Exchangeability and infinite divisibility

Martin Drapatz, Alexander Lindner

Ulm University

Aarhus conference on probability, statistics and their applications, in honor of Ole Barndorff-Nielsen June 15 – 19, 2015

Overview

- Exchangeability of infinitely divisible laws
- Matrices that preserve exchangeability
- Mappings arising from time series or stochastic integrals that preserve exchangeability

• let $d \in \{2, 3, 4, \ldots\}$ be a fixed integer

- let $d \in \{2, 3, 4, \ldots\}$ be a fixed integer
- a *permutation* of $\{1, \ldots, d\}$ is a bijection

 $\pi: \{1,\ldots,d\} \rightarrow \{1,\ldots,d\}$

- let $d \in \{2, 3, 4, \ldots\}$ be a fixed integer
- a *permutation* of $\{1, \ldots, d\}$ is a bijection

$$\pi:\{1,\ldots,d\}\to\{1,\ldots,d\}$$

• denote the set of all permutations on $\{1, \ldots, d\}$ by [d].

- let $d \in \{2, 3, 4, \ldots\}$ be a fixed integer
- a *permutation* of $\{1, \ldots, d\}$ is a bijection

$$\pi:\{1,\ldots,d\}\to\{1,\ldots,d\}$$

- denote the set of all permutations on $\{1, \ldots, d\}$ by [d].
- define the *permutation matrix* of π by

$$P_{\pi} = \left(e_{\pi(1)}, e_{\pi(2)}, \dots, e_{\pi(d)}
ight) \in \mathbb{R}^{d imes d}$$

- let $d \in \{2, 3, 4, \ldots\}$ be a fixed integer
- a *permutation* of $\{1, \ldots, d\}$ is a bijection

$$\pi:\{1,\ldots,d\}\to\{1,\ldots,d\}$$

- denote the set of all permutations on $\{1, \ldots, d\}$ by [d].
- define the *permutation matrix* of π by

$$\mathcal{P}_{\pi} = ig(e_{\pi(1)}, e_{\pi(2)}, \dots, e_{\pi(d)} ig) \in \mathbb{R}^{d imes d}$$

• notice that $P_{\pi}(X_1, \dots, X_d)^T = (X_{\pi^{-1}(1)}, \dots, X_{\pi^{-1}(d)})^T$

- let $d \in \{2, 3, 4, \ldots\}$ be a fixed integer
- a *permutation* of $\{1, \ldots, d\}$ is a bijection

$$\pi:\{1,\ldots,d\}\to\{1,\ldots,d\}$$

- denote the set of all permutations on $\{1, \ldots, d\}$ by [d].
- define the *permutation matrix* of π by

$$\mathcal{P}_{\pi} = ig(e_{\pi(1)}, e_{\pi(2)}, \dots, e_{\pi(d)} ig) \in \mathbb{R}^{d imes d}$$

▶ notice that P_π(X₁,...,X_d)^T = (X_{π⁻¹(1)},...,X_{π⁻¹(d)})^T
 ▶ permutation matrices are orthogonal, i.e.

$$P_{\pi}P_{\pi}^{T} = Id_{d}, \quad P_{\pi}^{T} = P_{\pi}^{-1} = P_{\pi^{-1}}.$$

A distribution µ = L(X) of a random vector X = (X₁,..., X_d)^T is called *exchangeable*, if

$$\mathcal{L}(X) = \mathcal{L}((X_{\pi(1)}, \dots, X_{\pi(d)})^T) \quad \forall \, \pi \in [d].$$
(1)

• A distribution $\mu = \mathcal{L}(X)$ of a random vector $X = (X_1, \dots, X_d)^T$ is called *exchangeable*, if

$$\mathcal{L}(X) = \mathcal{L}((X_{\pi(1)}, \dots, X_{\pi(d)})^{T}) \quad \forall \, \pi \in [d].$$
(1)

(1) is equivalent to P_πμ = μ for all π ∈ [d], where P_πμ denotes the image measure defined by

$$P_{\pi}\mu(B)=\mu(P_{\pi}^{-1}(B)), \quad B\in\mathcal{B}_d.$$

イロン 不聞と 不良と 不良とう 見

4/24

• A distribution $\mu = \mathcal{L}(X)$ of a random vector $X = (X_1, \dots, X_d)^T$ is called *exchangeable*, if

$$\mathcal{L}(X) = \mathcal{L}((X_{\pi(1)}, \dots, X_{\pi(d)})^{T}) \quad \forall \, \pi \in [d].$$
(1)

(1) is equivalent to P_πμ = μ for all π ∈ [d], where P_πμ denotes the image measure defined by

$$P_{\pi}\mu(B)=\mu(P_{\pi}^{-1}(B)), \quad B\in\mathcal{B}_d.$$

• definition can be extended to general measures on $(\mathbb{R}^d, \mathcal{B}_d)$:

• A distribution $\mu = \mathcal{L}(X)$ of a random vector $X = (X_1, \dots, X_d)^T$ is called *exchangeable*, if

$$\mathcal{L}(X) = \mathcal{L}((X_{\pi(1)}, \dots, X_{\pi(d)})^{T}) \quad \forall \, \pi \in [d].$$
 (1)

(1) is equivalent to P_πμ = μ for all π ∈ [d], where P_πμ denotes the image measure defined by

$$P_{\pi}\mu(B)=\mu(P_{\pi}^{-1}(B)), \quad B\in\mathcal{B}_d.$$

• definition can be extended to general measures on $(\mathbb{R}^d, \mathcal{B}_d)$:

A measure μ on $(\mathbb{R}^d, \mathcal{B}_d)$ is exchangeable, if $P_{\pi}\mu = \mu$ for all permutations $\pi \in [d]$.

 Let X be a normal random vector in R^d with mean m and covariance matrix Σ.

Let X be a normal random vector in ℝ^d with mean m and covariance matrix Σ. Then P_πX is N(P_πm, P_πΣP_π^T) distributed.

