag and diffusion in three velocity dimensions using
Langevin Equations, see [Cohen2010]1.

1B.I. Cohen, et al, Time-Step Considerations in Particle Simulation
Algorithms for Coulomb Collisions in Plasmas, IEEE Transactions on Plasma
Science, 38(9): 2394-2406, 2010.
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Particle Trajectories in Plasma (Work with Th. Zacher,

Humboldt University of Berlin, Germany)

Figure: Velocity v of a particle and 3D presentation of the velocity
components for one underlying particle (see [Geiser 2014,
submitted to JMAA]).
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Figure: Velocity v of a particle for one underlying particle (see
[Dimits et al 2013]).
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Introduction to the Particle Model

We deal with the Fokker-Planck-equation with collision
operator given as:

∂fα
∂t

+ v · ∂fα
∂x

+
qα
mα

(E + v× B) · ∂f
∂v

=
∂fα
∂t
|coll , (5)

where fα(x,v) is the phase-space distribution function
(density) of a charged plasma species α submitted to
electromagnetic field (E,B).
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Landau’s collision term

The Landau’s collision term is given as:

∂fα
∂t
|coll =

∂

∂v
·

π q2
α λ

∑
β

q2
β

∫
(fα

∂f ′β
∂v′ − f ′β

∂fα
∂v′ )

u2I − uu
u3

 d3v′(6)

where the sum is over the index β of the plasma
charged-particle species, qβ is the charge of species β,
fβ(x,v′), u = v− v′, u = |u| and λ is the Coulomb
logarithm.
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Langevin equation for the Coulomb scattering
test-particle problem

We apply the equation (6) with respect to a consistent
test-particle, isotropic Maxwellian-background reduction,
see [Dimits et al 2013].
We obtain the following test-particle equation:

∂ft
∂t
|coll = − ∂

∂v
(FD(v)ft ) +

∂2

∂v2 (Dv (v)ft ) (7)

+
∂

∂µ
(2Da(v)µft ) +

∂2

∂µ2 (Da(v)(1− µ2)ft ) +
∂2

∂φ2 (
Da(v)

(1− µ2)
ft )

where v is the speed, µ = cos(θ), with θ is the angle of the axial
direction and φ is the azimuthal angle
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SDE system of the Coulomb scattering
test-particle problem

The SDE system is given as:

dv(t) = FD(v)dt +
√

2Dv (v)dWv (t), (8)

dµ(t) = −2Da(v)µ dt +
√

2Da(v)(1− µ2)dWµ(t), (9)

dφ(t) =

√
Da(v)

(1− µ2)
dWφ(t). (10)
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One-dimensional Example: Decomposition
Idea

The 1D-Fokker-Planck equation with collision term is given
as

∂f
∂t

+ v
∂f
∂x
− E(x)

∂f
∂v

=
∂f
∂t
|coll (11)

∂f
∂t
|coll =

∂

∂v
(−γvf + β−1γ

∂f
∂v

), (12)

where we could decouple such a FP equation into the PIC
(particle in cell) part and the SDE part.

PIC-part

∂f
∂t

+ v
∂f
∂x
− E(x)

∂f
∂v

= 0, (13)

SDE part

∂f
∂t

=
∂

∂v
(−γvf + β−1γ

∂f
∂v

). (14)
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Then we solve the characteristics of the particles:
PIC-part

dx
dt

= v , (15)

dv
dt

= −E(x) =
∂U
∂x

, (16)

where U is the potential.
SDE part (Langevin-like equation)

dx
dt

= 0, (17)

dv = −γvdt +
√

2β−1γdW , (18)
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We apply the following nonlinear SDE problem:

dx
dt

= v , (19)

dv(t) =
∂

∂x
U(x)− γvdt +

√
2β−1γdW , (20)

where W is a Wiener process, γ is the thermostat
parameter, β the inverse Temperature.
A long solution to the SDE is distributed according to a
probability measure with density π satisfying:

π(x , v) = C−1 exp(−β(v2

2 + U(x)), (21)

where x > 0.0, v ∈ R.



