Stochastic processes for symmetric space-time fractional diffusion

Gianni PAGNINI IKERBASQUE Research Fellow BCAM - Basque Center for Applied Mathematics Bilbao, Basque Country - Spain gpagnini@bcamath.org

イロト イポト イヨト イヨト

Main Goal of the Research

Classical/normal diffusion is described by a Gaussian process.

- Diffusion/Brownian motion

Is it possible to describe **anomalous diffusion/fractional diffusion** with a stochastic process that is still based on a Gaussian process?

- Time-fractional diffusion/grey Brownian motion (Schneider 1990, 1992)
- Erdélyi–Kober fractional diffusion/generalized grey Brownian motion (Mura 2008, Pagnini 2012)
- Space-time fractional diffusion/present stochastic process

The Space-Time Fractional Diffusion Equation

$${}_{x}\mathcal{D}^{\alpha}_{\theta}\,\mathcal{K}^{\theta}_{\alpha,\beta}(x;t) = {}_{t}\mathcal{D}^{\beta}_{*}\,\mathcal{K}^{\theta}_{\alpha,\beta}(x;t)\,,\quad \mathcal{K}^{\theta}_{\alpha,\beta}(x;0) = \delta(x)\,,$$
 (1)

$$0 < \alpha \le 2, \quad |\theta| \le \min\{\alpha, 2 - \alpha\},$$
 (2a)

$$\mathbf{0} < \beta \le \mathbf{1}$$
 or $\mathbf{1} < \beta \le \alpha \le \mathbf{2}$. (2b)

 $_{x}\mathcal{D}_{\theta}^{\alpha}$: Riesz–Feller space-fractional derivative

$$\mathcal{F}\left\{{}_{x}\mathcal{D}^{\alpha}_{\theta}f(x);\kappa\right\} = -|\kappa|^{\alpha}\,\mathrm{e}^{i(\mathrm{sign}\,\kappa)\theta\pi/2}\,\widehat{f}(\kappa)\,. \tag{3}$$

 ${}_{t}\mathcal{D}_{*}^{\beta}$: Caputo time-fractional derivative

$$\mathcal{L}\left\{{}_{t}\mathcal{D}_{*}^{\beta}f(t);s\right\} = s^{\beta}\widetilde{f}(s) - \sum_{j=0}^{m-1}s^{\beta-1-k}f^{(j)}(0^{+}), \qquad (4)$$

with $m - 1 < \beta \leq m$ and $m \in N$.

The Green Function $K^{\theta}_{\alpha,\beta}(x;t)$ Self-similarly law

$$\mathcal{K}^{\theta}_{\alpha,\beta}(x;t) = t^{-\beta/\alpha} \, \mathcal{K}^{\theta}_{\alpha,\beta}\left(\frac{x}{t^{\beta/\alpha}}\right) \,. \tag{5}$$

Symmetry relation

$$K^{\theta}_{\alpha,\beta}(-x;t) = K^{-\theta}_{\alpha,\beta}(x;t), \qquad (6)$$

which allows the restriction to $x \ge 0$.

Mellin–Barnes integral representation

$$\mathcal{K}^{\theta}_{\alpha,\beta}(x;t) = \frac{1}{\alpha x} \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{\Gamma(\frac{q}{\alpha})\Gamma(1-\frac{q}{\alpha})\Gamma(1-q)}{\Gamma(1-\frac{\beta}{\alpha}q)\Gamma(\rho q)\Gamma(1-\rho q)} \left(\frac{x}{t^{\beta/\alpha}}\right)^{q} dq, (7)$$

where $\rho = (\alpha - \theta)/(2\alpha)$ and *c* is a suitable real constant.

