Markov Renewal Methods in Restart Problems in Complex Systems

Søren Asmussen

Aarhus University http://home.math.au.dk/asmus

Aarhus Conference on Probability, Statistics and Applications

June 18, 2015

. Ole Barndorff-Nielsen

. Ole Barndorff-Nielsen

: Lester Lipsky

. Ole Barndorff-Nielsen

: Lester Lipsky

: Nick Bingham

Ole Barndorff-Nielsen

: Kishor Trivedi

: Lester Lipsky

: Nick Bingham

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Vanilla RESTART

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Vanilla RESTART

• Execution of a program on a computer.

Vanilla RESTART

- Execution of a program on a computer. Failures due to
 - External reasons:
 - power failure, disk failure, processor failure

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

- Internal reasons:
 - problems with the task itself.

Vanilla RESTART

- Execution of a program on a computer. Failures due to
 - External reasons:
 - power failure, disk failure, processor failure
 - Internal reasons:
 - problems with the task itself.
- Copying of a file from a remote system via FTP or HTTP. Failures due to transmission errors.

Vanilla RESTART

- Execution of a program on a computer. Failures due to
 - External reasons: power failure, disk failure, processor failure
 - Internal reasons: problems with the task itself.
- Copying of a file from a remote system via FTP or HTTP. Failures due to transmission errors.

• Call centers — 'customer service' by telephone. Failures due to broken connection etc.

Vanilla RESTART: Problem Formulation

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Vanilla RESTART: Problem Formulation

A job would ordinarily would take time L to be executed.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Vanilla RESTART: Problem Formulation

A job would ordinarily would take time L to be executed. If failure at some time $U_1 < L$, restart with same L.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Vanilla RESTART: Problem Formulation

A job would ordinarily would take time L to be executed. If failure at some time $U_1 < L$, restart If another failure after $U_2 < L$, restart again.

Vanilla RESTART: Problem Formulation

A job would ordinarily would take time L to be executed. If failure at some time $U_1 < L$, restart If another failure after $U_2 < L$, restart again. Total of N failures Total time X to complete $X = U_1^{\#} + \cdots + U_N^{\#} + L$ $U_1^{\#}, \ldots, U_N^{\#}$ failed attempts

Vanilla RESTART: Problem Formulation

A job would ordinarily would take time L to be executed. If failure at some time $U_1 < L$, restart If another failure after $U_2 < L$, restart again. Total of N failures Total time X to complete $X = U_1^{\#} + \cdots + U_N^{\#} + L$ $U_1^{\#}, \ldots, U_N^{\#}$ failed attempts

F distribution of LG distribution of U

Vanilla RESTART: Problem Formulation

A job would ordinarily would take time L to be executed. If failure at some time $U_1 < L$, restart If another failure after $U_2 < L$, restart again. Total of N failures Total time X to complete $X = U_1^{\#} + \cdots + U_N^{\#} + L$ $U_1^{\#}, \ldots, U_N^{\#}$ failed attempts

F distribution of L G distribution of U H distribution of X

What can we say about H given F, G?

Vanilla RESTART: Problem Formulation

A job would ordinarily would take time L to be executed. If failure at some time $U_1 < L$, restart If another failure after $U_2 < L$, restart again. Total of N failures Total time X to complete $X = U_1^{\#} + \cdots + U_N^{\#} + L$ $U_1^{\#}, \ldots, U_N^{\#}$ failed attempts

F distribution of L G distribution of U H distribution of X

What can we say about H given F, G?

• $\mathbb{E}X = ??$ Easy

•
$$\mathbb{P}(X > x) = ??$$
 Main problem here

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Total time X to complete $X = U_1^{\#} + \cdots + U_N^{\#} + L$ $U_1^{\#}, \ldots, U_N^{\#}$ failed attempts, N = # of restarts

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Total time X to complete $X = U_1^{\#} + \cdots + U_N^{\#} + L$ $U_1^{\#}, \ldots, U_N^{\#}$ failed attempts, N = # of restarts

F distribution of L

G distribution of U

H distribution of X

Total time X to complete $X = U_1^{\#} + \cdots + U_N^{\#} + L$ $U_1^{\#}, \ldots, U_N^{\#}$ failed attempts, N = # of restarts

F distribution of L

- G distribution of U
- H distribution of X

SA–Fiorini-Lipsky-Rolski-Sheahan Mathematics of Operations Research 2008

Total time X to complete $X = U_1^\# + \cdots + U_N^\# + L$

 $U_1^{\#},\ldots,U_N^{\#}$ failed attempts, N=# of restarts

F distribution of L

- G distribution of U
- H distribution of X

SA–Fiorini-Lipsky-Rolski-Sheahan Mathematics of Operations Research 2008

Theorem

If $L \equiv \ell$: $\mathbb{P}(X > x) \sim C e^{-\gamma x}$

Total time X to complete $X = U_1^{\#} + \cdots + U_N^{\#} + L$ $U_1^{\#}, \ldots, U_N^{\#}$ failed attempts, N = # of restarts

F distribution of LG distribution of U

H distribution of X

SA–Fiorini-Lipsky-Rolski-Sheahan Mathematics of Operations Research 2008

Theorem

If $L \equiv \ell$: $\mathbb{P}(X > x) \sim C e^{-\gamma x}$

Cramér-Lundberg asymptotics: geometric sums, renewal equation

Total time X to complete $X = U_1^\# + \cdots + U_N^\# + L$

 $U_1^{\#},\ldots,U_N^{\#}$ failed attempts, N=# of restarts

F distribution of LG distribution of U

H distribution of X

SA–Fiorini-Lipsky-Rolski-Sheahan Mathematics of Operations Research 2008

Theorem

If $L \equiv \ell$: $\mathbb{P}(X > x) \sim C \mathrm{e}^{-\gamma x}$

Theorem

If L has unbounded support: X is heavy-tailed

Total time X to complete $X = U_1^{\#} + \cdots + U_N^{\#} + L$

 $U_1^{\#},\ldots,U_N^{\#}$ failed attempts, $\mathit{N}=\#$ of restarts

F distribution of LG distribution of U

H distribution of X

SA–Fiorini-Lipsky-Rolski-Sheahan Mathematics of Operations Research 2008

Theorem

If $L \equiv \ell$: $\mathbb{P}(X > x) \sim C \mathrm{e}^{-\gamma x}$

Theorem

If L has unbounded support: X is heavy-tailed

Theorem

Poisson failures, L gamma, shape α : $\mathbb{P}(X > x) \sim C \frac{\log x^{\alpha-1}}{x^{\beta}}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem

If L has unbounded support: X is heavy-tailed

Why ??

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem

If L has unbounded support: X is heavy-tailed

Why ??

Explanation if $U \stackrel{\mathcal{D}}{=} L$

Theorem

If L has unbounded support: X is heavy-tailed

Why ??

Explanation if $U \stackrel{\mathcal{D}}{=} L$

Total time X to complete $X = U_1^{\#} + \dots + U_N^{\#} + L$ $U_1^{\#}, \dots, U_N^{\#}$ failed attempts, $N \notin$ of restarts $N > n \iff U_1 < L, \dots, U_n < L \iff L = \max(L, U_1, \dots, U_n)$ $\mathbb{P}(N > n) = \frac{1}{n+1}$

(ロ)、(型)、(E)、(E)、 E) の(の)

Complex Systems

Complex Systems

Classical reliability theory

k-out-of-n

Repair; cold/warm standby; . . .

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

2 - out - of - 3 processors, 2 repairmen, warm standby
Processor phases
$$\begin{cases}
\text{Operating } - \delta \\
\text{Repair } - \rho \\
\text{Booting } - \beta
\end{cases}$$
Waiting

▲□▶ ▲□▶ ★ 国▶ ★ 国▶ - 国 - ののの

Vanilla RESTART Complex Systems Markov renewal model Random task time Rare events Variable rates Checkpointing

Markov renewal equation. I

$$d \xrightarrow{\lambda} u$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $L \equiv \ell$

Markov renewal equation. I

$$d \xrightarrow{\lambda} u$$

$$L \equiv \ell$$

 $Z_d(x) = \mathbb{P}_d(X > x), \qquad Z_u(x) = \mathbb{P}_u(X > x)$

Markov renewal equation. I

$$d \xrightarrow{\lambda} u$$

$$L \equiv \ell$$

 $Z_d(x) = \mathbb{P}_d(X > x), \qquad Z_u(x) = \mathbb{P}_u(X > x)$

$$Z_d(x) = \mathbb{P}(T_d > x) + \int_0^x Z_u(x - y) \lambda \mathrm{e}^{-\lambda y} \,\mathrm{d}y$$

Markov renewal equation. I

$$d \xrightarrow{\lambda} u$$

$$\begin{split} L &\equiv \ell \\ Z_d(x) &= \mathbb{P}_d(X > x), \qquad Z_u(x) = \mathbb{P}_u(X > x) \\ Z_u(x) &= \mathbb{P}(T_u > \ell > x) + \int_0^x Z_d(x - y) \mathbf{1}(y < \ell) \beta e^{-\beta y} \, \mathrm{d}y \\ Z_d(x) &= \mathbb{P}(T_d > x) + \int_0^x Z_u(x - y) \lambda e^{-\lambda y} \, \mathrm{d}y \end{split}$$
$$d \xrightarrow{\lambda} u$$

$$\begin{split} L &\equiv \ell \\ Z_d(x) &= \mathbb{P}_d(X > x), \qquad Z_u(x) = \mathbb{P}_u(X > x) \\ Z_u(x) &= \mathbb{P}(T_u > \ell > x) + \int_0^x Z_d(x - y) \mathbf{1}(y < \ell) \beta e^{-\beta y} \, \mathrm{d}y \\ Z_d(x) &= \mathbb{P}(T_d > x) + \int_0^x Z_u(x - y) \lambda e^{-\lambda y} \, \mathrm{d}y \end{split}$$

Theorem

$$\mathbb{P}_{u}(X > x) ~\sim~ C \mathrm{e}^{-\gamma x}$$
 where $\gamma > 0$ solves

$$1 = \frac{\lambda\beta}{(\lambda-\gamma)(\beta-\gamma)} [e^{(\gamma-\beta)\ell} - 1] \quad \text{and } C = \dots$$

200

Memory on task processing carried along to next Markov state !

