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The aim

Estimate the integrated volatility Ct =
∫ t

0
σ2

s ds of the 1-dimensional process

Xt = X0 +
∫ t

0

bsds +
∫ t

0

σsdWs + jumps

observed at discrete times within the fixed time interval [0, t], with a mesh going to 0
(high frequency setting).

Three features:

• X has jumps, possibly with high-activity (= BG index ≥ 1)

• the sampling times 0 = T (n, 0) < T (n, 1) < · · · < T (n, i) < · · · may be irregular,
possibly random (regular sampling ⇔ T (n, i + 1)− T (n, i) = ∆n)

• there is a microstructure noise: instead of XT (n,i) we observe

Y n
i = XT (n,i) + χn

i .



Notation

∆(n, i) = T (n, i)− T (n, i− 1)

∆n
i V = VT (n,i) − VT (n,i−1) V : any process

Regular sampling means ∆(n, i) = ∆n.

Spot Lévy measures of X: the compensator ν of the jump measure of X is assumed to
have the factorization

ν(ω, dt, dx) = dt Fω,t(dx)

(this is the “Itô semimartingale property”). The measures Ft = Fω,t are the spot Lévy
measure, and

∫
(x2 ∧ 1)Ft(dx) < ∞.



Problems with jumps (no-noise and regular sampling cases)

• X continuous: the “optimal” estimator for Ct (in the sense of LAN or LAMN
properties)

Ĉn
t =

[t/∆n]∑

i=1

(∆n
i X)2

the rate is 1√
∆n

, the (conditional) asymptotic variance is 2
∫ t

0
σ4

s ds.

• X discontinuous: Ĉn
t no longer consistent, and one has 2 main methods:

truncation: Ĉ ′nt =
[t/∆n]∑

i=1

(∆n
i X)2 1{|∆n

i X|≤un}

multipowers: Ĉ ′′nt = αp

[t/∆n]−k+1∑

i=1

k−1∏

j=0

|∆n
i+jX|2/k



Both these are consistent, and have a CLT with rate 1√
∆n

and the optimal variance
for truncations and a (slightly) bigger variance for multipowers, under mild assump-
tions on bt, σt (stronger for multipowers, though, for example 1/σ2

t should be locally
bounded), PLUS the (strong) additional assumption

∫
(|x|r ∧ 1)Ft(dx) is locally bounded (1)

for some r < 1.

More: if a sequence Sn is such that vn(Sn − Ct) is tight for some sequence vn → ∞,
uniformly for all X for which bt, σt and (1) are uniformly bounded, then the minimax
rate vn satisfies

r ≤ 1 ⇒ vn ¹ 1√
∆n

, r ≤ 1 ⇒ vn ¹
( log(1/∆n)

∆n

)(2−r)/2

However: when r > 1 and the jumps of X are “close enough” to those of a stable
process, then it becomes possible to get the 1√

∆n
rate (no contradiction: we have

switched from a non-parametric situation to a semi-parametric one).



Assumptions on X

Xt = X0 +
∫ t

0

bs ds+
∫ t

0

σs dWs +
∫ t

0

∫

E

δ(s, z)(p= −q= )(ds, dz)+
∫ t

0

∫

E

δ′(s, z)p= (ds, dz)

σt = σ0+
∫ t

0

bσ
s ds+

∫ t

0

Hσ
s dW ′

s+
∫ t

0

∫

E

δσ(s, z)(p= −q= )(ds, dz)+
∫ t

0

∫

E

δ′σ(s, z)p= (ds, dz)

• W and W ′ are two correlated Brownian motions and p= is a Poisson measure on R+×E
with (deterministic) compensator q= (dt, dz) = dt⊗η(dz) (η is a σ-finite measure on the
Polish space E).

• up to some localization:

bt, b
σ
t ,Hσ

t are optional bounded

δ, δ′, δσ, δ′σ are predictable, |δ|, |δσ| ≤ 1 and, for some η-integrable function J ,

|δ(t, z)|r′ , |δ′(t, z)|r ∧ 1, |δσ(t, z)|2, |δ′σ(t, z)| ∧ 1| ≤ J(z), with r < 1, r′ < 2

and the processes Vt = bt, Hσ
t , δ(t, z)r′/J(z) for all z satisfy for all finite stopping times

T ≤ S:
E( sup

s∈[T,S]

|Vs − VT |2 | FT ) ≤ KE(S − T | FT ) (2)
.../...



