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Overview

» Exchangeability of infinitely divisible laws
» Matrices that preserve exchangeability

» Mappings arising from time series or stochastic integrals that
preserve exchangeability
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Permutations on the integers
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let d € {2,3,4,...} be a fixed integer

a permutation of {1,...,d} is a bijection

m:{l,...,d} = {1,...,d}

denote the set of all permutations on {1,...,d} by [d].

define the permutation matrix of w by

Pr = (eﬂ'(l)’ €r(2)y > eﬂ'(d)) € RdXd

notice that Pr(X,... >Xd)T = (Xw*1(1)> T

7)<n*1(d))

T
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Permutations on the integers
> let d € {2,3,4,...} be a fixed integer

» a permutation of {1,... d} is a bijection

m:{l,...,d} = {1,...,d}

v

denote the set of all permutations on {1,...,d} by [d].

v

define the permutation matrix of w by

Pr = (eﬂ'(l)’ €r(2)y > eﬂ'(d)) € RdXd

v

notice that Pr(X1,...,Xq)" = (Xe-101), -, Xom1(a)) "
permutation matrices are orthogonal, i.e.

v

P.Pl =Idy, Pl =P '=P. 1.
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Exchangeability of random vectors and measures

» A distribution © = £(X) of a random vector
X = (X1,...,Xq)7 is called exchangeable, if

ﬁ(X) = ,C((Xﬂ.(l), R ,Xﬂ.(d))T) Ve [d] (1)
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Exchangeability of random vectors and measures

» A distribution © = £(X) of a random vector
X = (X1,...,Xq)7 is called exchangeable, if

ﬁ(X) = ,C((Xﬂ.(l), R ,Xﬂ.(d))T) Ve [d] (1)

» (1) is equivalent to Prp = p for all m € [d], where Prp
denotes the image measure defined by

P-u(B) = u(P;'(B)), B € Ba.

™

» definition can be extended to general measures on (RY, By):

A measure i on (RY, By) is exchangeable, if P,y = p for all
permutations 7 € [d].
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Exchangeability of the normal distribution

» Let X be a normal random vector in R? with mean m and
covariance matrix .
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Exchangeability of the normal distribution

» Let X be a normal random vector in R? with mean m and
covariance matrix . Then P, X is N(P,m, P, P])
distributed.

> hence X is exchangeable iff

P.m=m, P.ZPl =%, Vrecld]. (2)

» (2) is satisfied iff m = (mq,...,m)" for some m; € R and ¥
commutes with permutations:

A matrix ¥ € RY*Y commutes with permutations if

P,y =%YP, Vmeld.



Exchangeable infinitely divisible distributions

Theorem

Let uu be an infinitely divisible distribution on RY with characteristic
exponent V,, and characteristic triplet (A,v,7), i.e.
fi(z) = exp(V,(2)) with

1 ,
V,(z) = —EZTAZ +inTz+ /]Rd(e’XTZ —-1- ixTzl|X‘§1) v(dx).

Then the following are equivalent:
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Exchangeable infinitely divisible distributions

Theorem
Let uu be an infinitely divisible distribution on RY with characteristic
exponent V,, and characteristic triplet (A,v,7), i.e.

fi(2) = exp(W,,(2)) with

V,(z)= —%ZTAZ +ivTz+ /]Rd(eiXTZ —-1- ixTzl|X‘§1) v(dx).
Then the following are equivalent:

(i) p is exchangeable.

(i) W, (Prz) = V,,(2) for all z € R¥ and 7 € [d].

(iii) The Gaussian covariance matrix A commutes with
permutations, the Lévy measure v is exchangeable and ~y; = ~; for
all i,j € {1,...,d}, where ~; denotes the i 'th component of ~.



