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Main classes of volatility models

Prices are often modeled as continuous semi-martingales of the
form

dPt = Pt(µtdt + σtdWt).

The volatility process σs is the most important ingredient of the
model. Practitioners consider essentially three classes of volatility
models :

Deterministic volatility (Black and Scholes 1973),

Local volatility (Dupire 1994),

Stochastic volatility (Hull and White 1987, Heston 1993,
Hagan et al. 2002,...).

In term of regularity, in these models, the volatility is either very
smooth or with a smoothness similar to that of a Brownian motion.
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Long memory in volatility

Definition

A stationary process is said to be long memory if its
autocovariance function decays slowly, more precisely :

+∞∑
t=1

Cov[σt+x , σx ] = +∞.

Power law long memory for the volatility :

Cov[σt+x , σx ] ∼ C/tγ ,

with γ < 1, is considered a stylized fact and has been notably
reported in Ding and Granger 1993 (using extra day data) and
Andersen et al., 2001 and 2003 (using intra day data).
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Fractional Brownian motion (I)

To take into account the long memory property and to allow for a
wider range of smoothness, some authors have introduced the
fractional Brownian motion in volatility modeling.

Definition

The fractional Brownian motion (fBm) with Hurst parameter H is
the only process WH to satisfy :

Self-similarity : (WH
at )

L
= aH(WH

t ).

Stationary increments : (WH
t+h −WH

t )
L
= (WH

h ).

Gaussian process with E[WH
1 ] = 0 and E[(WH

1 )2] = 1.
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Fractional Brownian motion (II)

Proposition

For all ε > 0, WH is (H − ε)-Hölder a.s.

Proposition

The absolute moments of the increments of the fBm satisfy

E[|WH
t+h −WH

t |q] = Kqh
Hq.

Proposition

If H > 1/2, the fBm exhibits long memory in the sense that

Cov[WH
t+1 −WH

t ,W
H
1 ] ∼ C

t2−2H
.
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Long memory volatility models

Some models have been built using fractional Brownian motion
with Hurst parameter H > 1/2 to reproduce the long memory
property of the volatility :

Comte and Renault 1998 (FSV model) :

d log(σt) = νdWH
t + α(m − log(σt))dt.

Comte, Coutin and Renault 2012, where they define a kind of
fractional CIR process.
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About option data

Classical stochastic volatility models generate reasonable
dynamics for the volatility surface.

However they do not allow to fit the volatility surface, in
particular the term structure of the ATM skew :

ψ(τ) :=

∣∣∣∣ ∂∂k σBS(k , τ)

∣∣∣∣
k=0

,

where k is the log-moneyness and τ the maturity of the
option.
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About option data : the volatility skew

The black dots are non-parametric estimates of the S&P ATM
volatility skews as of June 20, 2013 ; the red curve is the power-law
fit ψ(τ) = A τ−0.4.
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About option data : fractional volatility

The skew is well-approximated by a power-law function of
time to expiry τ . In contrast, conventional stochastic volatility
models generate a term structure of ATM skew that is
constant for small τ .

Models where the volatility is driven by a fBm generate an
ATM volatility skew of the form ψ(τ) ∼ τH−1/2, at least for
small τ .
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Intraday volatility estimation

We are interested in the dynamics of the (log)-volatility process.
We use two proxies for the spot (squared) volatility of a day.

A 5 minutes-sampling realized variance estimation taken over
the whole trading day (8 hours).

A one hour integrated variance estimator based on the model
with uncertainty zones (Robert and R. 2012).

Note that we are not really considering a “spot” volatility but an
“integrated” volatility. This might lead to some slight bias in our
measurements (which can be controlled).

From now on, we consider realized variance estimations on the
S&P over 3500 days, but the results are fairly “universal”.
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The log-volatility

Figure : The log volatility log(σt) as a function of t, S&P.
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Measure of the regularity of the log-volatility

The starting point of this work is to consider the scaling of the
moments of the increments of the log-volatility. Thus we study the
quantity

m(∆, q) = E[| log(σt+∆)− log(σt)|q],

or rather its empirical counterpart.

