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Overview

I Exchangeability of in�nitely divisible laws

I Matrices that preserve exchangeability

I Mappings arising from time series or stochastic integrals that

preserve exchangeability
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Permutations on the integers

I let d ∈ {2, 3, 4, . . .} be a �xed integer

I a permutation of {1, . . . , d} is a bijection

π : {1, . . . , d} → {1, . . . , d}

I denote the set of all permutations on {1, . . . , d} by [d ].

I de�ne the permutation matrix of π by

Pπ =
(
eπ(1), eπ(2), . . . , eπ(d)

)
∈ Rd×d

I notice that Pπ(X1, . . . ,Xd)T = (Xπ−1(1), . . . ,Xπ−1(d))T

I permutation matrices are orthogonal, i.e.

PπP
T
π = Idd , PT

π = P−1π = Pπ−1 .
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Exchangeability of random vectors and measures

I A distribution µ = L(X ) of a random vector

X = (X1, . . . ,Xd)T is called exchangeable, if

L(X ) = L((Xπ(1), . . . ,Xπ(d))T ) ∀π ∈ [d ]. (1)

I (1) is equivalent to Pπµ = µ for all π ∈ [d ], where Pπµ
denotes the image measure de�ned by

Pπµ(B) = µ(P−1π (B)), B ∈ Bd .

I de�nition can be extended to general measures on (Rd ,Bd):

A measure µ on (Rd ,Bd) is exchangeable, if Pπµ = µ for all

permutations π ∈ [d ].
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Exchangeability of the normal distribution

I Let X be a normal random vector in Rd with mean m and

covariance matrix Σ.

Then PπX is N(Pπm,PπΣPT
π )

distributed.

I hence X is exchangeable i�

Pπm = m, PπΣPT
π = Σ, ∀π ∈ [d ]. (2)

I (2) is satis�ed i� m = (m1, . . . ,m1)T for some m1 ∈ R and Σ
commutes with permutations:

A matrix Σ ∈ Rd×d commutes with permutations if

PπΣ = ΣPπ ∀ π ∈ [d ].
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Exchangeable in�nitely divisible distributions

Theorem
Let µ be an in�nitely divisible distribution on Rd with characteristic

exponent Ψµ and characteristic triplet (A, ν, γ), i.e.
µ̂(z) = exp(Ψµ(z)) with

Ψµ(z) = −1

2
zTAz + iγT z +

∫
Rd

(e ix
T z − 1− ixT z1|x |≤1) ν(dx).

Then the following are equivalent:

(i) µ is exchangeable.

(ii) Ψµ(Pπz) = Ψµ(z) for all z ∈ Rd and π ∈ [d ].
(iii) The Gaussian covariance matrix A commutes with

permutations, the Lévy measure ν is exchangeable and γi = γj for
all i , j ∈ {1, . . . , d}, where γi denotes the i 'th component of γ.
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Exchangeability of stable distributions

A distribution µ on Rd is stable if it is Gaussian,

or if it is in�nitely

divisible with Gaussian covariance matrix A being 0 and s.t.

∃α ∈ (0, 2) and a �nite measure λ on S := {x ∈ Rd : |x | = 1} s.t.

ν(B) =

∫
S
λ(dξ)

∫ ∞
0

1B(rξ)
dr

r1+α
, B ∈ B(Rd).

Corollary

Let µ be an α-stable distribution with characteristic triplet (0, ν,
(γ1, . . . , γd)T ), where α ∈ (0, 2). Then µ is exchangeable if and

only if the spherical part λ of ν is exchangeable and if γi = γj for
all i , j ∈ {1, . . . , d}.
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Lévy copulas: de�nition; Tankov (2003), Cont and Tankov
(2004)

I Let ν be a Lévy measure concentrated on [0,∞)d

and de�ne

its tail integral Uν : [0,∞]d → [0,∞] by

Uν(x1, . . . , xd) :=

{
ν([x1,∞)× . . .× [xd ,∞)), (x1, . . . , xd) 6= 0,

∞, (x1, . . . , xd) = 0.