- Let X be a normal random vector in ℝ^d with mean m and covariance matrix Σ. Then P_πX is N(P_πm, P_πΣP_π^T) distributed.
- hence X is exchangeable iff

$$P_{\pi}m = m, \quad P_{\pi}\Sigma P_{\pi}^{T} = \Sigma, \quad \forall \pi \in [d].$$
 (2)

- Let X be a normal random vector in ℝ^d with mean m and covariance matrix Σ. Then P_πX is N(P_πm, P_πΣP_π^T) distributed.
- hence X is exchangeable iff

$$P_{\pi}m = m, \quad P_{\pi}\Sigma P_{\pi}^{T} = \Sigma, \quad \forall \pi \in [d].$$
 (2)

▶ (2) is satisfied iff
$$m = (m_1, \dots, m_1)^T$$
 for some $m_1 \in \mathbb{R}$

- Let X be a normal random vector in ℝ^d with mean m and covariance matrix Σ. Then P_πX is N(P_πm, P_πΣP_π^T) distributed.
- hence X is exchangeable iff

$$P_{\pi}m = m, \quad P_{\pi}\Sigma P_{\pi}^{T} = \Sigma, \quad \forall \pi \in [d].$$
 (2)

• (2) is satisfied iff $m = (m_1, \ldots, m_1)^T$ for some $m_1 \in \mathbb{R}$ and Σ commutes with permutations:

- Let X be a normal random vector in ℝ^d with mean m and covariance matrix Σ. Then P_πX is N(P_πm, P_πΣP_π^T) distributed.
- hence X is exchangeable iff

$$P_{\pi}m = m, \quad P_{\pi}\Sigma P_{\pi}^{T} = \Sigma, \quad \forall \pi \in [d].$$
 (2)

(2) is satisfied iff m = (m₁,...,m₁)^T for some m₁ ∈ ℝ and Σ commutes with permutations:

A matrix $\Sigma \in \mathbb{R}^{d imes d}$ commutes with permutations if

$$P_{\pi}\Sigma = \Sigma P_{\pi} \quad \forall \ \pi \in [d].$$

Theorem

Let μ be an infinitely divisible distribution on \mathbb{R}^d with characteristic exponent Ψ_{μ} and characteristic triplet (A, ν, γ) , i.e. $\hat{\mu}(z) = \exp(\Psi_{\mu}(z))$ with

$$\Psi_{\mu}(z) = -\frac{1}{2}z^{T}Az + i\gamma^{T}z + \int_{\mathbb{R}^{d}} (e^{ix^{T}z} - 1 - ix^{T}z\mathbf{1}_{|x|\leq 1})\nu(dx).$$

Then the following are equivalent:

Theorem

Let μ be an infinitely divisible distribution on \mathbb{R}^d with characteristic exponent Ψ_{μ} and characteristic triplet (A, ν, γ) , i.e. $\hat{\mu}(z) = \exp(\Psi_{\mu}(z))$ with

$$\Psi_{\mu}(z) = -\frac{1}{2}z^{T}Az + i\gamma^{T}z + \int_{\mathbb{R}^{d}} (e^{ix^{T}z} - 1 - ix^{T}z\mathbf{1}_{|x|\leq 1})\nu(dx).$$

Then the following are equivalent: (i) μ is exchangeable.

Theorem

Let μ be an infinitely divisible distribution on \mathbb{R}^d with characteristic exponent Ψ_{μ} and characteristic triplet (A, ν, γ) , i.e. $\hat{\mu}(z) = \exp(\Psi_{\mu}(z))$ with

$$\Psi_{\mu}(z) = -\frac{1}{2}z^{T}Az + i\gamma^{T}z + \int_{\mathbb{R}^{d}} (e^{ix^{T}z} - 1 - ix^{T}z\mathbf{1}_{|x|\leq 1})\nu(dx).$$

6/24

Then the following are equivalent: (i) μ is exchangeable. (ii) $\Psi_{\mu}(P_{\pi}z) = \Psi_{\mu}(z)$ for all $z \in \mathbb{R}^{d}$ and $\pi \in [d]$.

Theorem

Let μ be an infinitely divisible distribution on \mathbb{R}^d with characteristic exponent Ψ_{μ} and characteristic triplet (A, ν, γ) , i.e. $\hat{\mu}(z) = \exp(\Psi_{\mu}(z))$ with

$$\Psi_{\mu}(z) = -\frac{1}{2}z^{T}Az + i\gamma^{T}z + \int_{\mathbb{R}^{d}} (e^{ix^{T}z} - 1 - ix^{T}z\mathbf{1}_{|x|\leq 1})\nu(dx).$$

Then the following are equivalent: (i) μ is exchangeable. (ii) $\Psi_{\mu}(P_{\pi}z) = \Psi_{\mu}(z)$ for all $z \in \mathbb{R}^d$ and $\pi \in [d]$. (iii) The Gaussian covariance matrix A commutes with permutations, the Lévy measure ν is exchangeable and $\gamma_i = \gamma_j$ for all $i, j \in \{1, \ldots, d\}$, where γ_i denotes the *i*'th component of γ .

Exchangeability of stable distributions

A distribution μ on \mathbb{R}^d is stable if it is Gaussian,

Exchangeability of stable distributions

A distribution μ on \mathbb{R}^d is stable if it is Gaussian, or if it is infinitely divisible with Gaussian covariance matrix A being 0 and s.t. $\exists \alpha \in (0,2)$ and a finite measure λ on $\mathbb{S} := \{x \in \mathbb{R}^d : |x| = 1\}$ s.t.

$$u(B) = \int_{\mathbb{S}} \lambda(d\xi) \int_0^\infty \mathbb{1}_B(r\xi) \frac{dr}{r^{1+\alpha}}, \quad B \in \mathcal{B}(\mathbb{R}^d).$$

Exchangeability of stable distributions

A distribution μ on \mathbb{R}^d is stable if it is Gaussian, or if it is infinitely divisible with Gaussian covariance matrix A being 0 and s.t. $\exists \alpha \in (0,2)$ and a finite measure λ on $\mathbb{S} := \{x \in \mathbb{R}^d : |x| = 1\}$ s.t.

$$u(B) = \int_{\mathbb{S}} \lambda(d\xi) \int_0^\infty \mathbb{1}_B(r\xi) \frac{dr}{r^{1+\alpha}}, \quad B \in \mathcal{B}(\mathbb{R}^d).$$

Corollary

Let μ be an α -stable distribution with characteristic triplet $(0, \nu, (\gamma_1, \ldots, \gamma_d)^T)$, where $\alpha \in (0, 2)$. Then μ is exchangeable if and only if the spherical part λ of ν is exchangeable and if $\gamma_i = \gamma_j$ for all $i, j \in \{1, \ldots, d\}$.