Exchangeability of stable distributions

A distribution y on R is stable if it is Gaussian,
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Exchangeability of stable distributions

A distribution ;2 on RY is stable if it is Gaussian, or if it is infinitely
divisible with Gaussian covariance matrix A being 0 and s.t.
Ja € (0,2) and a finite measure A on S := {x € R? : |x| = 1} s.t.

dr
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Exchangeability of stable distributions

A distribution ;2 on RY is stable if it is Gaussian, or if it is infinitely
divisible with Gaussian covariance matrix A being 0 and s.t.
Ja € (0,2) and a finite measure A on S := {x € R? : |x| = 1} s.t.

dr

u8) = [ M) [T 1a) i, B e BR)

Corollary

Let 11 be an a-stable distribution with characteristic triplet (0, v,
(71,---,74)"), where a € (0,2). Then yu is exchangeable if and
only if the spherical part X\ of v is exchangeable and if ~; = ~; for
alli,je{l,...,d}.



Lévy copulas: definition; Tankov (2003), Cont and Tankov
(2004)

» Let v be a Lévy measure concentrated on [0, c0)¢
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Lévy copulas: definition; Tankov (2003), Cont and Tankov
(2004)
» Let v be a Lévy measure concentrated on [0,00)9 and define
its tail integral U, : [0, 0] — [0, 00] by
v([x1,00) X ... X [Xq,00)), (X1,...,Xq) # 0,
00, (x1,...,xq4) =0.

Us(x1y. ..y xd) = {

> define further the marginal tail integrals U,, by

i i ’ i 07 ’
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Lévy copulas: definition; Tankov (2003), Cont and Tankov
(2004)

» Let v be a Lévy measure concentrated on [0,00)9 and define
its tail integral U, : [0,00]¢ — [0, oc] by

e ::{Zc()[xl,oo)x...x[x(,,oo>), Ej::fﬁjiigf

> define further the marginal tail integrals U,, by

i i ’ i 07 ’
Uy,.(x,-):Uy(o,...,o,x,-,o,...,o):{”([X ), % € (0,0]

oo, x;j = 0.

> a (positive) Lévy copula is a function C : [0,00]¢ — [0, 0] s.t.

» C(x1,...,xq4) = 0if at least one of the x; is zero

» C(o00,...,00,X,00,...,00) =% Vx €[0,00] Vi=
1,...,d

» C(xq,...,%4) # 00 unless x; = ... = xg = 00

» C is d-increasing
8/24



Lévy copulas - analogue of Theorem of Sklar

» a Lévy measure on [0,00) is uniquely determined by its tail
integral
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Lévy copulas - analogue of Theorem of Sklar

» a Lévy measure on [0,00) is uniquely determined by its tail
integral

» for every Lévy measure v on [0,00)9 there exists a positive
Lévy copula C such that

UV(Xl,. .. ,Xd) = C(Uyl(Xl),...,Ul,d(Xd)) VXi,...,Xq € [0,00]
(3)

» the Lévy copula is uniquely determined on
Uy, ([0, 00]) x ... x Uy, ([0, c0])

» if v1,...,4 are one-dim. Lévy measures on [0,00) and if C is
a positive Lévy copula, then the rhs of (3) defines the tail
integral of a Lévy measure v on [0,00)¢ with margins
V1,...,vq and Lévy copula C, see Cont and Tankov (2004).



Lévy copulas and Lévy measures with stable margins

» Barndorff-Nielsen and L. (2007):
if C is a positive Lévy copula, then there exists a unique Lévy
measure vc on [0,00)9 such that

Vc([Xfl,OO)X...X[Xgl,OO)) =C(x,...,x4) Vxi,...,xq €[0,00]

(4)

which has unit 1-stable margins.
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Lévy copulas and Lévy measures with stable margins

» Barndorff-Nielsen and L. (2007):
if C is a positive Lévy copula, then there exists a unique Lévy
measure vc on [0,00)9 such that

Vc([Xfl,OO)X...X[XJ17OO)) =C(x,...,x4) Vxi,...,xq €[0,00]

(4)

which has unit 1-stable margins.