Mainardi, Luchko, Pagnini Fract. Calc. Appl. Anal. 2001

Special Cases: x > 0

$$K_{2,1}^{0}(x;t) = \frac{1}{\sqrt{4\pi t}} e^{-x^2/(4t)} = G(x;t) = t^{-1/2} G\left(\frac{x}{t^{1/2}}\right),$$
 (8)

$$\mathcal{K}^{\theta}_{\alpha,1}(x;t) = \mathcal{L}^{\theta}_{\alpha}(x;t) = t^{-1/\alpha} \mathcal{L}^{\theta}_{\alpha}\left(\frac{x}{t^{1/\alpha}}\right) \,, \tag{9}$$

$$\mathcal{K}_{2,\beta}^{0}(x;t) = \frac{1}{2} M_{\beta/2}(x;t) = \frac{1}{2} t^{-\beta/2} M_{\beta/2} \left(\frac{x}{t^{\beta/2}}\right) , \qquad (10)$$

$$\mathcal{K}^{\theta}_{\alpha,\alpha}(x;t) = \frac{t^{-1}}{\pi} \frac{(x/t)^{\alpha-1} \sin[\frac{\pi}{2}(\alpha-\theta)]}{1+2(x/t)^{\alpha} \cos[\frac{\pi}{2}(\alpha-\theta)] + (x/t)^{2\alpha}}, \quad (11)$$

$$\mathcal{K}^{0}_{2,2}(x;t) = \frac{1}{2}\delta(x-t). \quad (12)$$

Integral Representation Formulae for $K^{\theta}_{\alpha,\beta}(x; t)$ If x > 0 then

$$\mathcal{K}^{\theta}_{\alpha,\beta}(\boldsymbol{x};t) = \int_{0}^{\infty} L^{\theta}_{\alpha}(\boldsymbol{x};\tau) L^{-\beta}_{\beta}(t;\tau) \frac{t}{\tau\beta} \, d\tau \,, \quad 0 < \beta \leq 1 \,, \quad (13)$$

$$\mathcal{K}^{\theta}_{\alpha,\beta}(x;t) = \int_0^\infty L^{\theta}_{\alpha}(x;\tau) \, \mathcal{M}_{\beta}(\tau;t) \, d\tau \,, \quad 0 < \beta \le 1 \,, \qquad (14)$$

$$\mathcal{K}^{\theta}_{\alpha,\beta}(\boldsymbol{x};t) = \int_{0}^{\infty} \mathcal{K}^{\theta}_{\alpha,\alpha}(\boldsymbol{x};\tau) \, \boldsymbol{M}_{\beta/\alpha}(\tau;t) \, \boldsymbol{d}\tau \,, \quad 0 < \beta/\alpha \leq 1 \,. \tag{15}$$

Mainardi, Luchko, Pagnini Fract. Calc. Appl. Anal. 2001

Supplementary Results

From formulae (13) and (14) it follows that

$$\frac{1}{\tau^{1/\beta}} L_{\beta}^{-\beta} \left(\frac{t}{\tau^{1/\beta}} \right) = \frac{\tau \beta}{t^{1+\beta}} M_{\beta} \left(\frac{\tau}{t^{\beta}} \right), \quad 0 < \beta \le 1, \quad \tau, t > 0.$$
(16)

From formulae (8) and (9)

$$K_{2,1}^0(x;t) = G(x;t) = L_2^0(x;t).$$
 (17)

From formulae (8) and (10)

$$K_{2,1}^{0}(x;t) = G(x;t) = \frac{1}{2}M_{1/2}(x;t).$$
 (18)

Supplementary Results

$$\begin{aligned} \mathcal{L}^{\theta}_{\alpha}(\boldsymbol{x};t) &= \int_{0}^{\infty} \mathcal{L}^{\omega}_{\eta}(\boldsymbol{x};\xi) \mathcal{L}^{-\nu}_{\nu}(\xi;t) \, d\xi \,, \quad \alpha = \eta \nu \,, \quad \theta = \omega \nu \,, \quad \text{(19)} \\ 0 &< \alpha \leq 2 \,, \quad |\theta| \leq \min\{\alpha, 2 - \alpha\} \,, \\ 0 &< \eta \leq 2 \,, \quad |\omega| \leq \min\{\eta, 2 - \eta\} \,, \quad 0 < \nu \leq 1 \,. \end{aligned}$$