▲ロト ▲圖ト ▲温ト ▲温ト

= n<0</p>

Memory on task processing carried along to next Markov state ! Forgotten when down state entered \mathcal{D} set of down entrance states (dark red)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

= 900

Memory on task processing carried along to next Markov state ! Forgotten when down state entered \mathcal{D} set of down entrance states (dark red) \mathcal{U} set of up entrance states (dark green)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э.

Memory on task processing carried along to next Markov state ! Forgotten when down state entered \mathcal{D} set of down entrance states (dark red) \mathcal{U} set of up entrance states (dark green) Markov renewal state space $\mathcal{E} = \mathcal{U} \cup \mathcal{D}$ Sojourn time T_i in $i \in \mathcal{E}$ depends on full generator matrix

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Markov renewal equation. II

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Markov renewal equation. II

Markov renewal state space $\mathcal{E} = \mathcal{U} \cup \mathcal{D}$ Imbedded Markov chain ξ_0, ξ_1, \ldots alternates between \mathcal{U} and \mathcal{D} Vanilla RESTART Complex Systems Markov renewal model Random task time Rare events Variable rates Checkpointing

Markov renewal equation. II

Markov renewal state space $\mathcal{E} = \mathcal{U} \cup \mathcal{D}$ Imbedded Markov chain ξ_0, ξ_1, \ldots alternates between \mathcal{U} and \mathcal{D}

$$Z_i(x) = z_i(x) + \sum_{j \in \mathcal{E}} \int_0^x Z_j(x - y) F_{ij}(\mathrm{d}y), \ i \in \mathcal{E}$$
$$F_{du}(\mathrm{d}t) = \mathbb{P}_d(T_d \in \mathrm{d}t, \xi_1 = u) \quad F_{ud}(\mathrm{d}t) = \mathbb{P}_u(T_u \in \mathrm{d}t, t < \ell, \xi_1 = d)$$
$$z_d(x) = \mathbb{P}_d(T_d > x) \qquad z_u(x) = \mathbb{P}(T_u > \ell > x)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Markov renewal state space $\mathcal{E} = \mathcal{U} \cup \mathcal{D}$ Imbedded Markov chain ξ_0, ξ_1, \ldots alternates between \mathcal{U} and \mathcal{D}

$$Z_i(x) = z_i(x) + \sum_{j \in \mathcal{E}} \int_0^x Z_j(x - y) F_{ij}(\mathrm{d}y), \ i \in \mathcal{E}$$

$$F_{du}(\mathrm{d}t) = \mathbb{P}_d(T_d \in \mathrm{d}t, \xi_1 = u) \quad F_{ud}(\mathrm{d}t) = \mathbb{P}_u(T_u \in \mathrm{d}t, t < \ell, \xi_1 = d)$$

$$z_d(x) = \mathbb{P}_d(T_d > x) \qquad \qquad z_u(x) = \mathbb{P}(T_u > \ell > x)$$

Theorem

Denote by $\mathbf{R}(\alpha)$ the $\mathcal{E} \times \mathcal{E}$ matrix with entries

$$\begin{split} r_{du}(\alpha) &= \mathbb{E}_d \left[\mathrm{e}^{\alpha T_d}; \, \xi_1 = u \right], & d \in \mathcal{D}, \, u \in \mathcal{U}, \\ r_{ud}(\alpha) &= \mathbb{E}_u \left[\mathrm{e}^{\alpha T_u}; \, \ell \geq T_d \,, \xi_1 = d \right], & u \in \mathcal{U}, d \in \mathcal{D}, \end{split}$$

all other $r_{ij}(\alpha) = 0$. Assume there exists $\gamma = \gamma(\ell)$ such that $\mathbf{R}(\gamma)$ is irreducible with $\operatorname{spr}(\mathbf{R}) = 1$. Then $\mathbb{P}_i(X > x) \sim C_i e^{-\gamma x}$, $x \to \infty$

Markov renewal equation

$$Z_i(x) = z_i(x) + \sum_{j \in \mathcal{E}} \int_0^x Z_j(x-y) \, F_{ij}(\mathrm{d} y) \,, \,\, i \in \mathcal{E}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Spectral radius asymptotics requires light tails.

Markov renewal equation

$$Z_i(x) = z_i(x) + \sum_{j \in \mathcal{E}} \int_0^x Z_j(x-y) F_{ij}(\mathrm{d}y), \ i \in \mathcal{E}$$

Spectral radius asymptotics requires light tails. Asymptotics for standard renewal equation with heavy tails: SA, Foss, Korshunov 2003

$$Z(x) = z(x) + \int_0^{\infty} Z(x-y) F(\mathrm{d} y)$$

Markov renewal equation

$$Z_i(x) = z_i(x) + \sum_{j \in \mathcal{E}} \int_0^x Z_j(x-y) F_{ij}(\mathrm{d}y), \ i \in \mathcal{E}$$

Spectral radius asymptotics requires light tails.

Asymptotics for standard renewal equation with heavy tails: SA, Foss, Korshunov 2003

$$Z(x) = z(x) + \int_0^{\infty} Z(x-y) F(\mathrm{d}y)$$

Needs density f (or "local subexponential behaviour") Three cases (i) $f \ll z$, $f \approx z$, f >> z

Markov renewal equation

$$Z_i(x) = z_i(x) + \sum_{j \in \mathcal{E}} \int_0^x Z_j(x-y) F_{ij}(\mathrm{d}y), \ i \in \mathcal{E}$$

Spectral radius asymptotics requires light tails.

Asymptotics for standard renewal equation with heavy tails: SA, Foss, Korshunov 2003

$$Z(x) = z(x) + \int_0^{\infty} Z(x-y) F(\mathrm{d}y)$$

Needs density f (or "local subexponential behaviour") Three cases (i) $f \ll z$, $f \approx z$, f >> zMarkov renewal case: SA - Thøgersen 2015

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Heavy-tailed example

Ideal repair time R (random); rate η failures of repair

$$\eta \bigsqcup d \longleftrightarrow \mu$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

Heavy-tailed example

Ideal repair time R (random); rate η failures of repair

$$\eta \bigsqcup d \longleftrightarrow \mu$$

Actual repair time: vanilla Restart If *R* is Gamma: $\mathbb{P}(X > x) \sim C \frac{\log^{\alpha - 1} x}{x^{\mu}}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Random task time L

$$\mathbb{P}_i(X > x) = \int_0^\infty \mathbb{P}_i(X > x \,|\, L = \ell) \, \mathbb{P}(L \in \mathrm{d}\ell) \,.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$\mathbb{P}_i(X > x) = \int_0^\infty \mathbb{P}_i(X > x \,|\, L = \ell) \, \mathbb{P}(L \in \mathrm{d}\ell) \,.$$

Know $\mathbb{P}_i(X > x | L = \ell) \sim C_i e^{-\gamma(\ell)x}$ (with light T_d tails) $\gamma(\ell)$ solution of $1 = spr(\mathbf{R}(\gamma, \ell))$

$$\mathbb{P}_{i}(X > x) = \int_{0}^{\infty} \mathbb{P}_{i}(X > x \mid L = \ell) \mathbb{P}(L \in d\ell).$$

Know $\mathbb{P}_{i}(X > x \mid L = \ell) \sim C_{i} e^{-\gamma(\ell)x}$
 $\gamma(\ell)$ solution of $1 = \operatorname{spr}(\mathbb{R}(\gamma, \ell))$
 $\mathbb{R}(0, \infty)$ transition matrix of $\xi_{0}, \xi_{1}, \ldots \Rightarrow \gamma(\ell) \to 0, \ \ell \to \infty$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$\mathbb{P}_{i}(X > x) = \int_{0}^{\infty} \mathbb{P}_{i}(X > x \mid L = \ell) \mathbb{P}(L \in d\ell).$$