 \blacktriangleright Let u be a Lévy measure concentrated on $[0,\infty)^d$

Let ν be a Lévy measure concentrated on [0,∞)^d and define its tail integral U_ν : [0,∞]^d → [0,∞] by

$$U_{\nu}(x_1,\ldots,x_d) := \begin{cases} \nu([x_1,\infty)\times\ldots\times[x_d,\infty)), & (x_1,\ldots,x_d) \neq \mathbf{0}, \\ \infty, & (x_1,\ldots,x_d) = \mathbf{0}. \end{cases}$$

Let ν be a Lévy measure concentrated on [0,∞)^d and define its tail integral U_ν : [0,∞]^d → [0,∞] by

$$U_{\nu}(x_1,\ldots,x_d) := \begin{cases} \nu([x_1,\infty)\times\ldots\times[x_d,\infty)), & (x_1,\ldots,x_d) \neq \mathbf{0}, \\ \infty, & (x_1,\ldots,x_d) = \mathbf{0}. \end{cases}$$

• define further the marginal tail integrals U_{ν_i} by

$$U_{\nu_i}(x_i) = U_{\nu}(0, \dots, 0, x_i, 0, \dots, 0) = \begin{cases} \nu_i([x_i, \infty)), & x_i \in (0, \infty], \\ \infty, & x_i = 0. \end{cases}$$

Let ν be a Lévy measure concentrated on [0,∞)^d and define its tail integral U_ν : [0,∞]^d → [0,∞] by

$$U_{\nu}(x_1,\ldots,x_d) := \begin{cases} \nu([x_1,\infty)\times\ldots\times[x_d,\infty)), & (x_1,\ldots,x_d) \neq \mathbf{0}, \\ \infty, & (x_1,\ldots,x_d) = \mathbf{0}. \end{cases}$$

• define further the marginal tail integrals U_{ν_i} by

$$U_{\nu_i}(x_i) = U_{\nu}(0, \dots, 0, x_i, 0, \dots, 0) = \begin{cases} \nu_i([x_i, \infty)), & x_i \in (0, \infty], \\ \infty, & x_i = 0. \end{cases}$$

▶ a (positive) Lévy copula is a function $C : [0,\infty]^d \to [0,\infty]$ s.t.

• $C(x_1, \ldots, x_d) = 0$ if at least one of the x_i is zero

Let ν be a Lévy measure concentrated on [0,∞)^d and define its tail integral U_ν : [0,∞]^d → [0,∞] by

$$U_{\nu}(x_1,\ldots,x_d) := \begin{cases} \nu([x_1,\infty)\times\ldots\times[x_d,\infty)), & (x_1,\ldots,x_d) \neq \mathbf{0}, \\ \infty, & (x_1,\ldots,x_d) = \mathbf{0}. \end{cases}$$

• define further the marginal tail integrals U_{ν_i} by

$$U_{\nu_i}(x_i) = U_{\nu}(0, \dots, 0, x_i, 0, \dots, 0) = \begin{cases} \nu_i([x_i, \infty)), & x_i \in (0, \infty], \\ \infty, & x_i = 0. \end{cases}$$

▶ a (positive) Lévy copula is a function $C : [0, \infty]^d \rightarrow [0, \infty]$ s.t.

•
$$C(x_1, \ldots, x_d) = 0$$
 if at least one of the x_i is zero
• $C(\infty, \ldots, \infty, x_i, \infty, \ldots, \infty) = x_i \quad \forall x_i \in [0, \infty] \quad \forall i = 1, \ldots, d$

Let ν be a Lévy measure concentrated on [0,∞)^d and define its tail integral U_ν : [0,∞]^d → [0,∞] by

$$U_{\nu}(x_1,\ldots,x_d) := \begin{cases} \nu([x_1,\infty)\times\ldots\times[x_d,\infty)), & (x_1,\ldots,x_d) \neq \mathbf{0}, \\ \infty, & (x_1,\ldots,x_d) = \mathbf{0}. \end{cases}$$

• define further the marginal tail integrals U_{ν_i} by

$$U_{\nu_i}(x_i) = U_{\nu}(0, \dots, 0, x_i, 0, \dots, 0) = \begin{cases} \nu_i([x_i, \infty)), & x_i \in (0, \infty], \\ \infty, & x_i = 0. \end{cases}$$

▶ a (positive) Lévy copula is a function $C : [0, \infty]^d \to [0, \infty]$ s.t.

Let ν be a Lévy measure concentrated on [0,∞)^d and define its tail integral U_ν : [0,∞]^d → [0,∞] by

$$U_{\nu}(x_1,\ldots,x_d) := \begin{cases} \nu([x_1,\infty)\times\ldots\times[x_d,\infty)), & (x_1,\ldots,x_d) \neq \mathbf{0}, \\ \infty, & (x_1,\ldots,x_d) = \mathbf{0}. \end{cases}$$

• define further the marginal tail integrals U_{ν_i} by

$$U_{\nu_i}(x_i) = U_{\nu}(0, \dots, 0, x_i, 0, \dots, 0) = \begin{cases} \nu_i([x_i, \infty)), & x_i \in (0, \infty], \\ \infty, & x_i = 0. \end{cases}$$

▶ a (positive) Lévy copula is a function $C : [0, \infty]^d \rightarrow [0, \infty]$ s.t.

•
$$C(x_1, \ldots, x_d) = 0$$
 if at least one of the x_i is zero
• $C(\infty, \ldots, \infty, x_i, \infty, \ldots, \infty) = x_i$ $\forall x_i \in [0, \infty]$ $\forall i =$

- $C(\infty, \dots, \infty, x_i, \infty, \dots, \infty) = x_i \quad \forall \ x_i \in [0, \infty] \quad \forall i = 1, \dots, d$
- $C(x_1,\ldots,x_d) \neq \infty$ unless $x_1 = \ldots = x_d = \infty$

Lévy copulas - analogue of Theorem of Sklar

► a Lévy measure on [0,∞)^d is uniquely determined by its tail integral Lévy copulas - analogue of Theorem of Sklar

- ► a Lévy measure on [0,∞)^d is uniquely determined by its tail integral
- ▶ for every Lévy measure v on [0,∞)^d there exists a positive Lévy copula C such that

$$U_{\nu}(x_{1},...,x_{d}) = C(U_{\nu_{1}}(x_{1}),...,U_{\nu_{d}}(x_{d})) \quad \forall \ x_{1},...,x_{d} \in [0,\infty].$$
(3)

Lévy copulas - analogue of Theorem of Sklar

- ► a Lévy measure on [0, ∞)^d is uniquely determined by its tail integral
- ▶ for every Lévy measure v on [0,∞)^d there exists a positive Lévy copula C such that

$$U_{\nu}(x_{1},...,x_{d}) = C(U_{\nu_{1}}(x_{1}),...,U_{\nu_{d}}(x_{d})) \quad \forall \ x_{1},...,x_{d} \in [0,\infty].$$
(3)

- ▶ the Lévy copula is uniquely determined on U_{\nu1}([0,∞]) × ... × U_{\nud}([0,∞])
- if ν₁,..., ν_d are one-dim. Lévy measures on [0,∞) and if C is a positive Lévy copula, then the rhs of (3) defines the tail integral of a Lévy measure ν on [0,∞)^d with margins ν₁,..., ν_d and Lévy copula C, see Cont and Tankov (2004).

