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Stochastic processes and their distributions

• Consider a stochastic process X = (Xt)t∈[0,T ] on (Ω,F ,P).

• If the sample paths of X enjoy some regularity properties, for
example they are càdlàg or continuous, then it is possible, and
often also useful, to view X as a random variable

X : Ω→ E ,

with metric space E =
(
D([0,T ]), ρSko

)
or

E =
(
C ([0,T ]), ρSup

)
as its state space.

• The state space E is then infinite-dimensional.

• What can we learn about the distribution L (X ) := P ◦ X−1

of X?
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Difficulties in analysing infinite-dimensional probability
distributions

• Interesting probability distributions on infinite-dimensional
spaces are usually defined implicitly:

1. via finite-dimensional projections (Kolmogorov’s extension),
2. as limits simpler probability distributions (Prohorov’s theorem).

• Practical tools such as distribution functions or density
functions are not available for distributions on
infinite-dimensional spaces.

• Given a measurable transformation T : E → R, it is typically
not easy to describe the distribution of the random variable
T (X ), unless X is Gaussian and T linear, say.



Introduction Multivariate Brownian moving averages Multivariate Lévy-driven moving averages

Supports of probability distributions

• However, it is often possible to describe (practically) explicitly
the support of an infinite-dimensional probability distribution.

Definition

1. The support of a Borel measure µ on a separable metric space
E consists of all x ∈ E such that

µ
(
B(x , ε)

)
> 0 for all ε > 0,

where B(x , ε) := {y ∈ E : dE (x , y) < ε}. We denote the
support by suppE .

2. If µ is a Borel probability measure, then suppE is equivalently
the smallest closed set with µ-probability one.
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Example: the support of the Wiener measure

Question

Let W = (Wt)t∈[0,T ] be a standard Brownian motion. With
E = C ([0,T ]), what is supp L (W )?

Two immediate observations:

1. Since W0 = 0, we have

supp L (W ) ⊂ C0([0,T ]) := {f ∈ C ([0,T ]) : f (0) = 0}.

2. The support is necessarily non-empty, so g ∈ supp L (W ) for
some g ∈ C0([0,T ]).



Introduction Multivariate Brownian moving averages Multivariate Lévy-driven moving averages

Example: the support of the Wiener measure

Question

Let W = (Wt)t∈[0,T ] be a standard Brownian motion. With
E = C ([0,T ]), what is supp L (W )?

Two immediate observations:

1. Since W0 = 0, we have

supp L (W ) ⊂ C0([0,T ]) := {f ∈ C ([0,T ]) : f (0) = 0}.

2. The support is necessarily non-empty, so g ∈ supp L (W ) for
some g ∈ C0([0,T ]).



Introduction Multivariate Brownian moving averages Multivariate Lévy-driven moving averages

Example: the support of the Wiener measure

Let now p ∈ C0([0,T ]) be a polynomial function and let ε > 0.
Then, by Girsanov’s theorem, there exists Qp ∼ P such that

W − p is a standard Brownian motion under Qp.

Thus, for g ∈ supp L (W ) it holds that

Qp[W ∈ B(p + g , ε)] = Qp[W − p ∈ B(g , ε)]

= P[W ∈ B(g , ε)] > 0.

Since Qp ∼ P, we find that

P[W ∈ B(p + g , ε)] > 0,

so p + g ∈ supp L (W ), as ε > 0 was arbitrary.
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Example: the support of the Wiener measure

Functions of the form p + g , where p is a polynomial functions
with p(0) = 0 are dense in C0([0,T ]) by Weierstrass’s theorem.
Since supp L (W ) is closed, we have

C0([0,T ]) ⊂ supp L (W ).

But supp L (W ) ⊂ C0([0,T ]), so

supp L (W ) = C0([0,T ]).

Conclusion

W has full support.
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Full support

Definition

A continuous stochastic process X = (Xt)t∈[0,T ] in Rd with

X0 = x ∈ Rd has full support if

supp L (X ) = Cx([0,T ],Rd),

where Cx([0,T ]) := {f ∈ C ([0,T ],Rd) : f (0) = x}.