The behavior of m(∆, q) when ∆ is close to zero is related to the
smoothness of the volatility (in the Hölder or even the Besov
sense). Essentially, the regularity of the signal measured in lq norm
is s if m(∆, q) ∼ c∆qs as ∆ tends to zero.
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Scaling of the moments

Figure : log(m(q,∆)) = ζq log(∆) + Cq. The scaling is not only valid
as ∆ tends to zero, but holds on a wide range of time scales.
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Monofractality of the log-volatility

Figure : Empirical ζq and q → Hq with H = 0.14 (similar to a fBm
with Hurst parameter H).
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Distribution of the log-volatility increments

Figure : The distribution of the log-volatility increments is close to
Gaussian.
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A geometric fBm model ?

These empirical findings suggest we model the log-volatility as a
fractional Brownian motion :

σt = σeνW
H
t .

However, this model is not stationary. In particular, the empirical
autocovariance function of the (log-)volatility (which will be of
interest) does not make much sense.
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A geometric fOU model

We make it formally stationary by considering a fractional
Ornstein-Uhlenbeck model for the log-volatility denoted by Xt

dXt = νdWH
t + α(m − Xt)dt.

This process satisfies

Xt = ν

∫ t

−∞
e−α(t−s)dWH

t + m.

We take the reversion time scale 1/α very large compared to the
observation time scale.

This model is a particular case of the FSV model. However, in
strong contrast to FSV, we take H small and 1/α large. Thus we
call our model Rough FSV (RFSV).
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Properties of the RFSV model

Statistical analysis of the RFSV model

Reproduces very well the correlation structure of the volatility,
with explicit formulas.

No power law long memory property.

When applied to the RFSV model, statistical tests for long
memory behave the same way as for real data and deduce,
probably wrongly, the presence of long memory in the
volatility.

Multiscaling behaviour.

Explicit prediction formulas of the future volatility, depending
only on the parameter H, outperforming classical predictors.
To forecast the volatility at time t + ∆, one needs to consider
the data in the past until t −∆.
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Definition

Hawkes process

It is nowadays classical to model the order flow (number of
trades) thanks to Hawkes processes. The order flow is
essentially the same thing as the integrated volatility if the
time scale is large enough.

A Hawkes process (Nt)t≥0 is a self exciting point process,
whose intensity at time t, denoted by λt , is of the form

λt = µ+
∑

0<Ji<t

φ(t − Ji ) = µ+

∫
(0,t)

φ(t − s)dNs ,

where µ is a positive real number, φ a regression kernel and
the Ji are the points of the process before time t.

These processes have been introduced in 1971 by Hawkes in
the purpose of modeling earthquakes and their aftershocks.
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Popularity of Hawkes processes in finance

Two main reasons for the popularity of Hawkes processes

These processes represent a very natural and tractable
extension of Poisson processes. In fact, comparing point
processes and conventional time series, Poisson processes are
often viewed as the counterpart of iid random variables
whereas Hawkes processes play the role of autoregressive
processes.

Another explanation for the appeal of Hawkes processes is
that it is often easy to give a convincing interpretation to such
modeling. To do so, the branching structure of Hawkes
processes is quite helpful.
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Hawkes processes as a population model

Poisson cluster representation

Under the assumption ‖φ‖1 < 1, where ‖φ‖1 denotes the L1

norm of φ, Hawkes processes can be represented as a
population process where migrants arrive according to a
Poisson process with parameter µ.

Then each migrant gives birth to children according to a non
homogeneous Poisson process with intensity function φ, these
children also giving birth to children according to the same
non homogeneous Poisson process, see Hawkes (74).

Now consider for example the classical case of buy (or sell)
market orders. Then migrants can be seen as exogenous
orders whereas children are viewed as orders triggered by other
orders.
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Stability condition

The condition ‖φ‖1 < 1

The assumption ‖φ‖1 < 1 is crucial in the study of Hawkes
processes.