Lévy copulas and Lévy measures with stable margins

Barndorff-Nielsen and L. (2007): if C is a positive Lévy copula, then there exists a unique Lévy measure v_C on [0,∞)^d such that

$$\nu_{\mathcal{C}}([x_1^{-1},\infty)\times\ldots\times[x_d^{-1},\infty)) = \mathcal{C}(x_1,\ldots,x_d) \quad \forall \ x_1,\ldots,x_d \in [0,\infty]$$
(4)

which has unit 1-stable margins.
Lévy copulas and Lévy measures with stable margins

Barndorff-Nielsen and L. (2007): if C is a positive Lévy copula, then there exists a unique Lévy measure v_C on [0,∞)^d such that

$$\nu_{\mathcal{C}}([x_1^{-1},\infty)\times\ldots\times[x_d^{-1},\infty)) = \mathcal{C}(x_1,\ldots,x_d) \quad \forall \ x_1,\ldots,x_d \in [0,\infty]$$
(4)

which has unit 1-stable margins.

► conversely, to any Lévy measure v_C on [0,∞)^d with unit 1-stable margins, the left-hand side of (4) defines a positive Lévy copula.

Exchangeability of Lévy copulas

► Definition

A positive Lévy copula $C: [0,\infty]^d
ightarrow [0,\infty]$ is exchangeable, if

$$C(x_1,\ldots,x_d)=C(x_{\pi(1)},\ldots,x_{\pi(d)}) \quad \forall \ x_1,\ldots,x_d\in[0,\infty], \ \pi\in[d].$$

Exchangeability of Lévy copulas

► Definition

A positive Lévy copula $C: [0,\infty]^d
ightarrow [0,\infty]$ is exchangeable, if

 $C(x_1,\ldots,x_d) = C(x_{\pi(1)},\ldots,x_{\pi(d)}) \quad \forall x_1,\ldots,x_d \in [0,\infty], \ \pi \in [d].$

Theorem (Exchangeability and Lévy copulas)

(i) A positive Lévy copula C is exchangeable if and only if the Lévy measure ν_C with unit 1-stable margins defined by (4) is exchangeable.

(ii) Let ν be a Lévy measure on $[0, \infty)^d$ with marginal Lévy measures ν_1, \ldots, ν_d . If $\nu_1 = \ldots = \nu_d$ and if an associated positive Lévy copula C exists which is exchangeable, then ν is exchangeable.

Exchangeability of Lévy copulas

Definition

A positive Lévy copula $C: [0,\infty]^d
ightarrow [0,\infty]$ is exchangeable, if

 $C(x_1,\ldots,x_d)=C(x_{\pi(1)},\ldots,x_{\pi(d)}) \quad \forall \ x_1,\ldots,x_d \in [0,\infty], \ \pi \in [d].$

Theorem (Exchangeability and Lévy copulas)

(i) A positive Lévy copula C is exchangeable if and only if the Lévy measure ν_C with unit 1-stable margins defined by (4) is exchangeable.

(ii) Let ν be a Lévy measure on $[0, \infty)^d$ with marginal Lévy measures ν_1, \ldots, ν_d . If $\nu_1 = \ldots = \nu_d$ and if an associated positive Lévy copula C exists which is exchangeable, then ν is exchangeable. Conversely, if ν is exchangeable and $U_{\nu_1}([0, \infty]) = [0, \infty]$ (i.e. ν_1 has no atoms and is infinite), then $\nu_1 = \ldots = \nu_d$ and the unique associated positive Lévy copula C is exchangeable.

▶ Denote by $J_d \in \mathbb{R}^{d \times d}$ the matrix with all entries equal to 1 and recall that $\mathrm{Id}_d \in \mathbb{R}^{d \times d}$ denotes the identity matrix.

- ▶ Denote by $J_d \in \mathbb{R}^{d \times d}$ the matrix with all entries equal to 1 and recall that $\mathrm{Id}_d \in \mathbb{R}^{d \times d}$ denotes the identity matrix.
- ► a matrix A ∈ ℝ^{d×d} is said to be exchangeability preserving, if L(AX) is exchangeable for every exchangeable random vector X in ℝ^d.

- ▶ Denote by $J_d \in \mathbb{R}^{d \times d}$ the matrix with all entries equal to 1 and recall that $\mathrm{Id}_d \in \mathbb{R}^{d \times d}$ denotes the identity matrix.
- ► a matrix A ∈ ℝ^{d×d} is said to be exchangeability preserving, if L(AX) is exchangeable for every exchangeable random vector X in ℝ^d.

▶ $\mathcal{E}_d^0 = \{A \in \mathbb{R}^{d \times d} : A \text{ exchangeability preserving, } \det(A) \neq 0\}$

- ▶ Denote by $J_d \in \mathbb{R}^{d \times d}$ the matrix with all entries equal to 1 and recall that $\mathrm{Id}_d \in \mathbb{R}^{d \times d}$ denotes the identity matrix.
- ► a matrix A ∈ ℝ^{d×d} is said to be exchangeability preserving, if L(AX) is exchangeable for every exchangeable random vector X in ℝ^d.

▶ $\mathcal{E}_d^0 = \{A \in \mathbb{R}^{d \times d} : A \text{ exchangeability preserving, det}(A) \neq 0\}$ Theorem (Dean and Verducci, 1990)

A matrix $A \in \mathbb{R}^{d \times d}$ is exchangeability preserving if and only if for every $\pi \in [d]$ there exists $\pi' \in [d]$ such that

$$P_{\pi}A = AP_{\pi'}.$$

- ▶ Denote by $J_d \in \mathbb{R}^{d \times d}$ the matrix with all entries equal to 1 and recall that $\mathrm{Id}_d \in \mathbb{R}^{d \times d}$ denotes the identity matrix.
- ► a matrix A ∈ ℝ^{d×d} is said to be exchangeability preserving, if L(AX) is exchangeable for every exchangeable random vector X in ℝ^d.