Know $\mathbb{P}_{i}(X > x \mid L = \ell) \sim C_{i} e^{-\gamma(\ell)x}$
 $\gamma(\ell)$ solution of $1 = \operatorname{spr}(\mathbb{R}(\gamma, \ell))$
 $\mathbb{R}(0, \infty)$ transition matrix of $\xi_{0}, \xi_{1}, \ldots \Rightarrow \gamma(\ell) \to 0, \ \ell \to \infty$

Corollary

If the task length L has unbounded support, the distribution of the total task time X is heavy-tailed in the sense that $e^{\delta x} \mathbb{P}(X > x) \to \infty$ for all $\delta > 0$.

$$\mathbb{P}_{i}(X > x) = \int_{0}^{\infty} \mathbb{P}_{i}(X > x \mid L = \ell) \mathbb{P}(L \in d\ell).$$

Know $\mathbb{P}_{i}(X > x \mid L = \ell) \sim C_{i} e^{-\gamma(\ell)x}$
 $\gamma(\ell)$ solution of $1 = \operatorname{spr}(\mathbb{R}(\gamma, \ell))$
 $\mathbb{R}(0, \infty)$ transition matrix of $\xi_{0}, \xi_{1}, \ldots \Rightarrow \gamma(\ell) \to 0, \ \ell \to \infty$

Corollary

If the task length L has unbounded support, the distribution of the total task time X is heavy-tailed in the sense that $e^{\delta x} \mathbb{P}(X > x) \to \infty$ for all $\delta > 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

More precise asymptotics? Needs asymptotics of $\gamma(\ell)$

Theorem

Assume that for some function $\varphi(\ell)$ it holds that

$$\mathbb{P}(T_u > \ell, \xi_1 = d) \sim k_{ud} \varphi(\ell)$$

as $\ell \to \infty$ for some set of constants such that $k_{ud} > 0$ for at least one pair $u \in \mathcal{U}$, $d \in \mathcal{D}$. Then

$$\gamma(\ell) \sim \mu \, \varphi(\ell) \quad \text{as } \ell \to \infty, \qquad \text{where} \quad \mu = rac{\sum_{u \in \mathcal{U}, d \in \mathcal{D}} \pi_u k_{ud}}{\sum_{i \in \mathcal{U} \cup \mathcal{D}} \pi_i \mathbb{E}_i T_i}$$

and $\pi = (\pi_i)_{i \in U \cup D}$ is the stationary distribution of the Markov chain ξ , that is, the invariant probability vector for the matrix $\mathbf{P} = \mathbf{R}(0, \infty)$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Proof ??

$$\begin{split} \gamma(\ell) \text{ solves } 1 &= \mathsf{spr}\big(\mathsf{R}(\gamma,\ell)\big) \\ r_{du}(\alpha) &= \mathbb{E}_d\big[\mathrm{e}^{\alpha T_d};\,\xi_1 = u\big]\,, \qquad d \in \mathcal{D},\, u \in \mathcal{U}\,, \\ r_{ud}(\alpha) &= \mathbb{E}_u\big[\mathrm{e}^{\alpha T_u};\,\ell \geq T_u\,,\xi_1 = d\big]\,, \qquad u \in \mathcal{U}, d \in \mathcal{D}\,, \end{split}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

$$\begin{split} \gamma(\ell) \text{ solves } 1 &= \mathsf{spr}\big(\mathsf{R}(\gamma,\ell)\big) \\ r_{du}(\alpha) &= \mathbb{E}_d \big[\mathrm{e}^{\alpha \, T_d}; \, \xi_1 = u \big] \,, \qquad \quad d \in \mathcal{D}, \, u \in \mathcal{U} \,, \\ r_{ud}(\alpha) &= \mathbb{E}_u \big[\mathrm{e}^{\alpha \, T_u}; \, \ell \geq T_u \,, \xi_1 = d \big] \,, \qquad \quad u \in \mathcal{U}, \, d \in \mathcal{D} \,, \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

1) Perturbation theory $\mathbf{R}(0,\infty) = \mathbf{P}$ spr $(\mathbf{R}(\gamma, \ell)) = \text{spr}(\mathbf{P}) + ?? = 1 + ??$

$$\begin{split} \gamma(\ell) \text{ solves } 1 &= \operatorname{spr} \big(\mathbf{R}(\gamma, \ell) \big) \\ r_{du}(\alpha) &= \mathbb{E}_d \left[e^{\alpha T_d}; \, \xi_1 = u \right], \qquad d \in \mathcal{D}, \, u \in \mathcal{U}, \\ r_{ud}(\alpha) &= \mathbb{E}_u \left[e^{\alpha T_u}; \, \ell \geq T_u \,, \xi_1 = d \right], \qquad u \in \mathcal{U}, d \in \mathcal{D}, \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

1) Perturbation theory
$$\mathbf{R}(0,\infty) = \mathbf{P}$$

spr $(\mathbf{R}(\gamma, \ell)) = \text{spr}(\mathbf{P}) + ?? = 1+ ??$

2) Implicit function theorem

$$\begin{split} \gamma(\ell) \text{ solves } 1 &= \mathsf{spr}\big(\mathbf{R}(\gamma,\ell)\big) \\ r_{du}(\alpha) &= \mathbb{E}_d\big[\mathrm{e}^{\alpha T_d};\,\xi_1 = u\big]\,, \qquad d \in \mathcal{D},\, u \in \mathcal{U}\,, \\ r_{ud}(\alpha) &= \mathbb{E}_u\big[\mathrm{e}^{\alpha T_u};\,\ell \geq T_u\,,\xi_1 = d\big]\,, \qquad u \in \mathcal{U}, d \in \mathcal{D}\,, \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

1) Perturbation theory
$$\mathbf{R}(0,\infty) = \mathbf{P}$$

spr $(\mathbf{R}(\gamma, \ell)) = \text{spr}(\mathbf{P}) + ?? = 1+ ??$

- 2) Implicit function theorem
- 3) Bare-hand (but Perron-Frobenius theory key tool)

Back to Markov set-up

▲ロト ▲圖ト ▲温ト ▲温ト

・ロト ・ 雪 ト ・ ヨ ト

э

Markov renewal up states \mathcal{U} : two dark green Markov renewal down states \mathcal{D} : two dark red

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

= 900

Markov renewal up states \mathcal{U} : two dark green Markov renewal down states \mathcal{D} : two dark red

Markov up states \mathcal{U}^* : all three green Markov down states \mathcal{D}^* : all six red

Markov renewal up states \mathcal{U} : two dark green Markov renewal down states \mathcal{D} : two dark red

Markov up states \mathcal{U}^* : all three green Markov down states \mathcal{D}^* : all six red

Root $\gamma(\ell)$ for Markov renewal equation depends on full Markov model

Theorem

Assume that $\gamma = \gamma(\ell)$ makes the spectral radius of the matrix $\mathbf{R}(\gamma, \ell)$ equal to 1, where $\mathbf{R}(\gamma, \ell)$ is the matrix

$$\mathcal{U} \quad \mathcal{D}$$

$$\mathcal{U} \quad \boxed{0 \quad \widehat{F}_{ud}[\gamma]} \qquad \qquad \widehat{F}_{ud}[\gamma] = \int_{0}^{\ell} e^{\gamma t} F_{ud}(dt)$$

$$\mathcal{D} \quad \widehat{F}_{du}[\gamma] \quad 0 \qquad \qquad \widehat{F}_{du}[\gamma] = \int_{0}^{\infty} e^{\gamma t} F_{du}(dt)$$

Then $\gamma(\ell) \sim \mu e^{-\delta \ell}$ as $\ell \to \infty$, where $-\delta$ is the largest eigenvalue of $\mathbf{Q}_{\mathcal{U}^*\mathcal{U}^*}$ in the block-partitioning

of the full generator **Q** and μ involves $\mathbf{Q}_{\mathcal{U}^*\mathcal{U}^*}^{-1}$, $\mathbf{Q}_{\mathcal{D}^*\mathcal{D}^*}^{-1}$ and further Perron-Frobenius characteristics of **Q**.