If one wants to get a stationary intensity with finite first
moment, then the condition ‖φ‖1 < 1 is required.

This condition is also necessary in order to obtain classical
ergodic properties for the process.

For these reasons, this condition is often called stability
condition in the Hawkes literature.

J. Gatheral, T. Jaisson, M. Rosenbaum Volatility is rough: microstructural foundations 25



Volatility is rough
Hawkes processes

Microstructural foundations for the RFSV model

‖φ‖1 in practice

Degree of endogeneity of the market

From a practical point of view, a lot of interest has been
recently devoted to the parameter ‖φ‖1.

For example, Hardiman, Bercot and Bouchaud (13) and
Filimonov and Sornette (12,13) use the branching
interpretation of Hawkes processes on midquote data in order
to measure the so-called degree of endogeneity of the market,
defined by ‖φ‖1.
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‖φ‖1 in practice

Degree of endogeneity of the market

The parameter ‖φ‖1 corresponds to the average number of
children of an individual, ‖φ‖2

1 to the average number of
grandchildren of an individual,. . . Therefore, if we call cluster
the descendants of a migrant, then the average size of a
cluster is given by

∑
k≥1 ‖φ‖k1 = ‖φ‖1/(1− ‖φ‖1).

Thus, the average proportion of endogenously triggered events
is ‖φ‖1/(1− ‖φ‖1) divided by 1 + ‖φ‖1/(1− ‖φ‖1), which is
equal to ‖φ‖1.
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‖φ‖1 in practice

Unstable Hawkes processes

This branching ratio can be measured using parametric and
non parametric estimation methods for Hawkes processes, see
Ogata (78,83) for likelihood based methods and
Reynaud-Bouret and Schbath (10) and Al Dayri et al. (11) for
functional estimators of the function φ.

In Hardiman, Bercot and Bouchaud (13), very stable
estimations of ‖φ‖1 are reported for the E mini S&P futures
between 1998 and 2012, the results being systematically close
to one.

This is also the case for Bund and Dax futures in Al Dayri et
al. (11) and various other assets in Filimonov and Sornette
(12).
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Aim of our study

Limiting behavior of Hawkes processes

Our aim is to study the behavior at large time scales of nearly
unstable Hawkes processes, which correspond to these
estimations of ‖φ‖1, close to 1.

This will give us insights on the properties of the integrated
volatility.

Furthermore, we want to take into account another stylized
fact : The function φ has a power law tail :

φ(x) ∼
x→+∞

K

x1+α
,

with α of order 0.5-0.7.

This memory effect is likely due to metaorders splitting.
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The model

Sequence of Hawkes processes

We consider a sequence of Hawkes processes (NT
t )t≥0 indexed

by T →∞ with

λTt = µT +

∫ t

0
φT (t − s)dNT

s .

For some sequence aT < 1, aT → 1, K > 0 and α ∈ (0, 1) :

φT (t) = aTφ(t), αxα
(
1− F (x)

)
→

x→+∞
K ,

with ‖φ‖1 = 1 and

F (x) =

∫ x

0
φ(s)ds.
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Non degenerate limit for nearly unstable Hawkes processes

Martingale process

Let MT be the martingale process associated to NT , that is,
for t ≥ 0,

MT
t = NT

t −
∫ t

0
λTs ds.

We also set ψT the function defined on R+ by

ψT (t) =
∞∑
k=1

(φT )∗k(t).

We can show that

λTt = µT +

∫ t

0
ψT (t − s)µds +

∫ t

0
ψT (t − s)dMT

s .
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Non degenerate limit for nearly unstable Hawkes processes

Rescaling

We rescale our processes so that they are defined on [0, 1]. To
do that, we consider for t ∈ [0, 1]

λTtT = µT +

∫ tT

0
ψT (Tt − s)µTds +

∫ tT

0
ψT (Tt − s)dMT

s .

