Asymptotic indifference pricing in exponential Lévy models

Clément Ménassé and Peter Tankov

Aarhus Conference on Probability, Statistics and Applications, Celebrating the Achievements of O. E. Barndorff-Nielsen

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

From Lévy Processes to Semimartingales - Recent Theoretical Developments and Applications to Finance, Aarhus, 20–27 August 2002

・ロト ・回ト ・ヨト ・ヨト

Exponential Lévy models

In the Black-Scholes-Samuelson model, the distribution of price returns (log-increments) is Gaussian, and the probability of extreme price moves is under-estimated.

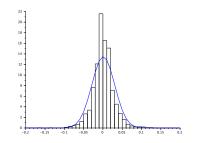
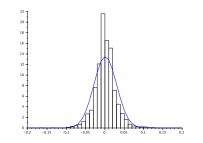


Image: Image:

글 > - - - - >

Exponential Lévy models

In the Black-Scholes-Samuelson model, the distribution of price returns (log-increments) is Gaussian, and the probability of extreme price moves is under-estimated.



For this reason, it has been suggested to model prices with non-Gaussian processes with stationary and independent increments (Lévy processes).

We assume that the price process S of the stock satisfies

$$\frac{dS_t}{S_{t-}}=dX_t,$$

where X is a Lévy process.

Utility indifference pricing in exponential Lévy models

In general Lévy models perfect replication is not possible and the seller of the option must accept some risk

 \Rightarrow option price depends on risk preferences

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Utility indifference pricing in exponential Lévy models

In general Lévy models perfect replication is not possible and the seller of the option must accept some risk

- \Rightarrow option price depends on risk preferences
- Let *U* be the seller's utility function (concave, increasing)

The seller, who can trade dynamically in the financial market, maximizes expected utility of terminal wealth with and without the option

(D) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Utility indifference pricing in exponential Lévy models

In general Lévy models perfect replication is not possible and the seller of the option must accept some risk

 \Rightarrow option price depends on risk preferences

Let *U* be the seller's utility function (concave, increasing)

The seller, who can trade dynamically in the financial market, maximizes expected utility of terminal wealth with and without the option

Fair price: price at which seller is indifferent between selling and not selling (Hodges and Neuberger '89):

$$\max_{\varphi} \mathbb{E}\left[U\left(V_{0} + \int_{0}^{T} \varphi_{t} dS_{t}\right)\right] = \max_{\varphi} \mathbb{E}\left[U\left(V_{0} + \mathbf{p} + \int_{0}^{T} \varphi_{t} dS_{t} - \mathbf{H}_{T}\right)\right]$$

(the maximum is taken over a suitably defined set of admissible strategies)

We are interested in the exponential utility function $U(x) = -e^{-\alpha x}$, and define the set of admissible strategies

 $\Theta = \{\varphi \in L(S) \mid \exists L^* \text{ with } \mathbb{E}[e^{-\alpha L^*}] < \infty \text{ s.t. } (\varphi \cdot S)_t \ge L^* \forall t \in [0, T] \text{ a.s.} \}$

We are interested in the exponential utility function $U(x) = -e^{-\alpha x}$, and define the set of admissible strategies

$$\Theta = \{ \varphi \in L(S) \mid \exists L^* \text{ with } \mathbb{E}[e^{-\alpha L^*}] < \infty \text{ s.t. } (\varphi \cdot S)_t \ge L^* \, \forall t \in [0, T] \text{ a.s.} \}$$

We make the standing assumption that the Lévy process *X* is not a.s. monotone and has bounded jumps: $|\Delta X_t| \le \delta < 1$ a.s. for all $t \in [0, T]$.

・ロット (母) ・ ヨ) ・ ヨ)

We are interested in the exponential utility function $U(x) = -e^{-\alpha x}$, and define the set of admissible strategies

$$\Theta = \{ \varphi \in L(S) \mid \exists L^* \text{ with } \mathbb{E}[e^{-\alpha L^*}] < \infty \text{ s.t. } (\varphi \cdot S)_t \ge L^* \forall t \in [0, T] \text{ a.s.} \}$$

We make the standing assumption that the Lévy process X is not a.s. monotone and has bounded jumps: $|\Delta X_t| \le \delta < 1$ a.s. for all $t \in [0, T]$.