General approach for random task time L

 $f(\ell)$ density of ℓ

General approach for random task time \boldsymbol{L}

 $f(\ell)$ density of ℓ

$$\mathbb{P}_i(X > x) = \int_0^\infty \mathbb{P}_i(X > x \mid L = \ell) f(\ell) \, \mathrm{d}\ell$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ
General approach for random task time \boldsymbol{L}

 $f(\ell)$ density of ℓ

$$\mathbb{P}_i(X > x) = \int_0^\infty \mathbb{P}_i(X > x \,|\, L = \ell) f(\ell) \,\mathrm{d}\ell$$

$$\sim \int_0^\infty C_i(\ell) \exp\{-\gamma(\ell)x\} f(\ell) \,\mathrm{d}\ell$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

General approach for random task time \boldsymbol{L}

 $f(\ell)$ density of ℓ

$$\mathbb{P}_{i}(X > x) = \int_{0}^{\infty} \mathbb{P}_{i}(X > x \mid L = \ell) f(\ell) d\ell$$

$$\sim \int_{0}^{\infty} C_{i}(\ell) \exp\{-\gamma(\ell)x\} f(\ell) d\ell$$

$$\sim \int_{0}^{\infty} D_{i} \exp\{-\mu\varphi(\ell)x\} f(\ell) d\ell$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

General approach for random task time L

 $f(\ell)$ density of ℓ

$$\mathbb{P}_{i}(X > x) = \int_{0}^{\infty} \mathbb{P}_{i}(X > x \mid L = \ell) f(\ell) d\ell$$

$$\sim \int_{0}^{\infty} C_{i}(\ell) \exp\{-\gamma(\ell)x\} f(\ell) d\ell$$

$$\sim \int_{0}^{\infty} D_{i} \exp\{-\mu\varphi(\ell)x\} f(\ell) d\ell$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Most often OK; now purely analytical problem.

General approach for random task time L

 $f(\ell)$ density of ℓ

$$\mathbb{P}_{i}(X > x) = \int_{0}^{\infty} \mathbb{P}_{i}(X > x \mid L = \ell) f(\ell) d\ell$$
$$\sim \int_{0}^{\infty} C_{i}(\ell) \exp\{-\gamma(\ell)x\} f(\ell) d\ell$$
$$\sim \int_{0}^{\infty} D_{i} \exp\{-\mu\varphi(\ell)x\} f(\ell) d\ell$$

Most often OK; now purely analytical problem.

Corollary

Assume failures are Poisson(δ) (or $\varphi(\ell) = e^{-\delta\ell}$) and that F is gamma-like in the sense that $f(\ell) \sim c_F \ell^{\alpha-1} e^{-\lambda\ell}$, $\ell \to \infty$. Then

$$\mathbb{P}_i(X > x) \sim rac{C_i^* \Gamma(\lambda/\delta)}{\delta^{\alpha+\lambda/\delta}} rac{\log^{\alpha-1} x}{x^{\lambda/\delta}} \text{ as } x o \infty.$$

4×4 table of examples of rough $\mathbb{P}(X > x)$ asymptotics each of $f(\ell), \varphi(\ell)$ LT Weibull; exponential; HT Weibull; power

Constants omitted $e^{-c \log^{1/2} x}$; $\frac{1}{x} = e^{-\log x}$ Logarithmic asymptotics In some corners even log log asymptotics

Tauberian theorem

$$\mathbb{P}_i(X > x) \sim \int_0^\infty D_i(\ell) \exp\{-\mu\varphi(\ell)x\} f(\ell) \,\mathrm{d}\ell$$

Theorem

Define
$$\overline{\varphi}_{I}(t) = \int_{t}^{\infty} \varphi(y) \, \mathrm{d}y$$
 and assume

$$f(t) = \varphi(t)\overline{\varphi}_{I}(t)^{\beta-1}L_{0}(\overline{\varphi}_{I}(t))$$

where $L_0(s)$ is slowly varying at s = 0. Then

$$\mathbb{P}_i(X > x) ~\sim~ D_i^* rac{\Gamma(eta)}{\mu^eta} rac{L_0(1/x)}{x^eta}, ~~ x o \infty \,.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

 $\mathbb{P}(X(\ell) > x)$: sofar first $x \to \infty$, then $\ell \to \infty$. For a moment just $\ell \to \infty$

 $\mathbb{P}(X(\ell) > x)$: sofar first $x \to \infty$, then $\ell \to \infty$. For a moment just $\ell \to \infty$ Regenerative process: i.i.d. cycles τ_1, τ_2, \ldots

 $\mathbb{P}(X(\ell) > x)$: sofar first $x \to \infty$, then $\ell \to \infty$. For a moment just $\ell \to \infty$ Regenerative process: i.i.d. cycles τ_1, τ_2, \ldots $a(\ell)$ probability of event in cycle, $X(\ell)$ total time

$$\begin{split} & \mathbb{P}(X(\ell) > x): \text{ sofar first } x \to \infty, \text{ then } \ell \to \infty. \\ & \text{For a moment just } \ell \to \infty \\ & \text{Regenerative process: i.i.d. cycles } \tau_1, \tau_2, \dots \\ & a(\ell) \text{ probability of event in cycle, } X(\ell) \text{ total time} \\ & \text{As } a(\ell) \downarrow 0: \quad \mathbb{E}X(\ell) \sim \frac{\mathbb{E}\tau}{a(\ell)}, \quad \frac{a(\ell)}{\mathbb{E}\tau}X(\ell) \to \exp(1) \end{split}$$

$$\begin{split} & \mathbb{P}(X(\ell) > x): \text{ sofar first } x \to \infty, \text{ then } \ell \to \infty. \\ & \text{For a moment just } \ell \to \infty \\ & \text{Regenerative process: i.i.d. cycles } \tau_1, \tau_2, \dots \\ & a(\ell) \text{ probability of event in cycle, } X(\ell) \text{ total time} \\ & \text{As } a(\ell) \downarrow 0: \quad \mathbb{E}X(\ell) \sim \frac{\mathbb{E}\tau}{a(\ell)}, \quad \frac{a(\ell)}{\mathbb{E}\tau}X(\ell) \to \exp(1) \\ & \text{Cycle start here: entrance to reference Markov renewal state} \end{split}$$

$$\begin{split} & \mathbb{P}(X(\ell) > x) \colon \text{sofar first } x \to \infty, \text{ then } \ell \to \infty. \\ & \text{For a moment just } \ell \to \infty \\ & \text{Regenerative process: i.i.d. cycles } \tau_1, \tau_2, \dots \\ & a(\ell) \text{ probability of event in cycle, } X(\ell) \text{ total time} \\ & \text{As } a(\ell) \downarrow 0 \colon \mathbb{E}X(\ell) \sim \frac{\mathbb{E}\tau}{a(\ell)}, \quad \frac{a(\ell)}{\mathbb{E}\tau}X(\ell) \to \exp(1) \\ & \text{Cycle start here: entrance to reference Markov renewal state} \end{split}$$

Express $\mathbb{E}\tau$, $a(\ell)$ in terms of the π_i , $\mathbb{E}_i T$, $\mathbb{P}_u(T_u > \ell)$ etc.

$$\begin{split} & \mathbb{P}(X(\ell) > x) \colon \text{sofar first } x \to \infty, \text{ then } \ell \to \infty. \\ & \text{For a moment just } \ell \to \infty \\ & \text{Regenerative process: i.i.d. cycles } \tau_1, \tau_2, \dots \\ & a(\ell) \text{ probability of event in cycle, } X(\ell) \text{ total time} \\ & \text{As } a(\ell) \downarrow 0 \colon \quad \mathbb{E}X(\ell) \sim \frac{\mathbb{E}\tau}{a(\ell)}, \quad \frac{a(\ell)}{\mathbb{E}\tau}X(\ell) \to \exp(1) \\ & \text{Cycle start here: entrance to reference Markov renewal state} \end{split}$$

Express $\mathbb{E}\tau$, $a(\ell)$ in terms of the π_i , $\mathbb{E}_i T$, $\mathbb{P}_u(T_u > \ell)$ etc.

Theorem	
$\mathbb{E} X(\ell) ~\sim~ rac{1}{\gamma(\ell)} ~\sim~ rac{1}{\mu arphi(\ell)}, ~~ \ell o \infty.$	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Non-exponential distributions

Non-exponential distributions

(failure times, repair times etc.)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Non-exponential distributions

(failure times, repair times etc.) Phase-type distributions; e.g. Erlang(2)

Non-exponential distributions

(failure times, repair times etc.) Phase-type distributions; e.g. Erlang(2)

Figure: *E*₂ repair times, 2-out-of-3

(日)、

э

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Variable rates

Variable rates

2 - out - of - 3 processors, 2 repairmen, warm standby

э

Rate ρ of each processor Total rate 3ρ in OOO, 2ρ in OOO

Task processed at rate $\rho_u(t)$ in $u \in \mathcal{U}$

completion at time
$$\inf \left\{ s > 0 : \int_0^s
ho_u(t) \, \mathrm{d}t \ge \ell
ight\}$$
 if $< {\mathcal T}_u$