How to check? — Support theorems:

• diffusion processes (Stroock and Varadhan, 1972),

• Gaussian processes (Kallianpur, 1971).
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Conditional full support

It is natural to formulate a similar property for conditional
distributions:

Definition

A continuous stochastic process X = (Xt)t∈[0,T ] in Rd has
conditional full support (CFS) if for any t ∈ [0,T ),

supp L
(
(Xu)t∈[t,T ]

∣∣Ft

)
= CXt ([t,T ],Rd) almost surely,

where (Ft)t∈[0,T ] is the natural augmented filtration of X and

Cx([t,T ],Rd) := {f ∈ C ([t,T ],Rd) : f (t) = x} for any x ∈ Rd .
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Example: Brownian motion

Let W = (Wt)t∈[0,T ] be a standard Brownian motion in R. Fix
t ∈ [0,T ). For u ∈ [t,T ], we have

Wu = Wu −Wt + Wt ,

where (Wu −Wt)u∈[t,T ] is a standard Brownian motion
independent of Ft . So, the conditional distribution of (Wu)u∈[t,T ]

given Ft is
Wiener measure + Wt .

As the support of this Wiener measure is C0([t,T ],R), it follows
that

supp L
(
(Wu)t∈[t,T ]

∣∣Ft

)
= CWt ([t,T ],R),

that is, W has CFS.
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Processes that have CFS

The following processes have CFS (possibly under some additional
non-degeneracy conditions):

• Brownian motion,

• fractional Brownian motion (Guasoni, Rásonyi, and
Schachermayer, 2008),

• univariate Brownian moving averages (Cherny, 2008),

• univariate stationary-increment Gaussian processes (Gasbarra,
Sottinen, and van Zanten, 2011),

• diffusion processes (Guasoni, Rásonyi, and Schachermayer,
2008; Guasoni and Rásonyi, 2015),

• Brownian semimartingales (P., 2010; Herzegh, Prokaj, and
Rásonyi, 2014),

• Brownian semistationary processes (P., 2011).
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Applications of CFS in mathematical finance

The CFS property “unlocks” results in several areas:

• no-arbitrage, with and without transaction costs (Guasoni,
Rásonyi, and Schachermayer, 2008; Bender, Sottinen, and
Valkeila, 2008; Bender, 2011),

• super-hedging with transaction costs (Guasoni, Rásonyi, and
Schachermayer, 2008; Blum, 2009; Dolinsky, 2012; Dolinsky
and Soner, 2015),

• arbitrage and diverse markets (Herzegh, Prokaj, and Rásonyi,
2014),

• optimal arbitrage (Chau and Tankov, 2015),

• fragility of bubbles (Guasoni and Rásonyi, 2015),

• utility maximization under transaction costs, “shadow prices”
(Czichowsky and Schachermayer, 2015).
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Cherny’s theorem

We endeavor to find a multivariate generalization of:

Theorem (Cherny, 2008)

Let X = (Xt)t∈[0,T ] be a univariate, continuous Brownian moving
average given by

Xt =

∫ t

−∞

(
g(t − s)− g(−s)

)
dWs ,

where g(t) = 0 for any t < 0 and g(t − · )− g(− · ) ∈ L2(R) for
any t ∈ R; and (Wt)t∈R is a standard Brownian motion in R. If∫ ε

0
|g(s)|ds > 0 for any ε > 0,

then X has CFS.
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Multivariate Brownian moving averages

We consider a d-dimensional Brownian moving average

Xt :=

∫ t

−∞

(
G (t − s)− H(−s)

)
dWs ,

where

• G and H are matrix-valued functions R→ Rd×d such that
H(t) = 0 = G (t) for all t < 0 and that

G (t − · )− H(− · ) ∈ L2(R,Rd×d),

• (Wt)t∈R is a Brownian motion in Rd .
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Non-degeneracy condition

• In the 1-dimensional case, the kernel function g was assumed
to satisfy ∫ ε

0
|g(s)|ds > 0 for any ε > 0.