Then, for a bounded contingent claim H_T , the seller's indifference price satisfies

$$\rho = \frac{1}{\alpha} \log \frac{\min_{\varphi \in \Theta} \mathbb{E} \left[\exp \left(-\alpha \int_0^T \varphi_t dS_t + \alpha H_T \right) \right]}{\min_{\varphi \in \Theta} \mathbb{E} \left[\exp \left(-\alpha \int_0^T \varphi_t dS_t \right) \right]}$$

Pure investment problem

The pure investment problem

$$\min_{\varphi \in \Theta} \mathbb{E}\left[\exp\left(-\alpha \int_{0}^{T} \varphi_{t} dS_{t}\right)\right]$$

admits an explicit solution:

 $\varphi_t^* = \frac{\vartheta^*}{S_{t-}}$ where ϑ^* is such that $\ell(-\alpha\vartheta^*) = \inf_u \ell(u)$ with

$$\ell(u) = \gamma u + \frac{\sigma^2 u^2}{2} + \int_{\mathbb{R}} (e^{ux} - 1 - ux)\nu(dx).$$

・ロ・・ (日・・ 日・・ 日・・

Define a measure \mathbb{Q}^* via

$$\frac{d\mathbb{Q}^*}{d\mathbb{P}} = \frac{\exp\left(-\alpha \int_0^T \varphi_t^* dS_t\right)}{\mathbb{E}\left[\exp\left(-\alpha \int_0^T \varphi_t^* dS_t\right)\right]} = \frac{e^{-\alpha \vartheta^* X_T}}{\mathbb{E}[e^{-\alpha \vartheta^* X_T}]}.$$

Then, S is a martingale under \mathbb{Q}^* and

$$\boldsymbol{\rho} = \frac{1}{\alpha} \log \min_{\varphi} \mathbb{E}^{\mathbb{Q}^*} \left[\exp\left(-\alpha \int_0^T \varphi_t d\boldsymbol{S}_t + \alpha \boldsymbol{H}_T \right) \right]$$

 \mathbb{Q}^* is called minimal entropy martignale measure.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Dual representation of the indifference price

From Bellini and Frittelli (2002) (see also Delbaen et al., 2002):

$$\rho = \sup_{\mathbb{Q} \in \mathsf{EMM}(\mathbb{Q}^*)} \left\{ \mathbb{E}^{\mathbb{Q}}[H] - \frac{1}{\alpha} H(\mathbb{Q}|\mathbb{Q}^*) \right\},\$$

where EMM (\mathbb{Q}^*) denotes the set of martingale measures, equivalent to \mathbb{Q}^* and $H(\mathbb{Q}|\mathbb{Q}^*)$ is defined by

$$\mathcal{H}(\mathbb{Q}|\mathbb{Q}^*) = \mathbb{E}^* \left[rac{d\mathbb{Q}}{d\mathbb{Q}^*} \ln rac{d\mathbb{Q}}{d\mathbb{Q}^*}
ight]$$

whenever this quantity is finite and equals $+\infty$ otherwise.

(D) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Approximating the indifference price: idea

Computation of the indifference price is a stochastic control problem leading to a nonlinear partial integro-differential equation difficult to solve in real-time

In the Black-Scholes model, the price is unique: the indifference price does not depend on the utility function and is given by $p = \mathbb{E}^{\mathbb{Q}^*}[H_T]$.

If a Lévy model is close to Black-Scholes, in the sense that H_T is almost replicated, can we find an approximation of the indifference price?

Reminder on quadratic hedging and martingale representation

• Quadratic hedging (Föllmer and Sondermann '85):

Let $\tilde{H}_T = H_T - \mathbb{E}^{\mathbb{Q}^*}[H_T]$, $\tilde{H}_t = \mathbb{E}^{\mathbb{Q}^*}[\tilde{H}_T | \mathcal{F}_t]$ and let $\bar{\varphi}$ be the minimizer of

$$\mathbb{E}^{\mathbb{Q}^*}\left[\left(\int_0^T \varphi_s dS_s - \tilde{H}_T\right)^2\right] \quad \Rightarrow \quad \bar{\varphi}_t = \frac{d\langle \tilde{H}, S \rangle_t}{d\langle S, S \rangle_t}$$

・ロト ・回 ト ・ヨト ・ヨト

Reminder on quadratic hedging and martingale representation

• Quadratic hedging (Föllmer and Sondermann '85):

Let $\tilde{H}_T = H_T - \mathbb{E}^{\mathbb{Q}^*}[H_T]$, $\tilde{H}_t = \mathbb{E}^{\mathbb{Q}^*}[\tilde{H}_T | \mathcal{F}_t]$ and let $\bar{\varphi}$ be the minimizer of

$$\mathbb{E}^{\mathbb{Q}^*}\left[\left(\int_0^T \varphi_s dS_s - \tilde{H}_T\right)^2\right] \quad \Rightarrow \quad \bar{\varphi}_t = \frac{d\langle \tilde{H}, S \rangle_t}{d\langle S, S \rangle_t}$$

• The process $(\tilde{H}_t)_{0 \le t \le T}$ admits the representation

$$ilde{\mathcal{H}}_t = \int_0^t \sigma_s dX_s^c + \int_0^t \int_{\mathbb{R}} \gamma_s(z) \tilde{J}_X(ds imes dz),$$

where X^c is the continuous martingale part of the process X under \mathbb{Q}^* and \tilde{J}_X is the compensated jump measure of the process X under \mathbb{Q}^* .