» conversely, to any Lévy measure v¢ on [0,00)9 with unit
1-stable margins, the left-hand side of (4) defines a positive
Lévy copula.
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Exchangeability of Lévy copulas

» Definition
A positive Lévy copula C : [0,00]? — [0, 00] is exchangeable, if

C(Xl,...,Xd) = C(Xﬂ.(l),...,Xﬂ.(d)) VXi,...,Xq € [0,00], ™ e [d]
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» Theorem (Exchangeability and Lévy copulas)

(i) A positive Lévy copula C is exchangeable if and only if the Lévy
measure vc with unit 1-stable margins defined by (4) is
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(i) Let v be a Lévy measure on [0,00)9 with marginal Lévy
measures vy, . ..,vq. Ifin = ... = vy and if an associated positive

Lévy copula C exists which is exchangeable, then v is exchangeable.
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Exchangeability of Lévy copulas

» Definition
A positive Lévy copula C : [0,00]? — [0, 00] is exchangeable, if

C(Xl,...,Xd) = C(Xﬂ.(l),...,Xﬂ.(d)) VXi,...,Xqg € [0,00], ™ e [d]

» Theorem (Exchangeability and Lévy copulas)

(i) A positive Lévy copula C is exchangeable if and only if the Lévy
measure vc with unit 1-stable margins defined by (4) is

exchangeable.
(i) Let v be a Lévy measure on [0,00)9 with marginal Lévy
measures vy, . ..,vq. Ifin = ... = vy and if an associated positive

Lévy copula C exists which is exchangeable, then v is exchangeable.
Conversely, if v is exchangeable and U, ([0, oc]) = [0, 00] (i.e. 11
has no atoms and is infinite), then v1 = ... = vy and the unique
associated positive Lévy copula C is exchangeable.
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Exchangeability preserving matrices

» Denote by J; € RY*9 the matrix with all entries equal to 1
and recall that Idy € RY*9 denotes the identity matrix.
» a matrix A € R9%9 is said to be exchangeability preserving, if
L(AX) is exchangeable for every exchangeable random vector
X in RY.
» 9= {A € RY*9: A exchangeability preserving, det(A) # 0}
Theorem (Dean and Verducci, 1990)

A matrix A € RI%? js exchangeability preserving if and only if for
every m € [d] there exists ' € [d] such that

P.A= AP,
Further, 82 can be characterized as

E§={AeR¥?:3a,beR,a#0,a# —db,7 € [d]
such that A= aP. + bJy}.



Matrices that commute with permutations

» recall a matrix A € R*Y commutes with permutations, if
P.A = AP, for all permutations 7 € [d].
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» recall a matrix A € R*Y commutes with permutations, if
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Matrices that commute with permutations

» recall a matrix A € R*Y commutes with permutations, if
P.A = AP, for all permutations 7 € [d].

Theorem (Commenges, 2003)

(i) A matrix A € RY*9 commutes with permutations, if and only if
there are a, b € R such that

A=aldy + bJy.

(i) Let C € R¥*9. Then L(CX) is exchangeable for every
exchangeable normal distribution £(X) on RY if and only if C can
be represented in the form C = AQ, where A € RY*Y commutes
with permutations and Q = (qjj)ij=1,..d € RI*? js an orthogonal

matrix that satisfies 27:1 qij = 27:1 quj forallie{1,...,d}.
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Exchangeability preserving transformations

Let M7 and M5 be two classes of measures on R? and
G : M; — M; a mapping. We say that G
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Exchangeability preserving transformations

Let M7 and M5 be two classes of measures on R? and
G : M; — M; a mapping. We say that G

(i) is exchangeability preserving if G(u) is exchangeable whenever p
is exchangeable,

(i) commutes with permutations if Pru € M for all p € Mj and
m € [d], and

PxG(p) = G(Prp) Ve My, meld].
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Exchangeability preserving transformations- examples

» definition consistent with linear transformations
G:RY =R G(u) = A
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Exchangeability preserving transformations- examples

» definition consistent with linear transformations
G:RY =R G(u) = A

» if the set M does not contain any exchangeable measure,
then any G : My — My will be exchangeability preserving,
but it does not need to commute with permutations

» if M> contains only exchangeable measures, then any
G : My — M, is exchangeability preserving.

Theorem

Let My and My be two classes of measures on RY. Then every
mapping G : M1 — My that commutes with permutations is
exchangeability preserving.

-
[
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Theorem

Let My and Mo be two classes of measures on R? and

G : My — My an injective mapping that commutes with
permutations. Then its inverse G™1 : G(M1) — M also
commutes with permutations, in particular G is exchangeability
preserving.