In particular it holds

$$L^{0}_{\alpha}(x;t) = \int_{0}^{\infty} L^{0}_{2}(x;\xi) L^{-\alpha/2}_{\alpha/2}(\xi;t) d\xi \qquad (20)$$

=
$$\int_{0}^{\infty} G(x;\xi) L^{-\alpha/2}_{\alpha/2}(\xi;t) d\xi . \qquad (21)$$

Mainardi, Pagnini, Gorenflo Fract. Calc. Appl. Anal. 2003

Supplementary Results

$$M_{\nu}(\boldsymbol{x};t) = \int_{0}^{\infty} M_{\eta}(\boldsymbol{x};\xi) M_{\beta}(\xi;t) \, d\xi \,, \quad \nu = \eta\beta \,, \qquad (22)$$
$$0 < \nu, \eta, \beta \leq 1 \,.$$

In particular it holds

$$M_{\beta/2}(x;t) = 2 \int_0^\infty M_{1/2}(x;\xi) M_{\beta}(\xi;t) d\xi \qquad (23)$$

= $2 \int_0^\infty G(x;\xi) M_{\beta}(\xi;t) d\xi. \qquad (24)$

Mainardi, Pagnini, Gorenflo Fract. Calc. Appl. Anal. 2003

New Integral Representation Formula for $K^{\theta}_{\alpha,\beta}(x;t)$

Consider formula (14), i.e. $K_{\alpha,\beta}^{\theta}(x;t) = \int_{0}^{\infty} L_{\alpha}^{\theta}(x;\tau) M_{\beta}(\tau;t) d\tau$, then and by using (19) it follows

$$\begin{split} \mathcal{K}^{\theta}_{\alpha,\beta}(x;t) &= \int_{0}^{\infty} \left\{ \int_{0}^{\infty} L^{\omega}_{\eta}(x;\xi) L^{-\nu}_{\nu}(\xi;t) \, d\xi \right\} \, \mathcal{M}_{\beta}(\tau,t) \, d\tau \\ &= \int_{0}^{\infty} L^{\omega}_{\eta}(x;\xi) \left\{ \int_{0}^{\infty} L^{-\nu}_{\nu}(\xi;t) \mathcal{M}_{\beta}(\tau;t) \, d\tau \right\} \, d\xi \\ &= \int_{0}^{\infty} L^{\omega}_{\eta}(x;\xi) \, \mathcal{K}^{-\nu}_{\nu,\beta}(\xi;t) \, d\xi \,, \quad \alpha = \eta \nu \,, \quad \theta = \omega \nu \,, \\ \mathbf{0} < \alpha \leq \mathbf{2} \,, \quad |\theta| \leq \min\{\alpha, \mathbf{2} - \alpha\} \,, \quad \mathbf{0} < \beta \leq \mathbf{1} \,, \end{split}$$

$$\mathbf{0} < \eta \leq \mathbf{2}\,, \quad |\omega| \leq \min\{\eta, \mathbf{2} - \eta\}\,, \quad \mathbf{0} < \nu \leq \mathbf{1}\,.$$

New Integral Representation Formula for $K^{\theta}_{\alpha,\beta}(x;t)$

$$\mathcal{K}^{\theta}_{\alpha,\beta}(\boldsymbol{x};t) = \int_{0}^{\infty} L^{\omega}_{\eta}(\boldsymbol{x};\xi) \, \mathcal{K}^{-\nu}_{\nu,\beta}(\xi;t) \, d\xi \,, \tag{25}$$

$$\begin{aligned} \mathbf{0} < \mathbf{x} < +\infty, \quad \alpha = \eta \nu, \quad \theta = \omega \nu, \\ \mathbf{0} < \alpha \leq \mathbf{2}, \quad |\theta| \leq \min\{\alpha, \mathbf{2} - \alpha\}, \quad \mathbf{0} < \beta \leq \mathbf{1}, \\ \mathbf{0} < \eta \leq \mathbf{2}, \quad |\omega| \leq \min\{\eta, \mathbf{2} - \eta\}, \quad \mathbf{0} < \nu \leq \mathbf{1}. \end{aligned}$$