▶ $\mathcal{E}_d^0 = \{A \in \mathbb{R}^{d \times d} : A \text{ exchangeability preserving, det}(A) \neq 0\}$ Theorem (Dean and Verducci, 1990)

A matrix $A \in \mathbb{R}^{d \times d}$ is exchangeability preserving if and only if for every $\pi \in [d]$ there exists $\pi' \in [d]$ such that

$$P_{\pi}A = AP_{\pi'}.$$

Further, \mathcal{E}^0_d can be characterized as

$$\mathcal{E}_{d}^{0} = \{ A \in \mathbb{R}^{d \times d} : \exists a, b \in \mathbb{R}, a \neq 0, a \neq -db, \pi \in [d] \\ such that A = aP_{\pi} + bJ_{d} \}.$$

Matrices that commute with permutations

► recall a matrix $A \in \mathbb{R}^{d \times d}$ commutes with permutations, if $P_{\pi}A = AP_{\pi}$ for all permutations $\pi \in [d]$.

Matrices that commute with permutations

► recall a matrix $A \in \mathbb{R}^{d \times d}$ commutes with permutations, if $P_{\pi}A = AP_{\pi}$ for all permutations $\pi \in [d]$.

Theorem (Commenges, 2003)

(i) A matrix $A \in \mathbb{R}^{d \times d}$ commutes with permutations, if and only if there are $a, b \in \mathbb{R}$ such that

$$A = a \operatorname{Id}_d + b J_d.$$

Matrices that commute with permutations

► recall a matrix $A \in \mathbb{R}^{d \times d}$ commutes with permutations, if $P_{\pi}A = AP_{\pi}$ for all permutations $\pi \in [d]$.

Theorem (Commenges, 2003)

(i) A matrix $A \in \mathbb{R}^{d \times d}$ commutes with permutations, if and only if there are $a, b \in \mathbb{R}$ such that

$$A = a \operatorname{Id}_d + b J_d.$$

(ii) Let $C \in \mathbb{R}^{d \times d}$. Then $\mathcal{L}(CX)$ is exchangeable for every exchangeable normal distribution $\mathcal{L}(X)$ on \mathbb{R}^d if and only if C can be represented in the form C = AQ, where $A \in \mathbb{R}^{d \times d}$ commutes with permutations and $Q = (q_{ij})_{i,j=1,...,d} \in \mathbb{R}^{d \times d}$ is an orthogonal matrix that satisfies $\sum_{j=1}^{d} q_{ij} = \sum_{j=1}^{d} q_{1j}$ for all $i \in \{1,...,d\}$. Exchangeability preserving transformations

Let \mathcal{M}_1 and \mathcal{M}_2 be two classes of measures on \mathbb{R}^d and $G: \mathcal{M}_1 \to \mathcal{M}_2$ a mapping. We say that G

Exchangeability preserving transformations

Let \mathcal{M}_1 and \mathcal{M}_2 be two classes of measures on \mathbb{R}^d and $G: \mathcal{M}_1 \to \mathcal{M}_2$ a mapping. We say that G

(i) is exchangeability preserving if $G(\mu)$ is exchangeable whenever μ is exchangeable,

Exchangeability preserving transformations

Let \mathcal{M}_1 and \mathcal{M}_2 be two classes of measures on \mathbb{R}^d and $G: \mathcal{M}_1 \to \mathcal{M}_2$ a mapping. We say that G

(i) is exchangeability preserving if $G(\mu)$ is exchangeable whenever μ is exchangeable,

(ii) commutes with permutations if $P_{\pi}\mu\in\mathcal{M}_1$ for all $\mu\in\mathcal{M}_1$ and $\pi\in[d]$, and

$$P_{\pi}G(\mu) = G(P_{\pi}\mu) \quad \forall \ \mu \in \mathcal{M}_1, \quad \pi \in [d].$$

• definition consistent with linear transformations $G: \mathbb{R}^d \to \mathbb{R}^d, G(\mu) = A\mu$

- definition consistent with linear transformations $G: \mathbb{R}^d \to \mathbb{R}^d, G(\mu) = A\mu$
- if the set \mathcal{M}_1 does not contain any exchangeable measure, then any $G: \mathcal{M}_1 \to \mathcal{M}_2$ will be exchangeability preserving, but it does not need to commute with permutations

- definition consistent with linear transformations $G: \mathbb{R}^d \to \mathbb{R}^d, G(\mu) = A\mu$
- if the set \mathcal{M}_1 does not contain any exchangeable measure, then any $G: \mathcal{M}_1 \to \mathcal{M}_2$ will be exchangeability preserving, but it does not need to commute with permutations
- if *M*₂ contains only exchangeable measures, then any *G* : *M*₁ → *M*₂ is exchangeability preserving.

- definition consistent with linear transformations $G: \mathbb{R}^d \to \mathbb{R}^d, G(\mu) = A\mu$
- if the set \mathcal{M}_1 does not contain any exchangeable measure, then any $G: \mathcal{M}_1 \to \mathcal{M}_2$ will be exchangeability preserving, but it does not need to commute with permutations
- if *M*₂ contains only exchangeable measures, then any *G* : *M*₁ → *M*₂ is exchangeability preserving.

Theorem

Let \mathcal{M}_1 and \mathcal{M}_2 be two classes of measures on \mathbb{R}^d . Then every mapping $G: \mathcal{M}_1 \to \mathcal{M}_2$ that commutes with permutations is exchangeability preserving.

Theorem

Let \mathcal{M}_1 and \mathcal{M}_2 be two classes of measures on \mathbb{R}^d and $G: \mathcal{M}_1 \to \mathcal{M}_2$ an injective mapping that commutes with permutations. Then its inverse $G^{-1}: G(\mathcal{M}_1) \to \mathcal{M}_1$ also commutes with permutations, in particular G^{-1} is exchangeability preserving.

• Let $\rho = \mathcal{L}(X)$ be an exchangeable distribution on \mathbb{R}^d and let $\mathcal{M}_1 = \mathcal{M}_2$ be the class of all probability distributions on $(\mathbb{R}^d, \mathcal{B}_d)$.

Let ρ = L(X) be an exchangeable distribution on ℝ^d and let M₁ = M₂ be the class of all probability distributions on (ℝ^d, B_d).Then the mapping

$$G_{\rho}: \mathcal{M}_1 \to \mathcal{M}_2, \quad \mu \mapsto \mu * \rho$$

commutes with permutations.