Splitting
Methods

Jürgen Geiser

Motivation

Plasma
Model:
Fokker-Planck
to Langevin
Equation

Simulation
with respect to
a PIC
methods

Part 1:
Deterministic
Methods

Part 2:
Stochastic
Methods

Numerical
Examples

Conclusion

Splitting of Deterministic and Stochastic Parts

Deterministic Part (PIC-Cycle with particle motion and
electromagnetic field)
Stochastic Part (Collision: Langevin-equation)
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Standard PIC-Cycle

Decomposition to a mesh-free (equation of motion) and
mesh equation (electromagnetic field). Such a
decomposition allows to accelerate the solver-process.
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PIC-Cycle

Pusher-Part (equation of Motion)
dxp

dt
= vp,

dvp

dt
=

qs

ms
Ep(xp), (22)

Approximation particle to grid:

ρs(x , t) =
∑

p

qsNpSx (x − xp), (23)

Solver-Part

∇ · ∇U(x) = −ρs(x , t)
ε0

, (24)

∇U(x) = −E(x), (25)

Approximation grid to particle:

Ep =

∫
Sx (x − xp)E(x) dx , (26)

where Sx is a spline function.
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Introduction to Splitting Methods

We deal with semidiscretized PDE systems and assume,
that we have derived an abstract Cauchy problem:

∂c
∂t

= Ac + Bc , in Ω× (0,T ) , (27)

c(x ,0) = c0(x) , in Ω (Initial Conditions) ,

where c = (c1, . . . , cn)t and the spatial-discretized matrices
have embedded the boundary conditions.
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Decomposition-Methods (Non-iterative)

B/b1

Higher order splitting
(McLachlan (1995))

 

A−B splitting

A/a

B/b

A/a

B/b

2

2

3

3

B

A A/2

B

A−B−A splitting
(Strang Splitting(1968))

A/a1

n+1

n+1

n+1u(t     )

n n nu(t  ) u(t  )

u(t     )

u(t  )

u(t     )

Figure: Visualization of the Splitting Methods (non-iterative).
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Decomposition-Methods (iterative)

u(t  )n
m

nu   (t  ) n+1
mu   (t     )  

n+1u(t      )

0

(convergence)

Splitting
Sequential

B

A

1

2
A+B
~

~
A+B

Iterative Splitting with sufficient
iterations (e.g. m iterative steps)

u(t     )

u(t  )

u  (t     )

u  (t     )

u  (t     )

n

n+1

n+1

n+1

n+1

~ ~

Figure: Visualization of the Splitting Methods (iterative).



Splitting
Methods

Jürgen Geiser

Motivation

Plasma
Model:
Fokker-Planck
to Langevin
Equation

Simulation
with respect to
a PIC
methods

Part 1:
Deterministic
Methods

Part 2:
Stochastic
Methods

Numerical
Examples

Conclusion

Simple Results (sequential Splitting)

A-B Splitting (Lie-Trotter Splitting):

∂tc∗ = Ac∗ with c∗(tn) = cn ,

∂tc∗∗ = Bc∗∗ with c∗∗(tn) = c∗(tn+1) ,

where c(tn+1) = c∗∗(tn+1) (e.g. [Strang 68], [Karlsen et al
2001]).
The splitting error errglobal = c − cAB is is given

errglobal =
1
2
τ(BA− AB)c(tn) + O(τ2) ,

error is related to the commutator [B,A], see [Strang 68],
[Sheng1993].
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Improvements: Strang-Splitting

Strang or Strang-Marchuk-Splitting, cf. [Marchuk 68,
Strang68]

∂c∗(t)
∂t

= Ac∗(t), tn ≤ t ≤ tn+1/2, c∗(tn) = cn
sp,

∂c∗∗(t)
∂t

= Bc∗∗(t), tn ≤ t ≤ tn+1 , c∗∗(tn) = c∗(tn+1/2),

∂c∗∗∗(t)
∂t

= Ac∗∗∗(t), tn+1/2 ≤ t ≤ tn+1, c∗∗∗(tn+1/2) = c∗∗(tn+1),

where tn+1/2 = tn + 0.5τn and cn+1
sp = c∗∗∗(tn+1).