Convolution with an exchangeable distribution |

» Let p = £(X) be an exchangeable distribution on R? and let
M1 = Mj be the class of all probability distributions on
(Rda Bd)
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» Let p = £(X) be an exchangeable distribution on R? and let
M1 = Mj be the class of all probability distributions on
(R, By).Then the mapping

Gp: My — Mp, pr—=pxp

commutes with permutations.

» Assume that p is also infinitely divisible. Since
Gp(1)(z) = p(z)1(2), it follows that G, is injective and hence
the inverse G;l : Gp(M1) = My commutes with
permutations.



Convolution with an exchangeable distribution |

» Let p = £(X) be an exchangeable distribution on R? and let
M1 = Mj be the class of all probability distributions on
(R, By).Then the mapping

Gp: My — Mp, pr—=pxp

commutes with permutations.

» Assume that p is also infinitely divisible. Since
Gp(1)(z) = p(z)1(2), it follows that G, is injective and hence
the inverse G;l : Gp(M1) = My commutes with
permutations. Hence p x p is exchangeable if and only if x4 is
exchangeable, provided p is exchangeable.

-
~
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Convolution with an exchangeable distribution Il

» Without extra assumptions on the exchangeable p, it is not
true that p x u is exchangeable if and only if y is
exchangeable.
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Convolution with an exchangeable distribution Il

» Without extra assumptions on the exchangeable p, it is not
true that p x u is exchangeable if and only if y is
exchangeable.E.g. let X1, X5, X3, X4 be independent random
variables with

L(X+X3) = L(X1+Xa), L(X1) = L(X2) = L(X3) # L(Xa).
Denote
pi= L0, %)T), 1= £((%, X)),
Then p is exchangeable, 1 is not exchangeable, and
prp=L(X+ X3, X+ Xs)")

is exchangeable.

» the convolution of two non-exchangeable distributions can be
exchangeable



Exchangeability of stationary solution of AR(1) equation

Theorem

Let € R¥*9 such that all eigenvalues of ® lie in

{z € C:|z| <1}. Let My be the set of all probability distributions
L(X) on RY with Elog™ | X| < co and My be the set of all
probability distributions on RY. Consider the mapping

G : M1 — My, E(Zo) — L (Z cD"Z_k> , teZ,
k=0

where (Z_k)ken, is an i.i.d. sequence with distribution
,C(Zo) e M.
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Exchangeability of stationary solution of AR(1) equation

Theorem

Let € R¥*9 such that all eigenvalues of ® lie in

{z € C:|z| <1}. Let My be the set of all probability distributions
L(X) on RY with Elog™ | X| < co and My be the set of all
probability distributions on RY. Consider the mapping

G : M1 — My, E(Zo) — L (Z cD"Z_k> , teZ,
k=0

where (Z_k)ken, is an i.i.d. sequence with distribution

ﬁ(Zo) € M;j.

It associates to every i.i.d. noise sequence (Zx)kez the marginal
stationary distribution of the causal multivariate AR(1) process

Yt —®Yi1 =4, teZ, (5)
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Theorem (Continued)

(i) If ® is exchangeability preserving (commutes w. p.), then Go is
exchangeability preserving (commutes w.p.).
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(i) If ® is exchangeability preserving (commutes w. p.), then Go is
exchangeability preserving (commutes w.p.).

(i) Let M be the subset of all i.d. € My, and let

Gg = Go|r- If & commutes w.p., then Gy commutes w.p., Gg, is
injective, and the inverse (G},)™! : Go(M]) — M} commutes w.p.
In particular, for £(Zy) € M}, L (3500 ®¥Z_) is exchangeable
itf L(Zy) is exchangeable.

» If ® commutes with permutations, exchangeability of
L (352, PZ ) does not imply exchangeability of £(Zp) in
general.

» Exchangeability of E( o CDkZ_k) and £(Zp) do not imply
that ® commutes w. p. (is exchangeability preserving).
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Theorem (Continued)

(i) If ® is exchangeability preserving (commutes w. p.), then Go is
exchangeability preserving (commutes w.p.).