• We need a multivariate version of this non-degeneracy
condition.

• A natural candidate would be∫ ε

0

∣∣ det
(
G (s)

)∣∣ds > 0 for any ε > 0,

but this did not seem very fruitful. . .

• However, if we replace the classical determinant above with a
convolution determinant, this idea will become successful.
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Convolution determinant

• Let L1
loc(R+) be the space of measurable functions f : R→ R

such that f (s) = 0 for all s ≤ 0 and that∫ t

0
|f (s)|ds <∞ for any t > 0.

• Recall that the convolution of f , g ∈ L1
loc(R+) is given by

(f ? g)(t) :=

∫ t

0
f (t − s)g(s)ds, t > 0,

and that f ? g ∈ L1
loc(R+). (We set (f ? g)(t) := 0, t ≤ 0.)

• We say that G ∈ L1
loc(R+,Rd×d) if the component functions

Gi ,j (i , j = 1, . . . , d) of G are in L1
loc(R+).
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Convolution determinant

Definition

The convolution determinant of G ∈ L1
loc(R+,Rd×d) is given by

det?(G ) :=
∑
σ∈Sd

sgn(σ)
(
G1,σ(1) ? · · · ? Gd ,σ(d)

)
∈ L1

loc(R+),

where Sd is the group of permutations of {1, . . . , d} and sgn(σ) is
the signature of σ ∈ Sd .

• This is identical to the definition of the ordinary determinant,
except that we replace products of real numbers with
convolutions of functions.
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CFS for multivariate Brownian moving averages

Theorem

Let (Wt)t∈R be a Brownian motion in Rd with zero drift and a
non-singular correlation matrix. Let G ∈ L1

loc(R+,Rd×d) and let H
be such that H(t) = 0 for t ≤ 0 and

G (t − · )− H(− · ) ∈ L2(R,Rd×d), for any t ∈ R.

If ∫ ε

0
|det?(G )(s)|ds > 0, for any ε > 0,

then

Xt :=

∫ t

−∞

(
G (t − s)− H(−s)

)
dWs , t ∈ [0,T ],

has CFS.
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Regularly varying kernels

A wide class of kernel functions can characterized using the notion
of regular variation. For such kernels, the “det-star” condition is
fairly straightforward to check.

Definition

A measurable function f : (0,∞)→ (0,∞) is said to be regularly
varying at zero with index α ∈ R, and we write f ∈ RV0(α), if

lim
x→0

f (tx)

f (x)
= tα, for any t > 0.

If f ∈ RV0(α), then f (t) behaves “almost” like const · tα as t → 0.
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Regularly varying kernels

Regular variation at zero is preserved under convolutions:

Lemma

Let f ∈ L1
loc(R+) ∩ RV0(α) with α > −1 and

g ∈ L1
loc(R+) ∩ RV0(β) with β > −1. Then,

lim
t→0

(f ? g)(t)

tf (t)g(t)
= Beta(α + 1, β + 1),

which implies that f ? g ∈ RV0(α + β + 1).
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Regularly varying kernels

We find the following sufficient condition for the “det-star”
assumption in the 2-dimensional case:

Lemma (2-dimensional case)

Let G ∈ L1
loc(R+,R2×2) be such that Gi ,j ∈ RV0(αi ,j) for some

αi ,j > −1 for any i , j = 1, 2. If

α1,1 + α2,2 6= α2,1 + α1,2,

then ∫ ε

0
|det?(G )(s)|ds > 0, for any ε > 0.
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Regularly varying kernels

Proof.