I de�ne further the marginal tail integrals Uνi by

Uνi (xi ) = Uν(0, . . . , 0, xi , 0, . . . , 0) =

{
νi ([xi ,∞)), xi ∈ (0,∞],

∞, xi = 0.

I a (positive) Lévy copula is a function C : [0,∞]d → [0,∞] s.t.

I C (x1, . . . , xd) = 0 if at least one of the xi is zero
I C (∞, . . . ,∞, xi ,∞, . . . ,∞) = xi ∀ xi ∈ [0,∞] ∀i =

1, . . . , d
I C (x1, . . . , xd) 6=∞ unless x1 = . . . = xd =∞
I C is d-increasing
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Lévy copulas - analogue of Theorem of Sklar

I a Lévy measure on [0,∞)d is uniquely determined by its tail

integral

I for every Lévy measure ν on [0,∞)d there exists a positive

Lévy copula C such that

Uν(x1, . . . , xd) = C (Uν1(x1), . . . ,Uνd (xd)) ∀ x1, . . . , xd ∈ [0,∞].
(3)

I the Lévy copula is uniquely determined on

Uν1([0,∞])× . . .× Uνd ([0,∞])

I if ν1, . . . , νd are one-dim. Lévy measures on [0,∞) and if C is

a positive Lévy copula, then the rhs of (3) de�nes the tail

integral of a Lévy measure ν on [0,∞)d with margins

ν1, . . . , νd and Lévy copula C , see Cont and Tankov (2004).
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Lévy copulas and Lévy measures with stable margins

I Barndor�-Nielsen and L. (2007):

if C is a positive Lévy copula, then there exists a unique Lévy

measure νC on [0,∞)d such that

νC ([x−11 ,∞)×. . .×[x−1d ,∞)) = C (x1, . . . , xd) ∀ x1, . . . , xd ∈ [0,∞]
(4)

which has unit 1-stable margins.

I conversely, to any Lévy measure νC on [0,∞)d with unit

1-stable margins, the left-hand side of (4) de�nes a positive

Lévy copula.
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Exchangeability of Lévy copulas

I De�nition
A positive Lévy copula C : [0,∞]d → [0,∞] is exchangeable, if

C (x1, . . . , xd) = C (xπ(1), . . . , xπ(d)) ∀ x1, . . . , xd ∈ [0,∞], π ∈ [d ].

I Theorem (Exchangeability and Lévy copulas)

(i) A positive Lévy copula C is exchangeable if and only if the Lévy

measure νC with unit 1-stable margins de�ned by (4) is

exchangeable.

(ii) Let ν be a Lévy measure on [0,∞)d with marginal Lévy

measures ν1, . . . , νd . If ν1 = . . . = νd and if an associated positive

Lévy copula C exists which is exchangeable, then ν is exchangeable.

Conversely, if ν is exchangeable and Uν1([0,∞]) = [0,∞] (i.e. ν1
has no atoms and is in�nite), then ν1 = . . . = νd and the unique

associated positive Lévy copula C is exchangeable.
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Exchangeability preserving matrices
I Denote by Jd ∈ Rd×d the matrix with all entries equal to 1

and recall that Idd ∈ Rd×d denotes the identity matrix.

I a matrix A ∈ Rd×d is said to be exchangeability preserving, if

L(AX ) is exchangeable for every exchangeable random vector

X in Rd .

I E0d = {A ∈ Rd×d : A exchangeability preserving, det(A) 6= 0}
Theorem (Dean and Verducci, 1990)

A matrix A ∈ Rd×d is exchangeability preserving if and only if for

every π ∈ [d ] there exists π′ ∈ [d ] such that

PπA = APπ′ .

Further, E0d can be characterized as

E0d = {A ∈ Rd×d : ∃ a, b ∈ R, a 6= 0, a 6= −db, π ∈ [d ]

such that A = aPπ + bJd}.
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Matrices that commute with permutations

I recall a matrix A ∈ Rd×d commutes with permutations, if

PπA = APπ for all permutations π ∈ [d ].