The splitting error errglobal = c − cstrang is given as

errglobal =
1

24
τ2

n ([B, [B,A]]− 2[A, [A,B]]) c(tn) + O(τ3
n ) ,

error is related to higher commutators [B, [B,A]], see
[Strang 68], [Sheng1993].
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Iterative Operator Splitting Methods (classical
version)

The Cauchy-problem (27) is solved with the following
fixpoint-scheme:

∂ci(t)
∂t

= Aci(t) + Bci−1(t), with ci(tn) = un,

∂ci+1(t)
∂t

= Aci(t) + Bci+1(t), with ci+1(tn) = un,

where i = 1,3, . . . ,2m + 1 are the iterative steps, c0(t) is
fixed function for each iteration. The splitting error is
erri = c − ci .
The splitting error of the iterative splitting is of 2m + 1 order,
i.e. O(τ2m+1), with

||err2m+1|| = Kmτ
2m
n ||err0||+ +O(τ2m+1

n ) , (28)

where Km = ||Bm||||Am|| (higher order matrix polynomials).
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Extension to Splitting Schemes with
Deterministic and Stochastic Parts

We discuss some extension to non-iterative splitting
schemes.

Based on 3 Steps

(Second order)
Based on 2 Steps

(First Order)

Analytical solution

of the parts

 

 

Some extensions to non−iterative splitting methods

Non−Iterative Splitting Method

   Splitting
Lie−Trotter Splitting

(AB splitting)

Strang

Ninomiya−Victoir Splitting
Splitt the

equations

n−simpler

equations

with determ.

and stoch. part

deterministic

and stochastic

parts

Option−Pricing, multiple
Reaction equation,

Simple 

decomposition

of determ. and

stoch. part

n−simpler

equation parts

with different

reactive parts

(scales are in reaction parts)

stochastic parameters

(scales are in the stoch.

part)

Code coupling,

e.g. deterministic and

stoch. Code

Figure: Some extension to the non-iterative splitting schemes.
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Extension to Iterative Splitting Schemes

We discuss some extension to iterative splitting schemes.

 

 

Iterative Splitting Method

Some extensions to iterative splitting methods

(applied for SDE systems)

Waveform−Relaxation 

   methods

Successive approximation

methods

Decomposition into 

Linear Equation systems

solved by Jacobian and Gauss−Seidel method

Decomposition into subproblems 

solved with semi−analytical or analytical

method

Figure: Some extension to the iterative splitting schemes.
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Iterative Splitting Methods for SDE

We propose the following iterative algorithm with step-size
τ . For the time-interval [tn, tn+1], we solve the following
sub-problems for i = 1,3, . . .2m + 1:

dci(t) = Aci(t)dt + Bci−1dWt (t), with ci(tn) = cn (29)
and ci(tn) = cn , c0 = 0.0,
dci+1(t) = Aci(t) dt + Bci+1(t) dWt , (30)
with ci+1(tn) = cn ,

where cn is the known split approximation at the time-level
t = tn. The split approximation at the time-level t = tn+1 is
defined as cn+1 = c2m+2(tn+1). Furthermore, W is a Wiener
process [Kloeden 1992].
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We can rewrite this into the form of the following ordinary
differential equation (ODE):

∂ci(t)
∂t

= Aci(t) + Bci−1Ẇt , with ci(tn) = cn (31)

and ci(tn) = cn , c0 = 0.0,
∂ci+1(t)
∂t

= Aci(t) + Bci+1(t) Ẇt , (32)

with ci+1(tn) = cn ,

where Ẇt = dWt
dt .
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Convergence Results

We present the results of the consistency of our iterative method
extended to stochastic operators, see [Geiser 2013].