For the scaling in space, a natural multiplicative factor is
(1− aT )/µT . Indeed, in the stationary case,

E[λTt ] = µT/(1− ‖φT‖1).

Thus, the order of magnitude of the intensity is
µT (1− aT )−1. This is why we define

CT
t = λTtT (1− aT )/µT .
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Non degenerate limit for nearly unstable Hawkes processes

Decomposition of CT
t

Then we easily get :

CT
t = (1− aT ) +

∫ t

0
T (1− aT )ψT (Ts)ds

+

√
T (1− aT )

µT

∫ t

0
ψT (T (t − s))

√
CT
s dBT

s ,

with

BT
t =

1√
T

∫ tT

0

dMT
s√
λTs

.
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The function ψT

The asymptotic behavior of CT
t is closely linked to that of ψT .

Remark that the function defined for x ≥ 0 by

ρT (x) = T
ψT (Tx)

‖ψT‖1

is the density of the random variable

XT =
1

T

IT∑
i=1

Xi ,

where the (Xi ) are iid random variables with density φ and IT

is a geometric random variable with parameter 1− aT .
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Non degenerate limit for nearly unstable Hawkes processes

The function ψT

The characteristic function of the random variable XT ,
denoted by ρ̂T , satisfies :

ρ̂T (z) =
φ̂( z

T )

1− aT
1−aT (φ̂( z

T )− 1)
,

where φ̂ denotes the characteristic function of X1.

Due to the assumptions on φ, we have

φ̂(z) = 1− K
Γ(1− α)

α
zα + o(zα).
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Non degenerate limit for nearly unstable Hawkes processes

The function ψT

Set δ = K Γ(1−α)
α and vT = δ−1Tα(1− aT ).

Using that aT and φ̂( z
T ) both tend to 1 as T goes to infinity,

ρ̂T (z) is equivalent to

vT
vT + zα

.

The function whose Laplace transform is equal to this last
quantity is given by

vT x
α−1Eα,α(−vT xα),

with Eα,β the (α, β) Mittag-Leffler function.
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Non degenerate limit for nearly unstable Hawkes processes

Expected limit for CT
t

Putting everything together, we can expect (for α > 1/2)

CT
t ∼ vT

∫ t

0
sα−1Eα,α(−vT sα)ds

+ γT vT

∫ t

0
(t − s)α−1Eα,α(−vT (t − s)α)

√
CT
s dBT

s ,

with

γT =
1√

µTT (1− aT )
.

The process BT can be shown to converge to a Brownian
motion B.
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Expected limit for CT
t

We need that both vT and γT converge to positive constants
so we assume :

Tα(1− aT )→ λδ, T 1−αµT → µ∗δ−1.

Passing to the limit, we obtain (for α > 1/2)

C∞t ∼ λ
∫ t

0
sα−1Eα,α(−λsα)ds

+

√
λ

µ∗

∫ t

0
(t − s)α−1Eα,α(−λ(t − s)α)

√
C∞s dBs .
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Non degenerate limit for nearly unstable Hawkes processes

Limit theorem

For α > 1/2, the sequence of renormalized Hawkes processes
converges to some process which is differentiable on [0, 1].
Moreover, the law of its derivative Y satisfies

Yt = Fα,λ(t) +
1√
µ∗λ

∫ t

0
f α,λ(t − s)

√
YsdB

1
s ,

with B1 a Brownian motion and

f α,λ(x) = λxα−1Eα,α(−λxα).

Therefore H = α− 1/2. Furthermore, for any ε > 0, Y has Hölder
regularity α− 1/2− ε.
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Agent based explanation for RFSV

Microstructural foundations for the RFSV model

It is clearly established that there is a linear relationship
between cumulated order flow and integrated variance.

Consequently the “derivative” of the order flow corresponds to
the spot variance.

Thus endogeneity of the market together with order splitting
lead to a superposition effect which explains (at least partly)
the rough nature of the observed volatility.

Near instability together with a tail index α ∼ 0.6 correspond
to H ∼ 0.1.
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