We also need a structural assumption on the high-activity jumps of X, expressed
in terms of the BG (Blumenthal-Getoor) index, or successive BG indices:

There is an integer M ≥ 0, a finite family 2 > β1 > · · ·βM > 0 of numbers, and M
nonnegative predictable càdlàg a1

t , . . . , a
M
t , such that each (am

t )1/βm satisfies (2), and
the tail (random) functions F t(x) = Ft([−x, x]c) have

∣∣∣ F t(x)−
M∑

m=1

am
t

xβm

∣∣∣ ≤ K

xr

Example:

Xt = X0 +
∫ t

0

bs ds +
∫ t

0

σs dWs +
M∑

m=1

∫ t

0

γm
s− dY m

s +
∫ t

0

∫

E

δ′(s, z)p= (ds, dz)

with Y m independent pure jumps Lévy processes (with arbitrary dependencies with
p= ) and γm’s are càdlàg adapted processes satisfying (2), provided the Lévy measure of
Y m satisfies |Fm(x)− 1/xβm | ≤ K/xr (e.g., Y m is βm-stable or tempered stable).

We then have am
t = |γm

t |βm .



Assumptions on the observation scheme

Assumption: Each T (n, i) is a stopping time, and

∆(n, i + 1) = ∆nλT (n,i)Φn
i+1

• λt positive càdlàg adapted, satisfying (2) and 1/K ≤ λt ≤ K (up to localization).

• The variables Φn
i are positive, E(Φn

i+1 | FT (n,i)) = 1 and E(|Φn
i |q | FT (n,i)) ≤ Kq,

and conditionally on FT (n,i) the variable Φn
i+1 is independent of the σ-field F ′∞ =∨

(Xs : s ≥ 0).

This implies in particular that Nn
t =

∑
i≥1 1{T (n,i)≤t} satisfies

∆nNn
t

u.c.p.=⇒ Λt :=
∫ t

0

1
λs

ds.

Examples:

Regular schemes.

Poisson schemes with parameter 1/∆n and independent of F ′∞.

Modulated random walk schemes, where the Φn
i ’s are i.i.d. independent of X.



Assumptions on the noise

Assumption: We observe Y n
i = XT (n,i) + χn

i , where for each n the variables (χn
i :

i ≥ 0) are independent, conditionally on F∞, and satisfy

E(χn
i |F∞) = 0, E((χn

i )2 |F∞) = γT (n,i), E((χn
i )3 |F∞) = γ′T (n,i)

T (n, i) ≤ τm ⇒ E((χn
i )8 | F∞) ≤ K

with two càdlàg adapted processes γt ≥ 0 and γ′t satisfying (2) (up to localization)

A centered white noise (with the χn
i i.i.d. and independent of F∞ satisfies this; a

modulated white noise also satisfies this.

Another important example. Let ρj
t ≥ 0 be càdlàg adapted nonnegative with∑

j∈Z ρj
t = 1 and ρj

t = ρ−j
t and

∑
j∈Z ρj

t |j|8 ≤ K. For each n let (Zn
i : i ≥ 1) be

i.i.d. conditionally on F∞, with density x 7→ ∑
j∈Z ρj

T (n,j)1[j,j+1)(x). The observation
at time T (n, i) is Y n

i = [XT (n,i) + Zn
i ], so we have a additive (modulated) white noise

plus rounding.

Remark: If we have “pure rounding”, i.e. if we observe [XT (n,i)] (or [XT (n,i)] + 1
2 to

“center” the noise), then no consistent estimator for Ct exists.