Theorem

Let us consider the abstract Cauchy problem in a Banach space X

dc(t) = Ac(t)dt + Bc(t)dWt , t ∈ [0,T ], c(0) = c0, (33)

where A,B :X→ X are given linear operators in a Banach-space
and c0 ∈ X is a given element.
The iterative operator splitting method has the following splitting
error:

||(Si − exp(Aτ + BWτ )|| ≤ Cτ
i+1

2 , (34)

where Si is the approximated solution for the i-th iterative step
and C is a constant that can be chosen uniformly on bounded
time intervals.
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Proof.

The iterative steps are given in the following. For the first
iterations, we have:

dc1(t) = Ac1(t)dt + BdWtc0(t), t ∈ (0, τ ], (35)

where we have the solution given as:

c1(τ) = exp(Aτ)c(tn) +

∫ tn+1

tn
exp(A(tn+1 − s))Bc0(s)dWs, (36)

= (I + Aτ + BWτ +
1
2

BBtW 2
τ −

1
2

BBtτ)c(0) +O(τ3/2), (37)

c0(t) = exp(BWt )c(0)
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Proof.

The consistency is given as:
For e1, we have:

c1(t) = (I + At + BWt +
1
2

BBtW 2
t −

1
2

BBt t)c(tn) +O(t3/2)),(38)

c(t) = exp((A− BBt/2)t + BWt )c(0)

= (I + At + BWt +
1
2

BBtW 2
t −

1
2

BBt t)c(0) +O(t3/2)),(39)

We obtain:

||e1|| = ||c − c1|| ≤ ||O(t3/2).
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The same idea is done for the second iteration and we
obtain:
We obtain:

||e2|| = ||c − c2|| ≤ O(t2).

With the next iterative step i = 3, we gain 1
2B3tWt and we

obtain a full second order scheme.
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Drawback and Problems to overcome with
Iterative Splitting Schemes

One have to compute exp-matrices and exp-integrals
For higher order schemes we have to apply double
stochastic integrals as:

c2(τ) = exp(Aτ)c(tn)

+

∫ tn+1

tn
exp(A(tn+1 − s))B exp(As)dWs

+

∫ tn+1

tn
exp(A(tn+1 − s))B

∫ s

tn
exp(A(s − s1))B exp(As)dWs1dWs

For systems of SDE’s we have to deal with the iterative
Taylor-Expansion of the stochastic terms and obtain
double area integrals, e.g.

Aij =

∫ tn+1

tn

(∫ s

tn
dWi (s1)

)
dWj (s).
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Non-iterative Splitting Method for SDE

We deal with the following equations:

dX
dt

= V , (40)

dV = −E(x)dt − AVdt + BdW , (41)
with X (0) = X0, V (0) = V0 ,

where W is a Wiener process with the N(0,
√

∆t)
distributed.
We rewrite to a linear operator and a nonlinear and
stochastic operator.(
dX
dV

)
=

(
V
0

)
dt︸ ︷︷ ︸

X

+

(
0

−E(X )

)
dt︸ ︷︷ ︸

Y

+

(
0

−AVdt + BdW

)
︸ ︷︷ ︸

Z

.
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Means we can decouple into 3 different parts of the
evolution operator:

P∆t = exp(∆tZ ) exp(∆tY ) exp(∆tX ) (42)

Means, we decouple into two deterministic and stochastic
operators.
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Example

We could decouple into three pieces, while each piece
could be solved independently. We assume to related the
stochastic term to the Ornstein-Uhlenbeck equation and
solve it exactly, if we deal with scalar parameters, i.e.,
A = a,B = b:

Ṽ (tn+1) = V (tn)− E(X (tn))∆t , (43)