Let ρ = L(X) be an exchangeable distribution on ℝ^d and let M₁ = M₂ be the class of all probability distributions on (ℝ^d, B_d).Then the mapping

$$G_{\rho}: \mathcal{M}_1 \to \mathcal{M}_2, \quad \mu \mapsto \mu * \rho$$

commutes with permutations.

• Assume that ρ is also infinitely divisible.

Let ρ = L(X) be an exchangeable distribution on ℝ^d and let M₁ = M₂ be the class of all probability distributions on (ℝ^d, B_d).Then the mapping

$$G_{\rho}: \mathcal{M}_1 \to \mathcal{M}_2, \quad \mu \mapsto \mu * \rho$$

commutes with permutations.

• Assume that ρ is also infinitely divisible. Since $\widehat{G_{\rho}(\mu)}(z) = \widehat{\rho}(z)\widehat{\mu}(z)$, it follows that G_{ρ} is injective and hence the inverse $G_{\rho}^{-1} : G_{\rho}(\mathcal{M}_1) \to \mathcal{M}_2$ commutes with permutations.

Let ρ = L(X) be an exchangeable distribution on ℝ^d and let M₁ = M₂ be the class of all probability distributions on (ℝ^d, B_d).Then the mapping

$$G_{\rho}: \mathcal{M}_1 \to \mathcal{M}_2, \quad \mu \mapsto \mu * \rho$$

commutes with permutations.

• Assume that ρ is also infinitely divisible. Since $\widehat{G_{\rho}(\mu)}(z) = \widehat{\rho}(z)\widehat{\mu}(z)$, it follows that G_{ρ} is injective and hence the inverse $G_{\rho}^{-1} : G_{\rho}(\mathcal{M}_1) \to \mathcal{M}_2$ commutes with permutations. Hence $\rho * \mu$ is exchangeable if and only if μ is exchangeable, provided ρ is exchangeable.

Without extra assumptions on the exchangeable ρ, it is not true that ρ * μ is exchangeable if and only if μ is exchangeable.

 Without extra assumptions on the exchangeable ρ, it is not true that ρ * μ is exchangeable if and only if μ is exchangeable.E.g. let X₁, X₂, X₃, X₄ be independent random variables with

 $\mathcal{L}(X_1+X_3) = \mathcal{L}(X_1+X_4), \quad \mathcal{L}(X_1) = \mathcal{L}(X_2) = \mathcal{L}(X_3) \neq \mathcal{L}(X_4).$

Without extra assumptions on the exchangeable ρ, it is not true that ρ * μ is exchangeable if and only if μ is exchangeable.E.g. let X₁, X₂, X₃, X₄ be independent random variables with

$$\mathcal{L}(X_1+X_3) = \mathcal{L}(X_1+X_4), \quad \mathcal{L}(X_1) = \mathcal{L}(X_2) = \mathcal{L}(X_3) \neq \mathcal{L}(X_4).$$

Denote

$$\rho := \mathcal{L}((X_1, X_2)^T), \quad \mu := \mathcal{L}((X_3, X_4)^T).$$

 Without extra assumptions on the exchangeable ρ, it is not true that ρ * μ is exchangeable if and only if μ is exchangeable.E.g. let X₁, X₂, X₃, X₄ be independent random variables with

$$\mathcal{L}(X_1+X_3) = \mathcal{L}(X_1+X_4), \quad \mathcal{L}(X_1) = \mathcal{L}(X_2) = \mathcal{L}(X_3) \neq \mathcal{L}(X_4).$$

Denote

$$\rho := \mathcal{L}((X_1, X_2)^T), \quad \mu := \mathcal{L}((X_3, X_4)^T).$$

Then ho is exchangeable, μ is not exchangeable, and

$$\rho * \mu = \mathcal{L}((X_1 + X_3, X_2 + X_4)^T)$$

is exchangeable.

the convolution of two non-exchangeable distributions can be exchangeable Exchangeability of stationary solution of AR(1) equation

Theorem

Let $\Phi \in \mathbb{R}^{d \times d}$ such that all eigenvalues of Φ lie in $\{z \in \mathbb{C} : |z| < 1\}$. Let \mathcal{M}_1 be the set of all probability distributions $\mathcal{L}(X)$ on \mathbb{R}^d with $\mathbb{E}\log^+ |X| < \infty$ and \mathcal{M}_2 be the set of all probability distributions on \mathbb{R}^d . Consider the mapping

$$\mathcal{G}_{\Phi}:\mathcal{M}_1
ightarrow\mathcal{M}_2,\quad \mathcal{L}(Z_0)\mapsto\mathcal{L}\left(\sum_{k=0}^{\infty}\Phi^kZ_{-k}
ight),\quad t\in\mathbb{Z},$$

where $(Z_{-k})_{k \in \mathbb{N}_0}$ is an i.i.d. sequence with distribution $\mathcal{L}(Z_0) \in \mathcal{M}_1$.

Exchangeability of stationary solution of AR(1) equation

Theorem

Let $\Phi \in \mathbb{R}^{d \times d}$ such that all eigenvalues of Φ lie in $\{z \in \mathbb{C} : |z| < 1\}$. Let \mathcal{M}_1 be the set of all probability distributions $\mathcal{L}(X)$ on \mathbb{R}^d with $\mathbb{E}\log^+ |X| < \infty$ and \mathcal{M}_2 be the set of all probability distributions on \mathbb{R}^d . Consider the mapping

$$\mathcal{G}_{\Phi}:\mathcal{M}_1
ightarrow\mathcal{M}_2,\quad \mathcal{L}(Z_0)\mapsto\mathcal{L}\left(\sum_{k=0}^{\infty}\Phi^kZ_{-k}
ight),\quad t\in\mathbb{Z},$$

where $(Z_{-k})_{k \in \mathbb{N}_0}$ is an i.i.d. sequence with distribution $\mathcal{L}(Z_0) \in \mathcal{M}_1$.

It associates to every i.i.d. noise sequence $(Z_k)_{k\in\mathbb{Z}}$ the marginal stationary distribution of the causal multivariate AR(1) process

$$Y_t - \Phi Y_{t-1} = Z_t, \quad t \in \mathbb{Z}, \tag{5}$$

(i) If Φ is exchangeability preserving (commutes w. p.), then G_{Φ} is exchangeability preserving (commutes w.p.).