(i) Let M be the subset of all i.d. € My, and let

Gg = Go|r- If & commutes w.p., then Gy commutes w.p., Gg, is
injective, and the inverse (G},)™! : Go(M]) — M} commutes w.p.
In particular, for £(Zy) € M}, L (3500 ®¥Z_) is exchangeable
itf L(Zy) is exchangeable.

» If ® commutes with permutations, exchangeability of
L (352, PZ ) does not imply exchangeability of £(Zp) in
general.

» Exchangeability of E( o CDkZ_k) and £(Zp) do not imply
that ® commutes w. p. (is exchangeability preserving).

» Similar results hold for stationary solutions of random
recurrence equations Y — ®, Y1 = 2Z;, te€Z.

N
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Exchangeability preserving integrals of Lévy processes

Theorem

Let L = (LY)t>0 be an R¥-valued Lévy process with distribution yu,
and f = (f(t))e>0 an R9*9-valued deterministic function. Let M
be the set of all distributions 1 on RY for which L( [~ f(t) dL}) is
defineable and consider the mapping

G: My — Mo, M*—>E</ f(t)dL¢>’
0

where My denotes the set of all probability distributions on R.
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Exchangeability preserving integrals of Lévy processes

Theorem

Let L = (LY)t>0 be an R¥-valued Lévy process with distribution yu,
and f = (f(t))e>0 an R¥*9-valued deterministic function Let M,
be the set of all distributions 1 on RY for which L( [~ f(t) dL}) is
defineable and consider the mapping

G: My — Mo, M*—>E</ f(t)dL¢>’
0

where My denotes the set of all probability distributions on R.

(i) Suppose that f takes only values in the set of exchangeability
preserving matrices. Then G is exchangeability preserving.

(ii) Suppose that f takes only values in the set of matrices that
commute with permutations. Then G commutes with
permutations. If additionally G is injective, then the inverse

GL: G(/\/ll) —> M also commutes with permutations, so that in
this case, [,° f(t)dLY is exchangeable if and only if ju is
exchangeable.



Self-decomposable distributions

Let ¢ > 0 be fixed. A distribution o on R is self-decomposable if
and only if it can be represented as an integral

o=L </ e_CtdL‘tL>
0

for some R%valued Lévy process p with finite log-moment. The
process L* is called the background driving Lévy process
(terminology due to Barndorff-Nielsen and Shephard, 2001).
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Self-decomposable distributions

Let ¢ > 0 be fixed. A distribution o on R is self-decomposable if
and only if it can be represented as an integral

o=L </ e_CtdL‘tL>
0

for some R%valued Lévy process p with finite log-moment. The
process L* is called the background driving Lévy process
(terminology due to Barndorff-Nielsen and Shephard, 2001).

Corollary

A self-decomposable distribution o is exchangeable if and only if the
background driving Lévy process (i.e. u = L(L})) is exchangeable.
Remark

Extensions to A-decomposable distributions (with a matrix A,
under certain conditions), can also be formulated.
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The Upsilon transform

For an infinitely divisible distribution 1, the Upsilon transform is

defined by
1
T(u)=L (/0 IogidL’t‘)

(Barndorff-Nielsen and Thorbjgrnsen, 2004). It defines a bijection
onto the Goldie-Steutel-Bondesson class (Barndorff~Nielsen,
Maejima, Sato, 2006).
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T(p) is exchangeable if and only if i is exchangeable.



The Upsilon transform

For an infinitely divisible distribution 1, the Upsilon transform is

defined by
1
T(u)=L (/0 IogidL’t‘)

(Barndorff-Nielsen and Thorbjgrnsen, 2004). It defines a bijection
onto the Goldie-Steutel-Bondesson class (Barndorff~Nielsen,
Maejima, Sato, 2006).

Corollary

The Upsilon-transform commutes with permutations. In particular,
T(p) is exchangeable if and only if i is exchangeable.

Remark

More general Upsilon transforms have been defined in
Barndorff-Nielsen, Rosinski and Thorbjgrnsen (2008). These
commute with permutations, and they are injective if a certain
cancellation property for the multiplicative convolution holds. In
that case, similar results can be obtained.
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Happy birthday, Ole
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