Task processed at rate $\rho_u(t)$ in $u \in \mathcal{U}$

completion at time
$$\inf \left\{ s > 0 : \int_0^s \rho_u(t) dt \ge \ell \right\}$$
 if $< T_u$
With $\rho_u(t) \equiv 1$ we needed $\mathbb{E}_u \left[e^{\alpha T_u}; \ell \ge T_u, \xi_1 = d \right];$

completion at time $\inf \left\{ s > 0 : \int_0^s \rho_u(t) dt \ge \ell \right\}$ if $< T_u$ With $\rho_u(t) \equiv 1$ we needed $\mathbb{E}_u \left[e^{\alpha T_u}; \ell \ge T_u, \xi_1 = d \right]$; now

$$\mathbb{E}_{u}\left[\mathrm{e}^{\alpha T_{u}};\,\ell\geq\int_{0}^{T_{u}}\rho_{u}(t)\,\mathrm{d}t\,,\xi_{1}=d\right] \tag{(*)}$$

completion at time $\inf \left\{ s > 0 : \int_0^s \rho_u(t) dt \ge \ell \right\}$ if $< T_u$ With $\rho_u(t) \equiv 1$ we needed $\mathbb{E}_u \left[e^{\alpha T_u}; \ell \ge T_u, \xi_1 = d \right]$; now

$$\mathbb{E}_{u}\left[\mathrm{e}^{\alpha T_{u}};\,\ell\geq\int_{0}^{T_{u}}\rho_{u}(t)\,\mathrm{d}t\,,\xi_{1}=d\right] \tag{(*)}$$

Theorem

Consider the Markov model with $\rho_u(t) = r_{J(t)}$. Then (*) becomes

$$\mathbf{e}_{u}^{\mathsf{T}}\Big(\mathbf{I}-\exp\big\{\mathbf{\Delta}_{\mathsf{r}}^{-1}\big(\mathbf{Q}_{\mathcal{U}^{*}\mathcal{U}^{*}}+\alpha\mathbf{I}\big)\ell\big\}\Big)(-\mathbf{Q}_{\mathcal{U}^{*}\mathcal{U}^{*}}-\alpha\mathbf{I})^{-1}\mathbf{Q}_{\mathcal{U}^{*}\mathcal{D}^{*}}\mathbf{e}_{d}\,.$$

completion at time $\inf \left\{ s > 0 : \int_0^s \rho_u(t) dt \ge \ell \right\}$ if $< T_u$ With $\rho_u(t) \equiv 1$ we needed $\mathbb{E}_u \left[e^{\alpha T_u}; \ell \ge T_u, \xi_1 = d \right]$; now

$$\mathbb{E}_{u}\left[\mathrm{e}^{\alpha T_{u}};\,\ell\geq\int_{0}^{T_{u}}\rho_{u}(t)\,\mathrm{d}t\,,\xi_{1}=d\right] \tag{(*)}$$

Theorem

Consider the Markov model with $\rho_u(t) = r_{J(t)}$. Then (*) becomes

$$\mathbf{e}_{u}^{\mathsf{T}}\Big(\mathbf{I}-\exp\big\{\mathbf{\Delta}_{\mathbf{r}}^{-1}\big(\mathbf{Q}_{\mathcal{U}^{*}\mathcal{U}^{*}}+\alpha\mathbf{I}\big)\ell\big\}\Big)(-\mathbf{Q}_{\mathcal{U}^{*}\mathcal{U}^{*}}-\alpha\mathbf{I})^{-1}\mathbf{Q}_{\mathcal{U}^{*}\mathcal{D}^{*}}\mathbf{e}_{d}\,.$$

Independent rates Markov(A),

completion at time $\inf \left\{ s > 0 : \int_0^s \rho_u(t) dt \ge \ell \right\}$ if $< T_u$ With $\rho_u(t) \equiv 1$ we needed $\mathbb{E}_u \left[e^{\alpha T_u}; \ell \ge T_u, \xi_1 = d \right]$; now

$$\mathbb{E}_{u}\left[\mathrm{e}^{\alpha T_{u}};\,\ell\geq\int_{0}^{T_{u}}\rho_{u}(t)\,\mathrm{d}t\,,\xi_{1}=d\right] \tag{(*)}$$

Theorem

Consider the Markov model with $\rho_u(t) = r_{J(t)}$. Then (*) becomes

$$\mathbf{e}_{u}^{\mathsf{T}}\Big(\mathbf{I}-\exp\big\{\mathbf{\Delta}_{\mathsf{r}}^{-1}\big(\mathbf{Q}_{\mathcal{U}^{*}\mathcal{U}^{*}}+\alpha\mathbf{I}\big)\ell\big\}\Big)(-\mathbf{Q}_{\mathcal{U}^{*}\mathcal{U}^{*}}-\alpha\mathbf{I})^{-1}\mathbf{Q}_{\mathcal{U}^{*}\mathcal{D}^{*}}\mathbf{e}_{d}\,.$$

Independent rates Markov(**A**), T_u exponential(δ)

completion at time $\inf \left\{ s > 0 : \int_0^s \rho_u(t) dt \ge \ell \right\}$ if $< T_u$ With $\rho_u(t) \equiv 1$ we needed $\mathbb{E}_u \left[e^{\alpha T_u}; \ell \ge T_u, \xi_1 = d \right]$; now

$$\mathbb{E}_{u}\left[\mathrm{e}^{\alpha T_{u}};\,\ell\geq\int_{0}^{T_{u}}\rho_{u}(t)\,\mathrm{d}t\,,\xi_{1}=d\right] \tag{(*)}$$

Theorem

Consider the Markov model with $\rho_u(t) = r_{J(t)}$. Then (*) becomes

$$\mathbf{e}_{u}^{T} \Big(\mathbf{I} - \exp \big\{ \mathbf{\Delta}_{\mathbf{r}}^{-1} \big(\mathbf{Q}_{\mathcal{U}^{*}\mathcal{U}^{*}} + \alpha \mathbf{I} \big) \ell \big\} \Big) (-\mathbf{Q}_{\mathcal{U}^{*}\mathcal{U}^{*}} - \alpha \mathbf{I})^{-1} \mathbf{Q}_{\mathcal{U}^{*}\mathcal{D}^{*}} \mathbf{e}_{d} \, .$$

Independent rates Markov(**A**), T_u exponential(δ) Formulas in terms of

$$\boldsymbol{\Delta}_{\mathsf{r}}^{-1}\boldsymbol{\mathsf{A}} - \frac{\delta}{2} \big(\boldsymbol{\Delta}_{\mathsf{r}}^{-1} \mathbf{e} \mathbf{e}^{\mathcal{T}} + \mathbf{e} \mathbf{e}^{\mathcal{T}} \boldsymbol{\Delta}_{\mathsf{r}}^{-1} \big)$$

completion at time $\inf \left\{ s > 0 : \int_0^s \rho_u(t) dt \ge \ell \right\}$ if $< T_u$ With $\rho_u(t) \equiv 1$ we needed $\mathbb{E}_u \left[e^{\alpha T_u}; \ell \ge T_u, \xi_1 = d \right]$; now

$$\mathbb{E}_{u}\left[\mathrm{e}^{\alpha T_{u}};\,\ell\geq\int_{0}^{T_{u}}\rho_{u}(t)\,\mathrm{d}t\,,\xi_{1}=d\right] \tag{(*)}$$

Theorem

Consider the Markov model with $\rho_u(t) = r_{J(t)}$. Then (*) becomes

$$\mathbf{e}_{u}^{\mathsf{T}}\Big(\mathbf{I}-\exp\{\mathbf{\Delta}_{\mathbf{r}}^{-1}\big(\mathbf{Q}_{\mathcal{U}^{*}\mathcal{U}^{*}}+\alpha\mathbf{I}\big)\ell\}\Big)(-\mathbf{Q}_{\mathcal{U}^{*}\mathcal{U}^{*}}-\alpha\mathbf{I})^{-1}\mathbf{Q}_{\mathcal{U}^{*}\mathcal{D}^{*}}\mathbf{e}_{d}\,.$$

Independent rates Markov(**A**), T_u exponential(δ) Formulas in terms of

$$\boldsymbol{\Delta}_{\mathsf{r}}^{-1}\boldsymbol{\mathsf{A}} - \frac{\delta}{2} \big(\boldsymbol{\Delta}_{\mathsf{r}}^{-1} \mathbf{e} \mathbf{e}^{\mathcal{T}} + \mathbf{e} \mathbf{e}^{\mathcal{T}} \boldsymbol{\Delta}_{\mathsf{r}}^{-1} \big)$$

Or T_u PH

(ロ)、(型)、(E)、(E)、 E) の(の)

Fragmentation

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Fragmentation

K parts, $L = L_1 + \cdots + L_K$

Equidistant, footer and header, etc.

Fragmentation

K parts, $L = L_1 + \cdots + L_K$

Equidistant, footer and header, etc.

Parallel computing:

$$X = \max(X_1, \dots, X_K)$$

E.g. Monte Carlo, $R = R_1 + \dots + R_K$ replications, $R_k = R/K$

Fragmentation

K parts, $L = L_1 + \cdots + L_K$

Equidistant, footer and header, etc.