X (tn+1) = X (tn) + Ṽ (tn+1)∆t , (44)

V (tn+1) = exp(−a ∆t)Ṽ (tn+1) +
b√
2a

√
1− exp(−2a ∆t)Rn, (45)

where Rn ≈ N(0,1) is a Gaussian distributed random variable.
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Improved Splitting Schemes

Numerical Improvements
In the numerical viewpoint, we have the following two
improvements for the schemes:

Higher accuracy of the scheme, means we reduce the
numerical error, e.g. Störmer-Verlet scheme is of
second order accuracy
Conservation of the long term evolution of dynamical
systems (symplecticity)
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Example: Improved AB-splitting scheme:
Predictor-Correct Idea

In the following, we present an semi-implicit AB-scheme,
which is related to the deterministic symplectic
Störmer-Verlet methods, see [Hairer2003].
We deal with the following approach:

X1(tn+1) = X (tn) +

∫ tn+1

tn
V (s) ds, (46)

V1(tn+1) = E(t)V (tn) +

∫ tn+1

tn
E(tn+1 − s)B dWs (47)

V2(tn+1) = V1(tn+1) +

∫ tn+1

tn
(−E(X1(s))) ds, (48)

X2(tn+1) = X (tn) +

∫ tn+1

tn
V2(s) ds, (49)

where E(∆t) = exp(−A∆t).
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The forth step of the algorithm improves the method to
a semi-implicit Euler which is a symplectic ABA-splitting
(related to a Störmer-Verlet method).
The idea is based on the midpoint-scheme, which
allows to conserve the long term stability (symplectic
scheme).
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Application of the predictor-corrector scheme

Example

We deal with the first order approximation and we have:

X (tn+1) = X (tn) + ∆t V (tn), (50)
V (tn+1) = V (tn)−∆t E(X (tn))−∆t AV (tn) + B∆W , (51)

X (tn+1) = X (tn) + ∆t V (tn+1), (52)

where ∆W = W (tn+1)−W (tn) = rand
√

∆t and rand is the
Gaussian normal distribution N(0,1).
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Proof of the Symplecticity of the Numerical
Scheme

Theorem

The predictor-corrector AB splitting scheme is symplectic,
means:

dxn+1 ∧ dyn+1 = dxn ∧ dyn. (53)

Means determinant of the solution operator is given as
Det(SPC−AB) = 1.
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Proof.

The predictor-corrector Euler-Maruyama scheme is given
as:

x(tn+1) = x(tn) + ∆t y(tn), (54)
y(tn+1) = y(tn)−∆t x(tn) + σ∆W , (55)
x(tn+1) = x(tn) + ∆t y(tn+1), (56)

and we have:

x(tn+1) = (1− (∆t)2)x(tn) + ∆t y(tn) + ∆tσ∆W ,(57)
y(tn+1) = y(tn)−∆t x(tn) + σ∆W . (58)
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Proof.

and the algorithm is given as:(
x(tn+1)
y(tn+1)

)
=

(
(1− (∆t)2) ∆t
−∆t 1

)(
x(tn)
y(tn)

)
+

(
rn
sn

)
∆W ,

where an = (1−∆t2),bn = ∆t , cn = −∆t ,dn = 1 and
rn = ∆tσ, sn = σ.
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Proof.

Based on the symplecticity, we have:

dxn+1 ∧ dyn+1 = (andn − bncn)dxn ∧ dyn (59)
dxn+1 ∧ dyn+1 = ((1− (∆t)2)− (∆t)2)xn ∧ dyn (60)

dxn+1 ∧ dyn+1 = xn ∧ dyn (61)
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Benefits of Non-Iterative Splitting Methods

The non-iterative or operator splitting scheme have the
following benefits

the deterministic and stochastic operators can be fully
decoupled, means we can solve them independently;
we have a modular behavior, means we add new
operators without recoding, e.g. ABCD etc.
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Drawbacks of Non-Iterative Splitting Methods