In the spatial symmetric case, i.e. $\eta = 2$ and $\omega = 0$ such that $L_2^0 \equiv G$, hence $\nu = \alpha/2$ and $\theta = 0$ and formula (25) gives

$$\mathcal{K}^{0}_{\alpha,\beta}(x;t) = \int_{0}^{\infty} G(x;\xi) \, \mathcal{K}^{-\alpha/2}_{\alpha/2,\beta}(\xi;t) \, d\xi \,. \tag{26}$$

$$-\infty < \mathbf{x} < +\infty$$
, $\mathbf{0} < \alpha \leq \mathbf{2}$, $\mathbf{0} < \beta \leq \mathbf{1}$.

Special Cases: $\alpha = 2$ and $0 < \beta \leq 1$

From (14) it results that

$$\begin{aligned} \mathcal{K}_{1,\beta}^{-1}(\xi;t) &= \int_{0}^{\infty} L_{1}^{-1}(\xi;\tau) \, M_{\beta}(\tau;t) \, d\tau \\ &= \int_{0}^{\infty} \delta(\xi-\tau) \, M_{\beta}(\tau;t) \, d\tau = M_{\beta}(\xi;t) \,, \end{aligned}$$
 (27)

finally by using (24)

$$\begin{aligned} \mathcal{K}_{2,\beta}^{0}(x;t) &= \int_{0}^{\infty} G(x;\xi) \, \mathcal{K}_{1,\beta}^{-1}(\xi;t) \, d\xi \\ &= \int_{0}^{\infty} G(x;\xi) \, \mathcal{M}_{\beta} \, d\xi = \frac{1}{2} \mathcal{M}_{\beta/2}(x;t) \,. \end{aligned} \tag{28}$$

Special Cases: $0 < \alpha \le 2$ and $\beta = 1$

From (14) it results that

$$\begin{aligned} \mathcal{K}_{\alpha/2,1}^{-\alpha/2}(\xi;t) &= \int_0^\infty L_{\alpha/2}^{-\alpha/2}(\xi;\tau) \, M_1(\tau;t) \, d\tau \\ &= \int_0^\infty L_{\alpha/2}^{-\alpha/2}(\xi;\tau) \, \delta(\tau-t) \, d\tau = L_{\alpha/2}^{-\alpha/2}(\xi;t) \,, \end{aligned} \tag{30}$$

finally by using (21)

Definitions in Stochastic Process Theory

Stationary stochastic processes: A stochastic process X(t) whose one-time statistical characteristics do not change in the course of time t, i.e. they are invariant relative to the time shifting $t \rightarrow t + \tau$ for any fixed value of τ , and two-time statistics (e.g. autocorrelation) depend solely on the elapsed time τ ,

$$\langle X(t)^n \rangle = \langle X^n(t+\tau) \rangle = C_n, \quad \langle X(t)X(t+\tau) \rangle = R(\tau).$$
 (33)

Definitions in Stochastic Process Theory

Stochastic processes with stationary increments: A

stochastic process X(t) such that the statistical characteristics of its increments $\Delta X(t) = X(t) - X(t + \tau)$ do not vary in the course of time *t*, i.e. they are invariant relative to the time shifting $t \to t + s$ for any fixed value of *s*,

$$\langle \Delta X(t) \rangle = 0, \quad \langle (\Delta X(t))^2 \rangle = 2 \left[C_2 - R(\tau) \right].$$
 (34)

Because $R(\tau = 0) = C_2$, when $R(\tau \neq 0) \simeq C_2 - \tau^{2H}$ it holds

$$\langle (\Delta X(t))^2 \rangle = 2 [C_2 - C_2 + \tau^{2H}] = 2 \tau^{2H}.$$
 (35)