By the definition of the convolution determinant,

det?(G ) = G1,1 ? G2,2 − G2,1 ? G1,2

By the earlier Lemma, G1,1 ? G2,2 ∈ RV0(α1,1 + α2,2 + 1) and
G2,1 ? G1,2 ∈ RV0(α2,1 + α1,2 + 1). When

α1,1 + α2,2 6= α2,1 + α1,2,

we see that det?(G ) is a difference of two regularly varying
functions with different indices, so it cannot vanish in a
neighborhood of zero.
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Moving averages driven by Lévy processes

• What if we replace the driving Brownian motion with a
pure-jump Lévy process?

• CFS is formulated for continuous processes, but now the
driving noise is discontinuous.

• However, a moving average driven by a pure-jump Lévy
process can be continuous if the kernel function is “smooth”.

• Let us look at an example:

Xt :=

∫ ∞
0

g(t − s)dLs ,

where g(t) := tα exp(−ρt), where α > 0 and ρ > 0; and
(Lt)t∈R is a two-sided compound Poisson process with
standard Gaussian jumps arriving at rate λ > 0.
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Moving averages driven by Lévy processes
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Moving averages driven by Lévy processes
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Moving averages driven by Lévy processes
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Moving averages driven by Lévy processes
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Moving averages driven by Lévy processes

We consider the process

Xt :=

∫ t

−∞

(
G (t − s)− H(−s)

)
dLs ,

where

• (Lt)t∈R is a two-sided d-dimensional Lévy process with triplet
(b, 0,Λ),

• G and H are measurable matrix-valued functions R→ Rd×d

such that H(t) = 0 = G (t) for all t < 0.
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Moving averages driven by Lévy processes

Assumptions

1. The integral defining Xt exists for any t ∈ R in the sense of
Rajput and Rosiński (1989),

2. X has a continuous modification,

3. The components of G are of finite variation.

Remark

• Condition 2 holds only if G is continuous and G (0) = 0
(Rosiński, 1989).

• If E[‖Lt‖2] <∞, then Kolmogorov’s criterion can be used to
check condition 2.



Introduction Multivariate Brownian moving averages Multivariate Lévy-driven moving averages
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CFS for Lévy-driven moving averages

Theorem

Let X be defined as before. If∫ ε

0
|det?(G )(s)|ds > 0, for any ε > 0,

and Λ is non-degenerate in the sense that

0 ∈ int conv supp Λ
(
· ∩B(0, ε)

)
, for any ε > 0,

then X has CFS.

Remark

In the special case d = 1, the non-degeneracy condition involving
Λ reduces to Λ

(
(−ε, 0)

)
> 0 and Λ

(
(0, ε)

)
> 0 for any ε > 0.
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Polar decomposition

When d ≥ 2, the Lévy measure Λ has a polar decomposition

Λ(A) =

∫
Sd−1

∫
(0,∞)

1A(ru)ρu(dr)λ(du), A ∈ B(Rd),

where

• λ is a finite measure on the unit sphere
Sd−1 := {x ∈ Rd : ‖x‖ = 1},

• ρu is a Lévy measure on R+ that depends measurably on
u ∈ Sd−1.

Example

With ρu(dr) = 1
r1+α we recover a class of α-stable Lévy processes.
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Polar decomposition

Using the polar decomposition, we can find sufficient conditions for
the non-degeneracy of the Lévy measure Λ:

Lemma

Let Λ have the polar decomposition {λ, ρu : u ∈ Sd−1}. If

1. 0 ∈ int conv suppλ,

2. ρu
(
(0, ε)

)
> 0 for any ε > 0 and u ∈ suppλ,

then

0 ∈ int conv supp Λ
(
· ∩B(0, ε)

)
, for any ε > 0.



Introduction Multivariate Brownian moving averages Multivariate Lévy-driven moving averages

Other constructions multidimensional Lévy measures

The non-degeneracy condition can also be checked for Lévy
measures constructed using

• Lévy copulas (Kallsen and Tankov, 2006),

• multivariate subordination (Barndorff-Nielsen, Pedersen, and
Sato, 2001).
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Finally. . .

Happy Birthday, Ole!
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