(i) If Φ is exchangeability preserving (commutes w. p.), then G_{Φ} is exchangeability preserving (commutes w.p.). (ii) Let \mathcal{M}'_1 be the subset of all i.d. $\mu \in \mathcal{M}_1$, and let $G'_{\Phi} := G_{\Phi}|_{\mathcal{M}'_1}$. If Φ commutes w.p., then G'_{Φ} commutes w.p., G'_{Φ} is injective, and the inverse $(G'_{\Phi})^{-1} : G_{\Phi}(\mathcal{M}'_1) \to \mathcal{M}'_1$ commutes w.p.

(i) If Φ is exchangeability preserving (commutes w. p.), then G_{Φ} is exchangeability preserving (commutes w.p.). (ii) Let \mathcal{M}'_1 be the subset of all i.d. $\mu \in \mathcal{M}_1$, and let $G'_{\Phi} := G_{\Phi}|_{\mathcal{M}'_1}$. If Φ commutes w.p., then G'_{Φ} commutes w.p., G'_{Φ} is injective, and the inverse $(G'_{\Phi})^{-1} : G_{\Phi}(\mathcal{M}'_1) \to \mathcal{M}'_1$ commutes w.p. In particular, for $\mathcal{L}(Z_0) \in \mathcal{M}'_1$, $\mathcal{L}\left(\sum_{k=0}^{\infty} \Phi^k Z_{-k}\right)$ is exchangeable iff $\mathcal{L}(Z_0)$ is exchangeable.

(i) If Φ is exchangeability preserving (commutes w. p.), then G_{Φ} is exchangeability preserving (commutes w.p.). (ii) Let \mathcal{M}'_1 be the subset of all i.d. $\mu \in \mathcal{M}_1$, and let $G'_{\Phi} := G_{\Phi}|_{\mathcal{M}'_1}$. If Φ commutes w.p., then G'_{Φ} commutes w.p., G'_{Φ} is injective, and the inverse $(G'_{\Phi})^{-1} : G_{\Phi}(\mathcal{M}'_1) \to \mathcal{M}'_1$ commutes w.p. In particular, for $\mathcal{L}(Z_0) \in \mathcal{M}'_1$, $\mathcal{L}\left(\sum_{k=0}^{\infty} \Phi^k Z_{-k}\right)$ is exchangeable iff $\mathcal{L}(Z_0)$ is exchangeable.

• If Φ commutes with permutations, exchangeability of $\mathcal{L}\left(\sum_{k=0}^{\infty} \Phi^k Z_{-k}\right)$ does not imply exchangeability of $\mathcal{L}(Z_0)$ in general.

(i) If Φ is exchangeability preserving (commutes w. p.), then G_{Φ} is exchangeability preserving (commutes w.p.). (ii) Let \mathcal{M}'_1 be the subset of all i.d. $\mu \in \mathcal{M}_1$, and let $G'_{\Phi} := G_{\Phi}|_{\mathcal{M}'_1}$. If Φ commutes w.p., then G'_{Φ} commutes w.p., G'_{Φ} is injective, and the inverse $(G'_{\Phi})^{-1} : G_{\Phi}(\mathcal{M}'_1) \to \mathcal{M}'_1$ commutes w.p. In particular, for $\mathcal{L}(Z_0) \in \mathcal{M}'_1$, $\mathcal{L}\left(\sum_{k=0}^{\infty} \Phi^k Z_{-k}\right)$ is exchangeable iff $\mathcal{L}(Z_0)$ is exchangeable.

- If Φ commutes with permutations, exchangeability of $\mathcal{L}\left(\sum_{k=0}^{\infty} \Phi^k Z_{-k}\right)$ does not imply exchangeability of $\mathcal{L}(Z_0)$ in general.
- ► Exchangeability of $\mathcal{L}\left(\sum_{k=0}^{\infty} \Phi^k Z_{-k}\right)$ and $\mathcal{L}(Z_0)$ do not imply that Φ commutes w. p. (is exchangeability preserving).
Theorem (Continued)

(i) If Φ is exchangeability preserving (commutes w. p.), then G_{Φ} is exchangeability preserving (commutes w.p.). (ii) Let \mathcal{M}'_1 be the subset of all i.d. $\mu \in \mathcal{M}_1$, and let $G'_{\Phi} := G_{\Phi}|_{\mathcal{M}'_1}$. If Φ commutes w.p., then G'_{Φ} commutes w.p., G'_{Φ} is injective, and the inverse $(G'_{\Phi})^{-1} : G_{\Phi}(\mathcal{M}'_1) \to \mathcal{M}'_1$ commutes w.p. In particular, for $\mathcal{L}(Z_0) \in \mathcal{M}'_1$, $\mathcal{L}\left(\sum_{k=0}^{\infty} \Phi^k Z_{-k}\right)$ is exchangeable iff $\mathcal{L}(Z_0)$ is exchangeable.

- If Φ commutes with permutations, exchangeability of $\mathcal{L}\left(\sum_{k=0}^{\infty} \Phi^k Z_{-k}\right)$ does not imply exchangeability of $\mathcal{L}(Z_0)$ in general.
- Exchangeability of L (∑_{k=0}[∞] Φ^kZ_{-k}) and L(Z₀) do not imply that Φ commutes w. p. (is exchangeability preserving).
- Similar results hold for stationary solutions of random recurrence equations $Y_t \Phi_t Y_{t-1} = Z_t$, $t \in \mathbb{Z}$.

Theorem

Let $L = (L_t^{\mu})_{t \ge 0}$ be an \mathbb{R}^d -valued Lévy process with distribution μ , and $f = (f(t))_{t \ge 0}$ an $\mathbb{R}^{d \times d}$ -valued deterministic function. Let \mathcal{M}_1 be the set of all distributions μ on \mathbb{R}^d for which $\mathcal{L}(\int_0^{\infty} f(t) dL_t^{\mu})$ is defineable and consider the mapping

$$G: \mathcal{M}_1 \to \mathcal{M}_2, \quad \mu \mapsto \mathcal{L}\left(\int_0^\infty f(t) \,\mathrm{d} L_t^\mu\right),$$

where \mathcal{M}_2 denotes the set of all probability distributions on \mathbb{R}^d .