Definitions in Stochastic Process Theory

Self-similar stochastic process: A stochastic process X(t) whose statistics are the same at different scales of time or space, i.e. X(at) and $a^{H}X(t)$ have equal statistical moments

$$\langle X^n(at) \rangle \simeq (at)^{nH} = a^{nH} t^{nH},$$
 (36)

$$\langle [a^H X(t)]^n \rangle \simeq a^{nH} \langle X^n(t) \rangle = a^{nH} t^{nH}$$
. (37)

Hurst exponent *H*: The half exponent of the power law governing the rate of changes of a random function by

$$\langle [X(t) - X(0)]^2 \rangle \simeq t^{2H}.$$
(38)

H-sssi: Hurst self-similar with stationary increments processes

Example: The fractional Brownian motion, which is a continuos-time Gaussian process $G_{2H}(t)$ without independent increments and the following correlation function

$$\langle G_{2H}(t)G_{2H}(s)\rangle = \frac{1}{2}\left[|t|^{2H} + |s|^{2H} - |t-s|^{2H}\right].$$
 (39)

Product of Random Variables

Let Z_1 and Z_2 be two real independent random variables whose PDFs are $p_1(z_1)$ and $p_2(z_2)$, respectively, with $z_1 \in R$ and $z_2 \in R^+$. Then, the joint PDF is $p(z_1, z_2) = p_1(z_1)p_2(z_2)$.

Let $Z = Z_1 Z_2^{\gamma}$ so that $z = z_1 z_2^{\gamma}$, then, carrying out the variable transformations $z_1 = z/\lambda^{\gamma}$ and $z_2 = \lambda$, it follows that $p(z, \lambda) dz d\lambda = p_1(z/\lambda^{\gamma})p_2(\lambda) J dz d\lambda$, where $J = 1/\lambda^{\gamma}$ is the Jacobian of the transformation.

Integrating in $d\lambda$, the PDF of Z emerges to be

$$p(z) = \int_0^\infty p_1\left(\frac{z}{\lambda^{\gamma}}\right) p_2(\lambda) \frac{d\lambda}{\lambda^{\gamma}}.$$
 (40)

Product of Random Variables

Hence by applying the changes of variable $z = xt^{-\gamma\Omega}$ and $\lambda = \tau t^{-\Omega}$, integral formula (40) becomes

$$t^{-\gamma\Omega}\rho\left(\frac{x}{t^{\gamma\Omega}}\right) = \int_0^\infty \tau^{-\gamma}\rho_1\left(\frac{x}{\tau^{\gamma}}\right)t^{-\Omega}\rho_2\left(\frac{\tau}{t^{\Omega}}\right)\,d\tau\,. \tag{41}$$

By setting

$$p_1 \equiv G, \quad p_2 \equiv K_{\alpha/2,\beta}^{-\alpha/2},$$
(42)

$$\gamma = 1/2, \quad \Omega = 2\beta/\alpha,$$
 (43)

formula (41) turns out to be identical to (26), i.e.

$$p(x;t) = \int_0^\infty G(x;\tau) \, K_{lpha/2,eta}^{-lpha/2}(\tau;t) \, d au \, ,$$

hence

$$p(x;t) \equiv \mathcal{K}^{0}_{\alpha,\beta}(x;t) \,. \tag{44}$$

Product of Random Variables

In terms of random variables it follows that

$$Z = X t^{-\beta/\alpha}$$
 and $Z = Z_1 Z_2^{1/2}$, (45)

hence it holds

$$X = Z t^{\beta/\alpha} = Z_1 t^{\beta/\alpha} Z_2^{1/2} = G_{2\beta/\alpha}(t) \sqrt{\Lambda_{\alpha/2,\beta}}.$$
 (46)

Since the random variable Z_1 is Gaussian, i.e., $p_1 \equiv G$, the stochastic process $G_{2\beta/\alpha}(t) = Z_1 t^{\beta/\alpha}$ is a standard fBm with Hurst exponent $\beta/\alpha < 1$.

The random variable $\Lambda_{\alpha/2,\beta} = Z_2$ emerges to be distributed according to $p_2 \equiv K_{\alpha/2,\beta}^{-\alpha/2}$.