Parallel computing:

 $X = \max(X_1, \dots, X_K)$ E.g. Monte Carlo, $R = R_1 + \dots + R_K$ replications, $R_k = R/K$

Checkpointing:

 $X = X_1 + \dots + X_K$ Previous part needs completion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Checkpoint modeling

$$0 \stackrel{h_1}{=} t_0 \qquad \qquad h_2 \qquad \qquad h_K \qquad \qquad h_K \qquad \qquad h_K = L$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$0 \stackrel{|}{=} \frac{h_1}{t_0} \stackrel{|}{=} \frac{h_2}{t_1} \stackrel{|}{=} \frac{h_K}{t_{K-1}} \stackrel{|}{=} L$$

A: L deterministic, $L \equiv \ell$, checkpoints deterministic and equally spaced,

$$t_1 = h/K, t_2 = 2h/K, \ldots, t_{K-1} = (K-1)h/K.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$0 \stackrel{|}{=} \frac{h_1}{t_0} \frac{h_2}{t_1} \stackrel{|}{=} \frac{h_K}{t_{K-1}} \frac{h_K}{t_K} = L$$

A: L deterministic, $L \equiv \ell$, checkpoints deterministic and equally spaced, t = $\frac{h/K}{k}$ t = $\frac{2h/K}{k}$ t = $\frac{(K-1)h/K}{k}$

$$t_1 = h/K, t_2 = 2h/K, \dots, t_{K-1} = (K-1)h/K.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

B: *L* deterministic, checkpoints deterministic but not equally spaced.

$$0 \stackrel{|}{=} \frac{h_1}{t_0} \frac{h_2}{t_1} \stackrel{|}{=} \frac{h_K}{t_{K-1}} \frac{h_K}{t_K} = L$$

A: L deterministic, $L \equiv \ell$, checkpoints deterministic and equally spaced, $t_1 = h/K$, $t_2 = 2h/K$, $t_{K-1} = (K-1)h/K$

$$t_1 = h/K, t_2 = 2h/K, \ldots, t_{K-1} = (K-1)h/K.$$

- B: *L* deterministic, checkpoints deterministic but not equally spaced.
- C: T is deterministic, checkpoints random: outcome of order statistics K 1 i.i.d. uniform r.v.'s on (0, t).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ
Checkpoint modeling

$$0 \stackrel{|}{=} \frac{h_1}{t_0} \frac{h_2}{t_1} \stackrel{|}{=} \frac{h_K}{t_{K-1}} \frac{h_K}{t_K} = L$$

A: L deterministic, $L \equiv \ell$, checkpoints deterministic and equally spaced, t = $\frac{h}{K} = \frac{2h}{K}$ t = $\frac{2h}{K}$

$$t_1 = h/K, t_2 = 2h/K, \ldots, t_{K-1} = (K-1)h/K.$$

- B: *L* deterministic, checkpoints deterministic but not equally spaced.
- C: T is deterministic, checkpoints random: outcome of order statistics K 1 i.i.d. uniform r.v.'s on (0, t).

D: *L* is random and the checkpoints equally spaced, $h_k \equiv h$. Thus, $K = \lfloor L/h \rfloor$ is random

Checkpoint modeling

$$0 \stackrel{|}{=} \frac{h_1}{t_0} \stackrel{|}{=} \frac{h_2}{t_1} \stackrel{|}{=} \frac{h_K}{t_{K-1}} \stackrel{|}{=} L$$

A: L deterministic, $L \equiv \ell$, checkpoints deterministic and equally spaced, $t = \frac{h/K}{L} = \frac{2h/K}{L} = \frac{1}{L} \frac{h/K}{L}$

$$t_1 = h/K, t_2 = 2h/K, \ldots, t_{K-1} = (K-1)h/K.$$

- B: *L* deterministic, checkpoints deterministic but not equally spaced.
- C: T is deterministic, checkpoints random: outcome of order statistics K 1 i.i.d. uniform r.v.'s on (0, t).

- D: *L* is random and the checkpoints equally spaced, $h_k \equiv h$. Thus, $K = \lfloor L/h \rfloor$ is random
- E: *L* is random and the checkpoints are given by $t_k = t'_k L$ for a deterministic set of constants $0 = t'_0 < t'_1 < \ldots < t'_{K-1} < 1$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Key questions when checkpointing

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Key questions when checkpointing

• $\overline{H}(x) = \mathbb{P}(X_1 + \cdots + X_K > x) \sim ??$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Key questions when checkpointing

- $\overline{H}(x) = \mathbb{P}(X_1 + \cdots + X_K > x) \sim ??$
- Which scheme is best given K?

Key questions when checkpointing

- $\overline{H}(x) = \mathbb{P}(X_1 + \cdots + X_K > x) \sim ??$
- Which scheme is best given K?
 Conjecture: main contribution to X comes from longest L_k.
 I.e., it should be best to take L_k = L/K (Model A).

Key questions when checkpointing

- $\overline{H}(x) = \mathbb{P}(X_1 + \cdots + X_K > x) \sim ??$
- Which scheme is best given K?
 Conjecture: main contribution to X comes from longest L_k.
 I.e., it should be best to take L_k = L/K (Model A).

NB: ignores cost of checkpointing $K = \infty$ is optimal if we are free to choose K; then X = L

Which scheme is best given K? Take L deterministic, $L \equiv \ell$ (Models A,B,C).

$$0 \stackrel{[h_1]{}}{=} t_0 \qquad \qquad h_2 \qquad \qquad h_K \\ t_1 \qquad t_2 \qquad t_{K-1} \qquad \qquad t_K = L = \ell$$

- A: Checkpoints are deterministic and equally spaced, $t_1 = t/K, t_2 = 2t/K, ..., t_{K-1} = (K-1)t/K.$ Equivalently, $h_k = t/K.$
- B: Checkpoints are deterministic but not equally spaced, $h_k \neq h_\ell$ for $k \neq \ell$.
- C: Checkpoints are random: the set $\{t_1, \ldots, t_{K-1}\}$ is the outcome of K - 1 i.i.d. uniform r.v.'s on (0, t). That is, $t_1 < \cdots < t_{K-1}$ are the order statistics of K - 1 i.i.d. uniform r.v.'s on (0, t).

Conjecture: main contribution to X comes from longest T_k . I.e., it should be best to take $T_k = T/K$ (Model A).

.

Ordering of checkpointing models A,B,C

Conjecture I:

Checkpointing is always an improvement on simple RESTART.

.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Conjecture I:

Checkpointing is always an improvement on simple RESTART.

Conjecture II:

main contribution to X comes from longest L_k . I.e., it should be best to take $L_k = L/K$ (Model A).

Conjecture I:

Checkpointing is always an improvement on simple RESTART.

Conjecture II:

main contribution to X comes from longest L_k . I.e., it should be best to take $L_k = L/K$ (Model A).

Wrong for all failure distributions G;

Conjecture I:

Checkpointing is always an improvement on simple RESTART.

Conjecture II:

main contribution to X comes from longest L_k . I.e., it should be best to take $L_k = L/K$ (Model A).

Wrong for all failure distributions G; Right for Poisson failures + something more.

Conjecture I:

Checkpointing is always an improvement on simple RESTART.

Conjecture II:

main contribution to X comes from longest L_k . I.e., it should be best to take $L_k = L/K$ (Model A).

Wrong for all failure distributions G; Right for Poisson failures + something more.

What does improvement, best mean?

Conjecture I:

Checkpointing is always an improvement on simple RESTART.

Conjecture II:

main contribution to X comes from longest L_k . I.e., it should be best to take $L_k = L/K$ (Model A).

Wrong for all failure distributions G; Right for Poisson failures + something more.

What does improvement, best mean? E.g. (i) $\mathbb{E}X_A \leq \mathbb{E}X_B$ and $\mathbb{E}X_A \leq \mathbb{E}X_C$.

Conjecture I:

Checkpointing is always an improvement on simple RESTART.

Conjecture II:

main contribution to X comes from longest L_k . I.e., it should be best to take $L_k = L/K$ (Model A).

Wrong for all failure distributions G; Right for Poisson failures + something more.

What does improvement, best mean? E.g. (i) $\mathbb{E}X_A \leq \mathbb{E}X_B$ and $\mathbb{E}X_A \leq \mathbb{E}X_C$. Another possibility: (ii) $\mathbb{P}(X_A > x) \leq \mathbb{P}(X_B > x)$ and $\mathbb{P}(X_A > x) \leq \mathbb{P}(X_C > x)$ for all large x

(ロ)、(型)、(E)、(E)、 E) の(の)

Counterexample

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Counterexample

t = 2, K = 2 (one checkpoint at 1)

Counterexample

t = 2, K = 2 (one checkpoint at 1) $g(u) = g_1(u) > 0$ arbitrary on $(0, 1], g(u) = g_2(u) = 0$ on (1, 2].