Theorem (Commenges, 2003)

(i) A matrix A ∈ Rd×d commutes with permutations, if and only if

there are a, b ∈ R such that

A = a Idd + bJd .

(ii) Let C ∈ Rd×d . Then L(CX ) is exchangeable for every

exchangeable normal distribution L(X ) on Rd if and only if C can

be represented in the form C = AQ, where A ∈ Rd×d commutes

with permutations and Q = (qij)i ,j=1,...,d ∈ Rd×d is an orthogonal

matrix that satis�es
∑d

j=1 qij =
∑d

j=1 q1j for all i ∈ {1, . . . , d}.
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Exchangeability preserving transformations

LetM1 andM2 be two classes of measures on Rd and

G :M1 →M2 a mapping. We say that G

(i) is exchangeability preserving if G (µ) is exchangeable whenever µ
is exchangeable,

(ii) commutes with permutations if Pπµ ∈M1 for all µ ∈M1 and

π ∈ [d ], and

PπG (µ) = G (Pπµ) ∀ µ ∈M1, π ∈ [d ].
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Exchangeability preserving transformations- examples

I de�nition consistent with linear transformations

G : Rd → Rd ,G (µ) = Aµ

I if the setM1 does not contain any exchangeable measure,

then any G :M1 →M2 will be exchangeability preserving,

but it does not need to commute with permutations

I ifM2 contains only exchangeable measures, then any

G :M1 →M2 is exchangeability preserving.

Theorem
LetM1 andM2 be two classes of measures on Rd . Then every

mapping G :M1 →M2 that commutes with permutations is

exchangeability preserving.
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Theorem
LetM1 andM2 be two classes of measures on Rd and

G :M1 →M2 an injective mapping that commutes with

permutations. Then its inverse G−1 : G (M1)→M1 also

commutes with permutations, in particular G−1 is exchangeability

preserving.
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Convolution with an exchangeable distribution I

I Let ρ = L(X ) be an exchangeable distribution on Rd and let

M1 =M2 be the class of all probability distributions on

(Rd ,Bd).

Then the mapping

Gρ :M1 →M2, µ 7→ µ ∗ ρ

commutes with permutations.

I Assume that ρ is also in�nitely divisible. Since

Ĝρ(µ)(z) = ρ̂(z)µ̂(z), it follows that Gρ is injective and hence

the inverse G−1ρ : Gρ(M1)→M2 commutes with

permutations. Hence ρ ∗ µ is exchangeable if and only if µ is

exchangeable, provided ρ is exchangeable.
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Convolution with an exchangeable distribution II

I Without extra assumptions on the exchangeable ρ, it is not
true that ρ ∗ µ is exchangeable if and only if µ is

exchangeable.

E.g. let X1,X2,X3,X4 be independent random

variables with

L(X1+X3) = L(X1+X4), L(X1) = L(X2) = L(X3) 6= L(X4).

Denote

ρ := L((X1,X2)T ), µ := L((X3,X4)T ).

Then ρ is exchangeable, µ is not exchangeable, and

ρ ∗ µ = L((X1 + X3,X2 + X4)T )

is exchangeable.

I the convolution of two non-exchangeable distributions can be

exchangeable
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Exchangeability of stationary solution of AR(1) equation

Theorem
Let Φ ∈ Rd×d such that all eigenvalues of Φ lie in

{z ∈ C : |z | < 1}. LetM1 be the set of all probability distributions

L(X ) on Rd with E log+ |X | <∞ andM2 be the set of all

probability distributions on Rd . Consider the mapping

GΦ :M1 →M2, L(Z0) 7→ L

( ∞∑
k=0

ΦkZ−k

)
, t ∈ Z,

where (Z−k)k∈N0 is an i.i.d. sequence with distribution

L(Z0) ∈M1.

It associates to every i.i.d. noise sequence (Zk)k∈Z the marginal

stationary distribution of the causal multivariate AR(1) process

Yt − ΦYt−1 = Zt , t ∈ Z, (5)
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Theorem (Continued)

(i) If Φ is exchangeability preserving (commutes w. p.), then GΦ is

exchangeability preserving (commutes w.p.).