H-sssi Processes

Following the same constructive approach adopted by Mura (PhD 2008) to built up the *generalized grey Brownian motion* (*Mura, Pagnini J. Phys. A 2008*), the following class of H-sssi processes is established.

Let $X_{\alpha,\beta}(t)$, $t \ge 0$, be an H-sssi defined as

$$X_{lpha,eta}(t) \stackrel{d}{=} \sqrt{\Lambda_{lpha/2,eta}} \ G_{2eta/lpha}(t), \quad 0 < eta \leq 1, \quad 0 < eta < lpha \leq 2,$$
 (47)

where $\stackrel{d}{=}$ denotes the equality of the finite-dimensional distribution, the stochastic process $G_{2\beta/\alpha}(t)$ is a standard fBm with Hurst exponent $H = \beta/\alpha < 1$ and $\Lambda_{\alpha/2,\beta}$ is an independent non-negative random variable with PDF $K^{-\alpha/2}_{\alpha/2,\beta}(\lambda), \lambda \ge 0$, then the marginal PDF of $X_{\alpha,\beta}(t)$ is $K^0_{\alpha,\beta}(x; t)$.

H-sssi Processes

Tthe finite-dimensional distribution of $X_{\alpha,\beta}(t)$ is obtained from (40) according to

$$f_{\alpha,\beta}(x_1, x_2, \dots, x_n; \gamma_{\alpha,\beta}) = \frac{(2\pi)^{-\frac{n-1}{2}}}{\sqrt{\det \gamma_{\alpha,\beta}}} \times \int_0^\infty \frac{1}{\lambda^{n/2}} G\left(\frac{z_n}{\lambda^{1/2}}\right) K_{\alpha/2,\beta}^{-\alpha/2}(\lambda) \, d\lambda \,, \quad (48)$$

where z_n is the *n*-dimensional particle position vector

$$z_n = \left(\sum_{i,j=1}^n x_i \gamma_{\alpha,\beta}^{-1}(t_i,t_j) x_j\right)^{1/2},$$

and $\gamma_{\alpha,\beta}(t_i, t_j)$ is the covariance matrix

$$\gamma_{\alpha,\beta}(t_i,t_j) = \frac{1}{2}(t_i^{2\beta/\alpha} + t_j^{2\beta/\alpha} - |t_i - t_j|^{2\beta/\alpha}), \quad i,j = 1,\ldots,n.$$

Stochastic Solution of Space-Time Fractional Diffusion

For the one-point case, i.e., n = 1, formula (48) reduces to

$$f_{\alpha,\beta}(x;t) = \int_0^\infty \frac{1}{\lambda^{1/2}} G\left(\frac{x t^{-\beta/\alpha}}{\lambda^{1/2}}\right) K_{\alpha/2,\beta}^{-\alpha/2}(\lambda) d\lambda$$

= $K_{\alpha,\beta}^0(x t^{-\beta/\alpha}),$ (49)

or, after the change of variable $\lambda = \tau t^{-2\beta/\alpha}$,

$$\int_{0}^{\infty} \frac{1}{\tau^{1/2}} G\left(\frac{x}{\tau^{1/2}}\right) \, \mathcal{K}_{\alpha/2,\beta}^{-\alpha/2}\left(\frac{\tau}{t^{\beta/\alpha}}\right) \, d\tau = t^{-\beta/\alpha} \mathcal{K}_{\alpha,\beta}^{0}\left(\frac{x}{t^{\beta/\alpha}}\right) \,. \tag{50}$$

This means that the marginal PDF of the H-sssi process $X_{\alpha,\beta}(t)$ is indeed the solution of the symmetric space-time fractional diffusion equation (1).