Counterexample

t = 2, K = 2 (one checkpoint at 1) $g(u) = g_1(u) > 0$ arbitrary on (0, 1], $g(u) = g_2(u) = 0$ on (1, 2]. $\mathbb{E}X_R$ and $\mathbb{E}X_A$ easily computable with result $\mathbb{E}X_R < \mathbb{E}X_A$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Counterexample

t = 2, K = 2 (one checkpoint at 1) $g(u) = g_1(u) > 0$ arbitrary on (0, 1], $g(u) = g_2(u) = 0$ on (1, 2]. $\mathbb{E}X_R$ and $\mathbb{E}X_A$ easily computable with result $\mathbb{E}X_R < \mathbb{E}X_A$

Intuitive explanation:

Placing checkpoint at 1, failure mechanism starts afresh then. I.e., the failure rate becomes $g_1(u) > 0$ instead of $g_2(u) = 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Positive results

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Positive results

Failure rate of U at u: $g(u)/\overline{G}(u)$

Positive results

Failure rate of U at $u: g(u)/\overline{G}(u)$ Stochastic ordering $X \leq_{st} Y$: either of (i) $\exists X^*, Y^*$ s.t. $X \stackrel{\mathcal{D}}{=} X^*, Y \stackrel{\mathcal{D}}{=} Y^*, X^* \leq Y^*$ a.s.;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Positive results

Failure rate of U at $u: g(u)/\overline{G}(u)$ Stochastic ordering $X \preceq_{st} Y$: either of (i) $\exists X^*, Y^*$ s.t. $X \stackrel{\mathcal{D}}{=} X^*, Y \stackrel{\mathcal{D}}{=} Y^*, X^* \leq Y^*$ a.s.; (ii) $\mathbb{E}f(X) \leq \mathbb{E}f(Y)$ when $f \uparrow$ (implies $\mathbb{E}X \leq \mathbb{E}Y$)

Positive results

Failure rate of U at $u: g(u)/\overline{G}(u)$ Stochastic ordering $X \leq_{st} Y$: either of (i) $\exists X^*, Y^*$ s.t. $X \stackrel{\mathcal{D}}{=} X^*, Y \stackrel{\mathcal{D}}{=} Y^*, X^* \leq Y^*$ a.s.; (ii) $\mathbb{E}f(X) \leq \mathbb{E}f(Y)$ when $f \uparrow$ (implies $\mathbb{E}X \leq \mathbb{E}Y$) (iii) tail ordering $\mathbb{P}(X > x) \leq \mathbb{P}(Y > x)$.

Positive results

Failure rate of U at $u: g(u)/\overline{G}(u)$ Stochastic ordering $X \leq_{st} Y$: either of (i) $\exists X^*, Y^* \text{ s.t. } X \stackrel{\mathcal{D}}{=} X^*, Y \stackrel{\mathcal{D}}{=} Y^*, X^* \leq Y^* \text{ a.s.};$ (ii) $\mathbb{E}f(X) \leq \mathbb{E}f(Y)$ when $f \uparrow$ (implies $\mathbb{E}X \leq \mathbb{E}Y$) (iii) tail ordering $\mathbb{P}(X > x) \leq \mathbb{P}(Y > x)$.

Theorem

Assume that the failure rate $\mu(t) = g(t)/\overline{G}(t)$ of G is non-decreasing. Then $X_{\rm A}(t) \preceq_{\rm st} X_{\rm B}(t) \preceq_{\rm st} X_{\rm C}(t) \preceq_{\rm st} X_{\rm R}(t)$.

Positive results

Failure rate of U at $u: g(u)/\overline{G}(u)$ Stochastic ordering $X \leq_{st} Y$: either of (i) $\exists X^*, Y^*$ s.t. $X \stackrel{\mathcal{D}}{=} X^*, Y \stackrel{\mathcal{D}}{=} Y^*, X^* \leq Y^*$ a.s.; (ii) $\mathbb{E}f(X) \leq \mathbb{E}f(Y)$ when $f \uparrow$ (implies $\mathbb{E}X \leq \mathbb{E}Y$) (iii) tail ordering $\mathbb{P}(X > x) \leq \mathbb{P}(Y > x)$.

Theorem

Assume that the failure rate $\mu(t) = g(t)/\overline{G}(t)$ of G is non-decreasing. Then $X_{\rm A}(t) \preceq_{\rm st} X_{\rm B}(t) \preceq_{\rm st} X_{\rm C}(t) \preceq_{\rm st} X_{\rm R}(t)$.

Main case: Poisson failures.

Limit theorems models A,B,C. Comparison with R

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Limit theorems models A,B,C. Comparison with R

Fixed task length ℓ , Poisson(μ) failures.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Limit theorems models A,B,C. Comparison with R

Fixed task length ℓ , Poisson(μ) failures. $\mathbb{P}(X_R(t) > x) \sim C_R e^{-\gamma(\ell)x},$ $\gamma(\ell)$ solves $\int_0^\ell e^{\gamma(\ell)y} \mu e^{-\mu y} dy = 1; \gamma(\ell) \downarrow 0, t \to \infty.$

Limit theorems models A,B,C. Comparison with R

Fixed task length ℓ , Poisson(μ) failures. $\mathbb{P}(X_R(t) > x) \sim C_R e^{-\gamma(\ell)x},$ $\gamma(\ell)$ solves $\int_0^{\ell} e^{\gamma(\ell)y} \mu e^{-\mu y} dy = 1; \gamma(\ell) \downarrow 0, t \to \infty.$ Model A: $X_A(t) = X_{R,1}(\ell/K) + \dots + X_{R,K}(\ell/K)$

Limit theorems models A,B,C. Comparison with R

Fixed task length ℓ , Poisson(μ) failures. $\mathbb{P}(X_R(t) > x) \sim C_R e^{-\gamma(\ell)x},$ $\gamma(\ell) \text{ solves } \int_0^\ell e^{\gamma(\ell)y} \mu e^{-\mu y} dy = 1; \ \gamma(\ell) \downarrow 0, \ t \to \infty.$ Model A: $X_A(t) = X_{R,1}(\ell/K) + \cdots + X_{R,K}(\ell/K)$ $\mathbb{P}(X_A(\ell) > x) \sim C_A x^{K-1} e^{-\gamma(\ell/K)x} \ll \mathbb{P}(X_R(\ell) > x)$

Limit theorems models A,B,C. Comparison with R

Fixed task length ℓ , Poisson(μ) failures. $\mathbb{P}(X_R(t) > x) \sim C_R e^{-\gamma(\ell)x},$ $\gamma(\ell) \text{ solves } \int_0^\ell e^{\gamma(\ell)y} \mu e^{-\mu y} dy = 1; \ \gamma(\ell) \downarrow 0, \ t \to \infty.$ Model A: $X_A(t) = X_{R,1}(\ell/K) + \dots + X_{R,K}(\ell/K)$ $\mathbb{P}(X_A(\ell) > x) \sim C_A x^{K-1} e^{-\gamma(\ell/K)x} \ll \mathbb{P}(X_R(\ell) > x)$

Model B: $X_B(\ell) = X_R(\ell_1) + \cdots + X_R(\ell_K)$

Limit theorems models A,B,C. Comparison with R

Fixed task length ℓ , Poisson(μ) failures. $\mathbb{P}(X_R(t) > x) \sim C_R e^{-\gamma(\ell)x},$ $\gamma(\ell) \text{ solves } \int_{0}^{\ell} e^{\gamma(\ell)y} \mu e^{-\mu y} dy = 1; \ \gamma(\ell) \downarrow 0, \ t \to \infty.$ Model A: $X_A(t) = X_{R,1}(\ell/K) + \cdots + X_{R,K}(\ell/K)$ $\mathbb{P}(X_{\mathcal{A}}(\ell) > x) \sim C_{\mathcal{A}} x^{K-1} e^{-\gamma(\ell/K)x} \ll \mathbb{P}(X_{\mathcal{B}}(\ell) > x)$ Model B: $X_B(\ell) = X_R(\ell_1) + \cdots + X_R(\ell_K)$ $\mathbb{P}(X_B(\ell) > x) \sim C_B e^{-\gamma(\ell^*)x}, \ \ell^* = \max(\ell_1, \ldots, \ell_K)$ $\mathbb{P}(X_{\mathcal{A}}(\ell) > x) \ll \mathbb{P}(X_{\mathcal{B}}(\ell) > x) \ll \mathbb{P}(X_{\mathcal{R}}(\ell) > x)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Limit theorems models A,B,C. Comparison with R

Fixed task length ℓ , Poisson(μ) failures. $\mathbb{P}(X_R(t) > x) \sim C_R e^{-\gamma(\ell)x},$ $\gamma(\ell) \text{ solves } \int_0^\ell \mathrm{e}^{\gamma(\ell)y} \mu \mathrm{e}^{-\mu y} \,\mathrm{d}y \ = \ 1; \ \gamma(\ell) \downarrow 0, \ t \to \infty.$ Model A: $X_A(t) = X_{R,1}(\ell/K) + \cdots + X_{R,K}(\ell/K)$ $\mathbb{P}(X_{\mathcal{A}}(\ell) > x) \sim C_{\mathcal{A}} x^{K-1} e^{-\gamma(\ell/K)x} \ll \mathbb{P}(X_{\mathcal{B}}(\ell) > x)$ Model B: $X_B(\ell) = X_R(\ell_1) + \cdots + X_R(\ell_K)$ $\mathbb{P}(X_B(\ell) > x) \sim C_B e^{-\gamma(\ell^*)x}, \ell^* = \max(\ell_1, \ldots, \ell_K)$ $\mathbb{P}(X_{\mathcal{A}}(\ell) > x) \ll \mathbb{P}(X_{\mathcal{B}}(\ell) > x) \ll \mathbb{P}(X_{\mathcal{R}}(\ell) > x)$ Model C: $X_A(t) = X_R(\Delta_1) + \cdots + X_R(\Delta_K)$ $\Delta_1, \ldots, \Delta_K$ uniform spacings of $[0, \ell]$
Limit theorems models A,B,C. Comparison with R