The traditional splitting scheme have the following problems:

for non-commuting operators we may have a very large
constant in the local splitting error which requires the
use of unrealistically small splitting time step;
within a full splitting step in one sub-interval the inner
values aren’t approximate to the solution of the original
problem;
splitting the original problem into the different
sub-problems with one operator (i.e. neglect the other
components) is physically questionable, e.g.,
nonlinearities.
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Coulomb test-particle problem (Work with Th.
Zacher)

A coulomb test particle is described with the following
Langevin equation (nonlinear SDE problem):

dv(t) = Fd (v)dt +
√

2Dv (v)dWv (t), (62)

dµ(t) = −2Da(v)µdt +
√

2Da(v)(1− µ2)dWµ(t), (63)

dφ(t) =

√
2Da(v)

(1− µ2)
dWφ(t), (64)
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where the functions and derivatives of the convection and
diffusion operators are given as:

Dv (v) = 1
2

1
v+1 ,

∂Dv

∂v
= −1

2
(v + 1)−2, (65)

Fd (v) = −1
2

1
v+1 ,

∂Fd

∂v
=

1
2

(v + 1)−2, (66)

Da(v) = 1
2

1
v+1 ,

∂Da

∂v
= −1

2
(v + 1)−2, (67)

where we assume, that the initial condition are given as
v0 = 1.0, µ0 = 1.0, φ0 = 1.0.
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The notation of the equation in vectorial form is given as:

dv(t) = a(v)dt + B(v)dWv(t), (68)

where v(t) = (v , µ, φ)t and the vectors and matrix is given
as

a(v) =

 Fd (v)
−2Da(v)µ

0

 ,dWv =

 dWv
dWµ

dWφ

 , (69)

B(v) =


√

2Dv (v) 0 0
0

√
2Da(v)(1− µ2) 0

0 0
√

2Da(v)
(1−µ2)

 ,(70)
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Standard Euler-Maruyama scheme

1.) Standard Euler-Maruyama scheme is given as:

vn+1 = vn + F (vn)∆t +
√

2D(vn)∆Wv , (71)

µn+1 = µn − 2Da(vn)µn∆t +
√

2Da(vn)(1− µ2
n)∆Wµ, (72)

φn+1 = φn +

√
2Da(vn)

(1− µ2
n)

∆Wφ, (73)

for n = 0,1, . . . ,N − 1, v0 = v(0), µ0 = µ(0), φ0 = φ(0),
∆t = tn+1 − tn, ∆Wi = Wi,tn+1 −Wi,tn =

√
∆tNi(0,1), where

Ni(0,1) = rand , i = {v , µ, φ} are three independent
normally distributed random variable.
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Iterative splitting scheme: Fixpoint Idea

Relaxation of the nonlinear part is applied as:

dvi+1(t) = Â(vi)vi+1dt + B(vi)dW(t), (74)

with the solution vector vi(t) = (vi(t), µi(t), φi(t))t .

Â(vi) =


Fv (vi )

vi
0 0

0 −2Da(vi) 0

0 0 0

 , (75)

Then the fixpoint scheme is given as:

vi+1(tn+1) = exp(Â(vi(tn+1))∆t) v(tn)

+

∫ tn+1

tn
exp(Â(vi(tn+1)) (tn+1 − s) B(vi(s))dWv(s). (76)
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Fixpoint iterative version with Taylor expansion
of the nonlinear part

dvi+1(t) = ã(v(tn))dt + A(v(tn))vi+1dt
+B(vi)dW(t), (77)

where we have vi = (vi , µi , φi)
t is the solution vector in the

i-th version, ã is the vector and A(tn) the Jacobian matrix
coming from the linearization, and
dW(t) = (dWv (t),dWµ(t),dWφ(t))t is a 3-dim
Wiener-process. We apply the linearization of the
convective part, where the matrices are given as:

a(v) = a(v(tn)) + J(v)|tn (v− v(tn)), (78)