Stochastic Process Generation

From (14) it follows that

$$K_{\alpha/2,\beta}^{-\alpha/2}(\xi;t) = \int_0^\infty L_{\alpha/2}^{-\alpha/2}(\xi;\tau) M_\beta(\tau;t) d\tau, \quad 0 < \beta \le 1, \quad (51)$$

and by using the self-similarity properties and the changes of variable $\xi = t^{2\beta/\alpha}\lambda$ and $\tau = t^{\beta}y$ it holds

$$\mathcal{K}_{\alpha/2,\beta}^{-\alpha/2}(\lambda) = \int_0^\infty L_{\alpha/2}^{-\alpha/2}\left(\frac{\lambda}{y^{2/\alpha}}\right) M_\beta(y) \frac{dy}{y^{2/\alpha}}, \quad 0 < \beta \le 1.$$
(52)

Stochastic Process Generation

Integral (52) suggests to obtain $\Lambda_{\alpha/2,\beta}$ again by means of the product of two independent random variables, i.e.

$$\Lambda_{\alpha/2,\beta} = \Lambda_1 \cdot \Lambda_2^{2/\alpha} = \mathcal{L}_{\alpha/2}^{ext} \cdot \mathcal{M}_{\beta}^{2/\alpha}, \qquad (53)$$

where $\Lambda_1 = \mathcal{L}_{\alpha/2}^{ext}$ and $\Lambda_2 = \mathcal{M}_\beta$ are distributed according to the extremal stable density $L_{\alpha/2}^{-\alpha/2}(\lambda_1)$ and $M_\beta(\lambda_2)$, respectively, so that $\lambda = \lambda_1 \lambda_2^{2/\alpha}$.

Stochastic Process Generation

Moreover, from (16) and setting t = 1, the random variable M_β can be determined by an extremal stable random variable according to

$$\mathcal{M}_{\beta} = \left[\mathcal{L}_{\beta}^{ext}\right]^{-\beta} \,,$$
 (54)

so that the random variable $\Lambda_{\alpha/2,\beta}$ is computed by the product

$$\Lambda_{\alpha/2,\beta} = \mathcal{L}_{\alpha/2}^{ext} \cdot \left[\mathcal{L}_{\beta}^{ext}\right]^{-2\beta/\alpha} .$$
(55)

Finally, the desired H-sssi processes are established as follows

$$X_{\alpha,\beta}(t) = \sqrt{\mathcal{L}_{\alpha/2}^{ext}} \cdot \left[\mathcal{L}_{\beta}^{ext}\right]^{-\beta/\alpha} G_{2\beta/\alpha}(t) \,. \tag{56}$$

Numerical Generation (by P. Paradisi)

Computer generation of extremal stable random variables of order 0 < μ < 1 is obtained by using the method by Chambers, Mallows and Stuck

$$\mathcal{L}_{\mu}^{ext} = \frac{\sin[\mu(r_1 + \pi/2)]}{(\cos r_1)^{1/\mu}} \left\{ \frac{\cos[r_1 - \mu(r_1 + \pi/2)]}{-\ln r_2} \right\}^{(1-\mu)/\mu}, \quad (57)$$

where r_1 and r_2 are random variables uniformly distributed in $(-\pi/2, \pi/2)$ and (0, 1), respectively.

Chambers, Mallows, Stuck J. Amer. Statist. Assoc. 1976 Weron Statist. Probab. Lett. 1996

Numerical Generation (by P. Paradisi)

The Hosking direct method is applied for generating the fBm $G_{2H}(t)$, 0 < H < 1. In particular, first the so-called fractional Gaussian noise Y_{2H} is generated over the set of integer numbers with autocorrelation function

$$\langle Y_{2H}(k)Y_{2H}(k+n)\rangle = \frac{1}{2}\left[|n-1|^{2H}-|n|^{2H}+|n+1|^{2H}\right].$$
 (58)

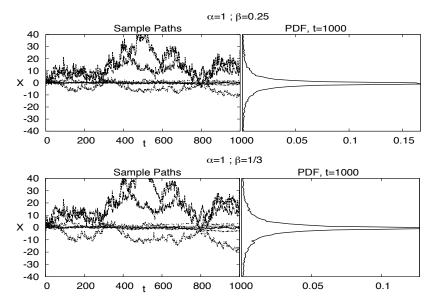
Finally, the fBm is then generated as a sum of stationary increments, i.e. $Y_{2H}(n) = G_{2H}(n+1) - G_{2H}(n)$

$$G_{2H}(n+1) = G_{2H}(n) + Y_{2H}(n).$$
 (59)