Theorem

Let $L = (L_t^{\mu})_{t \ge 0}$ be an \mathbb{R}^d -valued Lévy process with distribution μ , and $f = (f(t))_{t \ge 0}$ an $\mathbb{R}^{d \times d}$ -valued deterministic function. Let \mathcal{M}_1 be the set of all distributions μ on \mathbb{R}^d for which $\mathcal{L}(\int_0^{\infty} f(t) dL_t^{\mu})$ is defineable and consider the mapping

$$G: \mathcal{M}_1 \to \mathcal{M}_2, \quad \mu \mapsto \mathcal{L}\left(\int_0^\infty f(t) \,\mathrm{d} L_t^\mu\right),$$

where \mathcal{M}_2 denotes the set of all probability distributions on \mathbb{R}^d . (i) Suppose that f takes only values in the set of exchangeability preserving matrices. Then G is exchangeability preserving.

Theorem

Let $L = (L_t^{\mu})_{t \ge 0}$ be an \mathbb{R}^d -valued Lévy process with distribution μ , and $f = (f(t))_{t \ge 0}$ an $\mathbb{R}^{d \times d}$ -valued deterministic function. Let \mathcal{M}_1 be the set of all distributions μ on \mathbb{R}^d for which $\mathcal{L}(\int_0^{\infty} f(t) dL_t^{\mu})$ is defineable and consider the mapping

$$G: \mathcal{M}_1 \to \mathcal{M}_2, \quad \mu \mapsto \mathcal{L}\left(\int_0^\infty f(t) \,\mathrm{d} L_t^\mu\right),$$

where \mathcal{M}_2 denotes the set of all probability distributions on \mathbb{R}^d . (i) Suppose that f takes only values in the set of exchangeability preserving matrices. Then G is exchangeability preserving. (ii) Suppose that f takes only values in the set of matrices that commute with permutations. Then G commutes with permutations.

Theorem

Let $L = (L_t^{\mu})_{t \ge 0}$ be an \mathbb{R}^d -valued Lévy process with distribution μ , and $f = (f(t))_{t \ge 0}$ an $\mathbb{R}^{d \times d}$ -valued deterministic function. Let \mathcal{M}_1 be the set of all distributions μ on \mathbb{R}^d for which $\mathcal{L}(\int_0^{\infty} f(t) dL_t^{\mu})$ is defineable and consider the mapping

$$G: \mathcal{M}_1 \to \mathcal{M}_2, \quad \mu \mapsto \mathcal{L}\left(\int_0^\infty f(t) \,\mathrm{d} L_t^\mu\right),$$

where \mathcal{M}_2 denotes the set of all probability distributions on \mathbb{R}^d . (i) Suppose that f takes only values in the set of exchangeability preserving matrices. Then G is exchangeability preserving. (ii) Suppose that f takes only values in the set of matrices that commute with permutations. Then G commutes with permutations. If additionally G is injective, then the inverse $G^{-1}: G(\mathcal{M}_1) \to \mathcal{M}_1$ also commutes with permutations, so that in this case, $\int_0^\infty f(t) dL_t^{\mu}$ is exchangeable if and only if μ is exchangeable.

21/24

Self-decomposable distributions

Let c > 0 be fixed. A distribution σ on \mathbb{R}^d is self-decomposable if and only if it can be represented as an integral

$$\sigma = \mathcal{L}\left(\int_0^\infty e^{-ct} \, dL_t^\mu\right)$$

for some \mathbb{R}^d -valued Lévy process μ with finite log-moment. The process L^{μ} is called the background driving Lévy process (terminology due to Barndorff–Nielsen and Shephard, 2001).

Self-decomposable distributions

Let c > 0 be fixed. A distribution σ on \mathbb{R}^d is self-decomposable if and only if it can be represented as an integral

$$\sigma = \mathcal{L}\left(\int_0^\infty e^{-ct} \, dL_t^\mu\right)$$

for some \mathbb{R}^d -valued Lévy process μ with finite log-moment. The process L^{μ} is called the background driving Lévy process (terminology due to Barndorff-Nielsen and Shephard, 2001).

Corollary

A self-decomposable distribution σ is exchangeable if and only if the background driving Lévy process (i.e. $\mu = \mathcal{L}(L_1^{\mu})$) is exchangeable.

Self-decomposable distributions

Let c > 0 be fixed. A distribution σ on \mathbb{R}^d is self-decomposable if and only if it can be represented as an integral

$$\sigma = \mathcal{L}\left(\int_0^\infty e^{-ct} \, dL_t^\mu\right)$$

for some \mathbb{R}^d -valued Lévy process μ with finite log-moment. The process L^{μ} is called the background driving Lévy process (terminology due to Barndorff-Nielsen and Shephard, 2001).

Corollary

A self-decomposable distribution σ is exchangeable if and only if the background driving Lévy process (i.e. $\mu = \mathcal{L}(L_1^{\mu})$) is exchangeable. Remark

Extensions to A-decomposable distributions (with a matrix A, under certain conditions), can also be formulated.

The Upsilon transform

For an infinitely divisible distribution μ , the Upsilon transform is defined by

$$\Upsilon(\mu) = \mathcal{L}\left(\int_0^1 \log rac{1}{t} \, dL_t^\mu
ight)$$

(Barndorff-Nielsen and Thorbjørnsen, 2004). It defines a bijection onto the Goldie-Steutel-Bondesson class (Barndorff-Nielsen, Maejima, Sato, 2006).

The Upsilon transform

For an infinitely divisible distribution μ , the Upsilon transform is defined by

$$\Upsilon(\mu) = \mathcal{L}\left(\int_0^1 \log rac{1}{t} \, dL_t^\mu
ight)$$

(Barndorff-Nielsen and Thorbjørnsen, 2004). It defines a bijection onto the Goldie-Steutel-Bondesson class (Barndorff-Nielsen, Maejima, Sato, 2006).

Corollary

The Upsilon-transform commutes with permutations. In particular, $\Upsilon(\mu)$ is exchangeable if and only if μ is exchangeable.

The Upsilon transform

For an infinitely divisible distribution μ , the Upsilon transform is defined by

$$\Upsilon(\mu) = \mathcal{L}\left(\int_0^1 \log rac{1}{t} \, dL_t^\mu
ight)$$

(Barndorff-Nielsen and Thorbjørnsen, 2004). It defines a bijection onto the Goldie-Steutel-Bondesson class (Barndorff-Nielsen, Maejima, Sato, 2006).

Corollary

The Upsilon-transform commutes with permutations. In particular, $\Upsilon(\mu)$ is exchangeable if and only if μ is exchangeable.

Remark

More general Upsilon transforms have been defined in Barndorff-Nielsen, Rosinski and Thorbjørnsen (2008). These commute with permutations, and they are injective if a certain cancellation property for the multiplicative convolution holds. In that case, similar results can be obtained.

Happy birthday, Ole