=

(
a(v(tn))− J(v)|tnv(tn)

)
+ J(v)|tnv, (79)

= ã(v(tn)) + J(v)|tnv. (80)
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The fixpoint scheme is given as:

vi+1(tn+1) = exp(A(v(tn))∆t)

(
v(tn)

+A(v(tn))−1(I − exp(A(v(tn))∆t)) ã(tn)

)

+

∫ ∆tn+1

tn
exp(A(v(tn))(tn+1 − s))B(vi)(s)dWv(s)

)
.
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We apply the following errors:
Strong Convergence:

errv ,∆t ,t=1 = ||v∆t ,Scheme(t = 1)− v∆tfine,Mil(t = 1)||, (81)

Weak Convergence:

errv ,∆t ,t=1,weak =
1
N

N∑
i=1

erri,v ,∆t ,t=1, (82)

where erri,v ,∆t ,t=1 are i = 1, . . . ,N independent errors
of the solution v .
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Results of the different Schemes
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Particle Trajectories in Plasma

Figure: Velocity v of a particle and 3D presentation of the velocity
components for one underlying particle (see [Geiser 2014,
submitted to JMAA]).
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Particle transport: Impact Oscillator (Work with
Th. Zacher)

We deal with the following nonlinear SDE problem (applied
in the particle transport models):

dx
dt

= v , (83)

dv(t) =
∂

∂x
U(x)− γvdt +

√
2β−1γdW , (84)

where W is a Wiener process, γ is the thermostat
parameter, β the inverse Temperature.
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A long solution to the SDE is distributed according to a
probability measure with density π satisfying:

π(x , v) = C−1 exp(−β(v2

2 + U(x)), (85)

where x > 0.0, v ∈ R.
We test the following methods:

Verlet
Semi-analytical method,
AB splitting and improved AB splitting method,
Euler-Maruyama scheme and improved EM scheme,
Milstein scheme.
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We deal with the impact oscillator
U(x) = 1

x2 + x2,E(x) = 2 1
x3 − 2x . The equilibrium

distribution of the impact oscillator is given as:

π(β, x , v) = exp(−β(
v2

2
) + U(x)), (86)

where β = 3.2 and U(x) = 1
x2 + x2.
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The distribution of the impact oscillator is given as
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Figure: The distribution of the impact oscillator U(x) = 1
x2 + x2

with β = 3.2, where A = 0.1,B = 0.25.
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Numerical results of the different schemes

Figure: We apply U(x) = 1
x2 + x2,E(x) = 2 1

x3 − 2x and the
starting points (x , v)t = (1.0,1.0)t . The figures present the
contours of the Hamiltonian with the Verlet-algorithm (left figure)
and the analytical-algorithm (right figure).
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Numerical results of the different schemes
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Figure: We apply U(x) = 1
x2 + x2,E(x) = 2 1

x3 − 2x and the
starting points (x , v)t = (1.0,1.0)t . The figures presents the x
(left) and v (right) solutions of the Verlet algorithm, where
A = 0.1,B = 0.25.
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Remark

The optimal method is the predictor-corrector AB splitting
method, which combines higher order and symplecticity.
The other methods have drawback in controlling the
singularity in a long term evolution.
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Conclusions

Conclusion

1) Splitting scheme can be extended to stochastic
differential equations.

2) The convergence order of the stochastic splitting
schemes is lower than the deterministic splitting (e.g.
O(∆t)→ O(

√
∆t).

3) Iterative splitting schemes can gain a higher order
accuracy as the non-iterative splitting schemes.

4) Non-iterative splitting schemes are simpler to
implement.
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Future Works

Outview

1) Numerical analysis of the novel splitting schemes.
2) Combination with alternative schemes, e.g., Metropolis

Monte Carlo schemes.
3) Combination of non-iterative and iterative splitting

schemes.
4) Real-life applications in Coulomb-Collisions.
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