Fixed task length ℓ , Poisson(μ) failures. $\mathbb{P}(X_R(t) > x) \sim C_R e^{-\gamma(\ell)x},$ $\gamma(\ell) \text{ solves } \int_{2}^{\ell} e^{\gamma(\ell)y} \mu e^{-\mu y} dy = 1; \ \gamma(\ell) \downarrow 0, \ t \to \infty.$ Model A: $X_A(t) = X_{R,1}(\ell/K) + \cdots + X_{R,K}(\ell/K)$ $\mathbb{P}(X_{\mathcal{A}}(\ell) > x) \sim C_{\mathcal{A}} x^{K-1} e^{-\gamma(\ell/K)x} \ll \mathbb{P}(X_{\mathcal{B}}(\ell) > x)$ Model B: $X_B(\ell) = X_R(\ell_1) + \cdots + X_R(\ell_K)$ $\mathbb{P}(X_B(\ell) > x) \sim C_B e^{-\gamma(\ell^*)x}, \ell^* = \max(\ell_1, \ldots, \ell_K)$ $\mathbb{P}(X_{\mathcal{A}}(\ell) > x) \ll \mathbb{P}(X_{\mathcal{B}}(\ell) > x) \ll \mathbb{P}(X_{\mathcal{R}}(\ell) > x)$ Model C: $X_A(t) = X_R(\Delta_1) + \cdots + X_R(\Delta_K)$ $\Delta_1, \ldots, \Delta_K$ uniform spacings of $[0, \ell]$ $\mathbb{P}(X_{\mathcal{C}}(\ell) > x) \sim \frac{C_{\mathcal{C}}}{x^{K-1}} e^{-\gamma(\ell)x},$ $\mathbb{P}(X_B(t) > x) \ll \mathbb{P}(X_C(t) > x) < \mathbb{P}(X_R(t) > x)$ is the set of the s

Limit theorems models A,B,C. Comparison with R

Fixed task length ℓ , Poisson(μ) failures. $\mathbb{P}(X_R(t) > x) \sim C_R e^{-\gamma(\ell)x},$ $\gamma(\ell) \text{ solves } \int_{2}^{\ell} e^{\gamma(\ell)y} \mu e^{-\mu y} dy = 1; \ \gamma(\ell) \downarrow 0, \ t \to \infty.$ Model A: $X_A(t) = X_{R,1}(\ell/K) + \cdots + X_{R,K}(\ell/K)$ $\mathbb{P}(X_{\mathcal{A}}(\ell) > x) \sim C_{\mathcal{A}} x^{K-1} e^{-\gamma(\ell/K)x} \ll \mathbb{P}(X_{\mathcal{B}}(\ell) > x)$ Model B: $X_B(\ell) = X_R(\ell_1) + \cdots + X_R(\ell_K)$ $\mathbb{P}(X_B(\ell) > x) \sim C_B e^{-\gamma(\ell^*)x}, \ell^* = \max(\ell_1, \ldots, \ell_K)$ $\mathbb{P}(X_{\mathcal{A}}(\ell) > x) \ll \mathbb{P}(X_{\mathcal{B}}(\ell) > x) \ll \mathbb{P}(X_{\mathcal{R}}(\ell) > x)$ Model C: $X_A(t) = X_R(\Delta_1) + \cdots + X_R(\Delta_K)$ $\Delta_1, \ldots, \Delta_K$ uniform spacings of $[0, \ell]$ $\mathbb{P}(X_{\mathcal{C}}(\ell) > x) \sim \frac{C_{\mathcal{C}}}{x^{K-1}} e^{-\gamma(\ell)x},$ $\mathbb{P}(X_B(t) > x) \ll \mathbb{P}(X_C(t) > x) < \mathbb{P}(X_R(t) > x)$ is the set of the s

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Limit theorems, Model D

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Limit theorems, Model D

T random, Poisson(μ) failures checkpoints equally spaced, $h_k \equiv h$ for k < K, $K = \lceil T/h \rceil$

Limit theorems, Model D

T random, Poisson(μ) failures checkpoints equally spaced, $h_k \equiv h$ for k < K, $K = \lceil T/h \rceil$

Theorem

Assume F gamma-like, $f(t) \sim c_F t^{\alpha} e^{-\lambda t}$. Then $\mathbb{P}(X_D > x) \sim C_D e^{-\gamma_D x}$ for some $C_D, \gamma_D > 0$.

Limit theorems, Model D

T random, Poisson(μ) failures checkpoints equally spaced, $h_k \equiv h$ for k < K, $K = \lceil T/h \rceil$

Theorem

Assume F gamma-like, $f(t) \sim c_F t^{\alpha} e^{-\lambda t}$. Then $\mathbb{P}(X_D > x) \sim C_D e^{-\gamma_D x}$ for some $C_D, \gamma_D > 0$.

RESTART comparison: $\mathbb{P}(X_R > x) \sim \frac{C_R}{x^{\lambda/\mu}}$ Reduction from power tail to exponential tail.

Limit theorems, Model D

T random, Poisson(μ) failures checkpoints equally spaced, $h_k \equiv h$ for k < K, $K = \lceil T/h \rceil$

Theorem

Assume F gamma-like,
$$f(t) \sim c_F t^{\alpha} e^{-\lambda t}$$
. Then
 $\mathbb{P}(X_D > x) \sim C_D e^{-\gamma_D x}$ for some $C_D, \gamma_D > 0$.

RESTART comparison:
$$\mathbb{P}(X_R > x) \sim \frac{C_R}{x^{\lambda/\mu}}$$

Reduction from power tail to exponential tail.

Theorem

Assume F power-tailed,
$$\mathbb{P}(T > t) = L(t)/x^{\alpha}$$
. Then
 $\mathbb{P}(X_{\mathrm{D}} > x) \sim \frac{C_{\mathrm{D}}L(x)}{h^{\alpha}x^{\alpha}}$.

Limit theorems, Model D

T random, Poisson(μ) failures checkpoints equally spaced, $h_k \equiv h$ for k < K, $K = \lceil T/h \rceil$

Theorem

Assume F gamma-like,
$$f(t) \sim c_F t^{\alpha} e^{-\lambda t}$$
. Then
 $\mathbb{P}(X_D > x) \sim C_D e^{-\gamma_D x}$ for some $C_D, \gamma_D > 0$.

RESTART comparison:
$$\mathbb{P}(X_R > x) \sim \frac{C_R}{x^{\lambda/\mu}}$$

Reduction from power tail to exponential tail.

Theorem

Assume F power-tailed,
$$\mathbb{P}(T > t) = L(t)/x^{\alpha}$$
. Then
 $\mathbb{P}(X_{\mathrm{D}} > x) \sim \frac{C_{\mathrm{D}}L(x)}{h^{\alpha}x^{\alpha}}$.

RESTART comparison: $\mathbb{P}(X_R > x) \sim C_R \exp\{-\theta \log \log x\}$ Heavier than any power; reduction to power tail.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Limit theorems, Model E

Limit theorems, Model E

T random, Poisson(μ) failures checkpoints $t_k = t'_k T$ for a deterministic set of constants $0 = t'_0 < t'_1 < \ldots < t'_{K-1} < 1.$

Limit theorems, Model E

T random, Poisson(μ) failures checkpoints $t_k = t'_k T$ for a deterministic set of constants $0 = t'_0 < t'_1 < \ldots < t'_{K-1} < 1.$

Theorem

Assume
$$t_k = kT/K$$
 and that F is exponential(λ). Then
 $\mathbb{P}(X_{\mathrm{E}} > x) \sim \frac{C_{\mathrm{E}}}{x^{\lambda/\mu+K-1}}$

Limit theorems, Model E

T random, Poisson(μ) failures checkpoints $t_k = t'_k T$ for a deterministic set of constants $0 = t'_0 < t'_1 < \ldots < t'_{K-1} < 1.$

Theorem

Assume
$$t_k = kT/K$$
 and that F is exponential(λ). Then
 $\mathbb{P}(X_{\mathrm{E}} > x) \sim \frac{C_{\mathrm{E}}}{x^{\lambda/\mu+K-1}}$

RESTART comparison: $\mathbb{P}(X_R > x) \sim \frac{C_R}{x^{\lambda/\mu}}$ Still power tail, but each checkpoint improves the power by 1.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Thanks

to all co-authors

to all co-authors

to the audience for your patience

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

to all co-authors

to the audience for your patience

and to Nick