Pre-averaging

The de-noising method is pre-averaging, but other methods could probably be used
as well. Take a weight (or, kernel) function g on R with

g is continuous, piecewise C1 with a piecewise Lipschitz derivative g′,
s /∈ (0, 1) ⇒ g(s) = 0,

∫ 1

0
g(s)2ds > 0,

for example g(x) = (x ∧ (1− x)) 1[0,1](x). With a sequence hn →∞ of integers, set

gn
i = g(i/hn), gn

i = gn
i+1 − gn

i

φn
j = 1

hn

∑
i∈Z gn

i gn
i−j , φn

j = hn

∑
i∈Z gn

i gn
i−j

φ(s) =
∫

g(u)g(u− s) du, φ(s) =
∫

g′(u)g′(u− s) du.

The pre-averaged returns of the observed values Y n
i are

Ỹ n
i =

hn−1∑

j=1

gn
j (Y n

i+j − Y n
i+j−1) = −

hn−1∑

j=0

gn
j Y n

i+j .

For hn, the (rate)-optimal choice is

hn =
θ√
∆n

+ o(∆1/4
n ), for some θ > 0. (3)



Initial estimators

We need anther sequence kn ≥ 1 of integers and a sequence un of positive reals,
such that

un → 0, k2
n/hnu8

n → 0, k2+ε
n /hn →∞ ∀ε > 0 (4)

We set wn = 2hnkn and, for any y > 0,

L(y)n
j =

1
kn

kn−1∑

l=0

cos
(
yun

√
hn (Ỹ n

jwn+2lhn
− Ỹ n

jwn+(2l+1)hn
)
)

(a proxy for the real part of the empirical characteristic function of the returns, over
a window of length 2wn). Taking a difference above allows us to “symmetrize” the
problem.

Then, a natural estimator for the integrated volatility over the time interval
[T (n, jwn), T (n, (j + 1)wn)] is then

ĉ(y)n
j = − 1

y2u2
nφn

0

log
(
L(y)n

j

∨ 1
hn

)
.



We need to de-bias these estimators, to account for the noise, and also for some
intrinsic distortion present even when there is no noise. So, the initial estimators for
the integrated volatility are then, with sinh(x) = 1

2 (ex − e−x) the hyperbolic sine:

Ĉ(y)n
t =

2kn

hn

[Nn
t /wn]−1∑

j=0

(
ĉ(y)n

j −
(
sinh(y2u2

nĉ(y)n
j )

)2

y2u2
nknφn

0

− φn
0

2wnφn
0

wn∑

l=1

(∆n
i+lY

n)2
)

We will see that Ĉ(y)T converges to CT , and there is an associated Central Limit
Theorem with the convergence rate 1/∆1/4

n . However, this CLT exhibits a non-negligible
bias, and is in fact about the processes (where χ(β) =

∫∞
0

sin y
yβ dy):

Z(y)n
t = 1

∆
1/4
n

(
Ĉ(y)n

t − Ct −
M∑

m=1
Am(y)n

t

)
, where

Am(y)n
t = 2χ(βm) φ̃n,βm

φn
0

(yun)βm−2∆nh
βm/2−1
n Am

t .

The next theorem presents the CLT for Z(y)n
t , and also for the differences Z(y)n

t −Z(1)n
t

when y > 0. The reason for giving a CLT for these differences is that they will play a
key role in the de-biasing procedure developed later on.



Theorem. With hn, kn, un as above, for each t > 0 we have the F∞-stable convergence
in law:

(
Z(1)n

t ,
( 1
u2

n

(Z(y)n
t − Z(1)n

t )
)
y∈Y

) L−s=⇒ (
Zt, ((y2 − 1)Zt)y∈Y

)
,

where the limit is defined on an extension (Ω̃, F̃ , (F̃t)t≥0, P̃) of the original space
(Ω,F , (Ft)t≥0,P) and can be written as

Zt =
2

θ3/2

∫ t

0

θ2csλs + φ(0)
φ(0) γs√

λs

dW (1)
s , Zt =

2φ(0)√
3 θ3/2

∫ t

0

(θ2csλs + φ(0)
φ(0) γs)2√

λs

dW (2)
s .

where W (1) and W (2) are two independent Brownian motions, independent of F .