(ii) LetM′1 be the subset of all i.d. µ ∈M1, and let

G ′Φ := GΦ|M′1 . If Φ commutes w.p., then G ′Φ commutes w.p., G ′Φ is

injective, and the inverse (G ′Φ)−1 : GΦ(M′1)→M′1 commutes w.p.

In particular, for L(Z0) ∈M′1, L
(∑∞

k=0 ΦkZ−k
)
is exchangeable

i� L(Z0) is exchangeable.

I If Φ commutes with permutations, exchangeability of

L
(∑∞

k=0 ΦkZ−k
)
does not imply exchangeability of L(Z0) in

general.

I Exchangeability of L
(∑∞

k=0 ΦkZ−k
)
and L(Z0) do not imply

that Φ commutes w. p. (is exchangeability preserving).

I Similar results hold for stationary solutions of random

recurrence equations Yt − ΦtYt−1 = Zt , t ∈ Z.
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In particular, for L(Z0) ∈M′1, L
(∑∞

k=0 ΦkZ−k
)
is exchangeable

i� L(Z0) is exchangeable.

I If Φ commutes with permutations, exchangeability of

L
(∑∞

k=0 ΦkZ−k
)
does not imply exchangeability of L(Z0) in

general.

I Exchangeability of L
(∑∞

k=0 ΦkZ−k
)
and L(Z0) do not imply

that Φ commutes w. p. (is exchangeability preserving).

I Similar results hold for stationary solutions of random

recurrence equations Yt − ΦtYt−1 = Zt , t ∈ Z.
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Exchangeability preserving integrals of Lévy processes

Theorem
Let L = (Lµt )t≥0 be an Rd -valued Lévy process with distribution µ,
and f = (f (t))t≥0 an Rd×d -valued deterministic function. LetM1

be the set of all distributions µ on Rd for which L(
∫∞
0

f (t) dLµt ) is

de�neable and consider the mapping

G :M1 →M2, µ 7→ L
(∫ ∞

0

f (t) dLµt

)
,

whereM2 denotes the set of all probability distributions on Rd .

(i) Suppose that f takes only values in the set of exchangeability

preserving matrices. Then G is exchangeability preserving.

(ii) Suppose that f takes only values in the set of matrices that

commute with permutations. Then G commutes with

permutations. If additionally G is injective, then the inverse

G−1 : G (M1)→M1 also commutes with permutations, so that in

this case,
∫∞
0

f (t) dLµt is exchangeable if and only if µ is

exchangeable.
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Self-decomposable distributions

Let c > 0 be �xed. A distribution σ on Rd is self-decomposable if

and only if it can be represented as an integral

σ = L
(∫ ∞

0

e−ct dLµt

)
for some Rd -valued Lévy process µ with �nite log-moment. The

process Lµ is called the background driving Lévy process

(terminology due to Barndor��Nielsen and Shephard, 2001).

Corollary

A self-decomposable distribution σ is exchangeable if and only if the

background driving Lévy process (i.e. µ = L(Lµ1 )) is exchangeable.

Remark

Extensions to A-decomposable distributions (with a matrix A,
under certain conditions), can also be formulated.
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The Upsilon transform
For an in�nitely divisible distribution µ, the Upsilon transform is

de�ned by

Υ(µ) = L
(∫ 1

0

log
1

t
dLµt

)
(Barndor��Nielsen and Thorbjørnsen, 2004). It de�nes a bijection

onto the Goldie�Steutel�Bondesson class (Barndor��Nielsen,

Maejima, Sato, 2006).

Corollary

The Upsilon-transform commutes with permutations. In particular,

Υ(µ) is exchangeable if and only if µ is exchangeable.

Remark

More general Upsilon transforms have been de�ned in

Barndor��Nielsen, Rosinski and Thorbjørnsen (2008). These

commute with permutations, and they are injective if a certain

cancellation property for the multiplicative convolution holds. In

that case, similar results can be obtained.
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Happy birthday, Ole
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