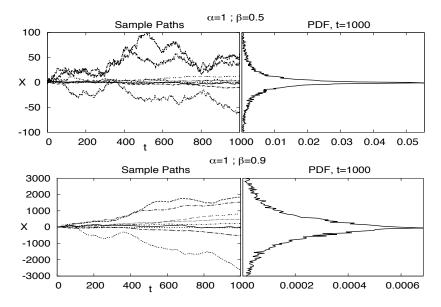
Hosking Water Resour. Res. 1984 Dieker PhD Thesis Univ. of Twente, The Netherlands, 2004

For a given set of parameter values (α,β) , 10⁴ trajectories are generated and the motion tracked for 10³ time steps, which is stated equal to 1 following formula (59).

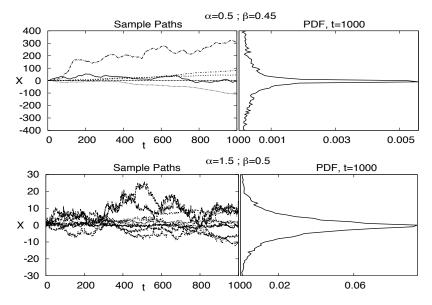
Changing the time scale requires changing the time step, and the associated trajectories can be simply derived without any further numerical simulations by exploiting the self-similar property.



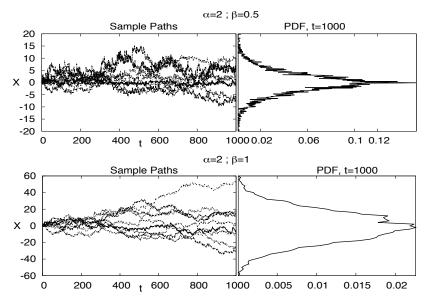
Gianni PAGNINI - Workshop on particle transport; with emphasis on stochastics. 6–7 November, 2014, Aarhus University



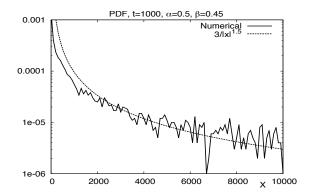
Gianni PAGNINI - Workshop on particle transport; with emphasis on stochastics. 6–7 November, 2014, Aarhus University



Gianni PAGNINI - Workshop on particle transport; with emphasis on stochastics. 6–7 November, 2014, Aarhus University



Gianni PAGNINI - Workshop on particle transport; with emphasis on stochastics. 6–7 November, 2014, Aarhus University



Power-law decay of PDF tail (large *x*) according to $\sim 1/|x|^{\alpha+1}$.

References

Mainardi F., Luchko Yu., Pagnini G. 2001 The fundamental solution of the space-time fractional diffusion equation. *Fract. Calc. Appl. Anal.* **4**, 153–192.

Mainardi F., Pagnini G., Gorenflo R. 2003 Mellin transform and subordination laws in fractional diffusion processes. *Fract. Calc. Appl. Anal.* **6**, 441-459.

A. Mura 2008 Non-Markovian Stochastic Processes and Their Applications: From Anomalous Diffusion to Time Series Analysis. Ph.D. Thesis, University of Bologna.

A. Mura, G. Pagnini 2008 Characterizations and simulations of a class of stochastic processes to model anomalous diffusion. *J. Phys. A: Math. Theor.* **41**, 285003.

G. Pagnini, A. Mura, F. Mainardi 2013 Two-particle anomalous diffusion: Probability density functions and self-similar stochastic processes. *Phil. Trans. R. Soc. A* **371**, 20120154.

Acknowledgements

Thank you for your attention!

This research is supported by the Basque Government through the BERC 2014–2017 program and by the Spanish Ministry of Economy and Competitiveness MINECO: BCAM Severo Ochoa accreditation SEV-2013-0323.