Zt is F-conditionally centered Gaussian, with conditional variance

Ẽ((Zt)2 | F) =
4
θ3

∫ t

0

(θ2csλs + φ(0)
φ(0)γs)2

λs
ds



The case M = 0

M = 0 is equivalent (upon reformulating the basic equation) to the case where

Xt = X0 +
∫ t

0

bs ds +
∫ t

0

σs dWs +
∫ t

0

∫

E

δ(s, z)δ′(s, z)p= (ds, dz)

and the last term is pure jump with finite variation. The bias term disappears, so

1

∆1/4
n

(Ĉ(y)n
t − Ct)

L−s−→ Zt

For a feasible CLT we need to have consistent estimators for the conditional variance.
Among many possible choices, one can take

V̂ n
t =

8kn

h2
n

[Nn
t /wn]−1∑

j=0

(ĉ(1)n
j )2



For all t > 0 we have the following convergence in probability:

1√
∆n

V̂ n
t

P−→ 4
θ3

∫ t

0

(θ2csλs + φ
φγs)2

λs
ds

Therefore, because of the stable convergence in law we get

Theorem. If M = 0, for any t > 0 the variables (Ĉ(1)n
t − Ct)/

√
V̂ n

t converge stably

in law to an N (0, 1) random variable, in restriction to the set {Ct +
∫ t

0
γs ds > 0}.



The case M = 1

When M = 1 we have

Ĉ(y)n
t = Ct + A1(y)n

t + ∆1/4
n Z(y)n

t + oP (∆1/4
n )

= Ct + 2χ(β1) φ̃n,β1

φn
0

(yun)β1−2∆nh
β1/2−1
n A1

t + ∆1/4
n Z(y)n

t + oP (∆1/4
n )

and the bias term has an order of magnitude bigger than ∆1/4
n . However Ĉ(y)n

t −Ĉ(y′)n
t

is an estimator of this bias term, so we can set for some ζ > 1:

Ĉ(y, ζ)n
t = Ĉ(y)n

t −
(Ĉ(ζu)n

t − Ĉ(y)n
t )2

Ĉ(ζ2y)n
t − 2Ĉ(ζy)n

t + Ĉ(y)n
t

Theorem. If M = 0, for any t > 0 the variables (Ĉ(1, ζ)n
t −Ct)/

√
V̂ n

t converge stably

in law to an N (0, 1) random variable, in restriction to the set {Ct +
∫ t

0
γs ds > 0}..



The case M ≥ 2

When m ≥ 2 we have

Ĉ(y)n
t = Ct +

M∑
m=1

Am(y)n
t + ∆1/4

n Z(y)n
t + oP (∆1/4

n )

and the Am(y)n
t have an order of magnitude decreasing with m. The previous de-

biasing procedure removes only the biggest part A1(y)n
t , so in the presence of several

terms the procedure has to be iterated.

Iteration will work under some additional structure:

Assumption: The numbers 2− βm all belong to the set {jρ : j = 1, 2, · · · }, for some
unknown constant ρ ∈ (0, 1) (so necessarily M ≤ [2/ρ]).



Iterative procedure

Step 1 - initialization: Choose a real ζ > 1 and an integer k ≥ 1, and put Ĉ(y, ζ, 0)n
T =

Ĉ(y)n
t .

Step 2 - iteration: Assuming Ĉn(y, ζ, j− 1) known for some integer j between 1 and k,
define Ĉn(y, ζ, j) as

Ĉ(y, ζ, j)n
t = Ĉn(y, θ, j − 1)n

t + y2/(Nn
t )1/4

+ (Ĉn(ζy,θ,j−1)n
t −Ĉ(y,ζ,j−1)n

t )2

Ĉ(ζ2y,ζ,j−1)n
t −2Ĉ(θy,ζ,j−1)n

t +Ĉ(y,θ,j−1)n
t

.

Step 3: The final estimator is set to be Ĉ(y, ζ, N)n
T .

The asymptotic result for Ĉ(un, ζ, N)n
T is given in the following theorem.

Theorem. If we know that ρ ≥ ρ0 and if N ≥ 1/ρ0, the variables (Ĉ(y, ζ,N)n
t −

Ct)/
√

V̂ n
t converge stably in law to an N (0, 1) random variable, in restriction to the

set {Ct +
∫ t

0
γs ds > 0}.



Some problems:

1 - A stopping rule for the iteration above (almost done...?)

2 - Optimality

3 - The multi-dimensional case