Non-asymptotic approximation of the indifference price

Assume that there exists a constant $L < \infty$ with $2\delta L\alpha < 1$ such that

 $|H - \mathbb{E}^*[H]| \le L$ a.s., $|\sigma_t| \le L$ a.s. for all $t \in [0, T]$, $|\gamma_t(z)| \le L|z|$ a.s. for all $t \in [0, T]$ and all $z \in \text{supp } \nu$.

Non-asymptotic approximation of the indifference price

Assume that there exists a constant $L < \infty$ with $2\delta L\alpha < 1$ such that

$$|H - \mathbb{E}^*[H]| \le L$$
 a.s.,
 $|\sigma_t| \le L$ a.s. for all $t \in [0, T]$,
 $|\gamma_t(z)| \le L|z|$ a.s. for all $t \in [0, T]$ and all $z \in \operatorname{supp} \nu$.

Then there exists a constant $C < \infty$ such that for every $\varepsilon \in (0, 1]$ the seller's indifference price of the claim *H* satisfies

$$\begin{split} \left| \boldsymbol{\rho} - \mathbb{E}^*[\boldsymbol{H}] - \frac{\alpha}{2} \mathbb{E}^* \left[\left(\int_0^T \bar{\varphi}_s d\boldsymbol{S}_s - \tilde{\boldsymbol{H}}_T \right)^2 \right] \right| \\ & \leq \alpha^{1+\varepsilon} \boldsymbol{C} \mathbb{E}^* \left[\sup_{0 \leq t \leq T} \left| \int_0^t \bar{\varphi}_s d\boldsymbol{S}_s - \tilde{\boldsymbol{H}}_t \right|^{2+\varepsilon} \right]. \end{split}$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Structure of the indifference price

Seller's price:

$$p^{\mathsf{sell}} pprox \mathbb{E}^{\mathbb{Q}^*}[H_T] + rac{lpha}{2} \mathbb{E}^{\mathbb{Q}^*} \left[\left(\int_0^T ar{arphi}_{\mathcal{S}} d\mathcal{S}_{\mathcal{S}} - ilde{H}_T
ight)^2
ight]$$

Buyer's price:

$$p^{\mathsf{buy}} \approx \mathbb{E}^{\mathbb{Q}^*}[H_T] - \frac{\alpha}{2} \mathbb{E}^{\mathbb{Q}^*} \left[\left(\int_0^T \bar{\varphi}_s dS_s - \tilde{H}_T \right)^2 \right]$$

Linear part (the same for all agents): $\mathbb{E}^{\mathbb{Q}^*}[H_T]$

Spread between seller's price and buyer's price: proportional to the risk aversion and the unhedgeable part of the risk.

$$\alpha \mathbb{E}^{\mathbb{Q}^*} \left[\left(\int_0^T \bar{\varphi}_s dS_s - \tilde{H}_T \right)^2 \right] = \alpha \min_{\varphi} \mathbb{E}^{\mathbb{Q}^*} \left[\left(\int_0^T \varphi_s dS_s - \tilde{H}_T \right)^2 \right]$$

Relationship to the literature

 Several authors (Kallsen and Rheinländer '11; Kramkov and Sirbu '07; Mania and Schweizer '05; Becherer '06, Delbaen et al., '02) study the asymptotics of the indifference price as α → 0 in various settings.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Relationship to the literature

- Several authors (Kallsen and Rheinländer '11; Kramkov and Sirbu '07; Mania and Schweizer '05; Becherer '06, Delbaen et al., '02) study the asymptotics of the indifference price as α → 0 in various settings.
- By contrast, our approximation is non-asymptotic, and provides an error bound for finite α, as soon as 2δLα < 1.

Relationship to the literature

- Several authors (Kallsen and Rheinländer '11; Kramkov and Sirbu '07; Mania and Schweizer '05; Becherer '06, Delbaen et al., '02) study the asymptotics of the indifference price as α → 0 in various settings.
- By contrast, our approximation is non-asymptotic, and provides an error bound for finite α, as soon as 2δLα < 1.
- It allows to recover a variety of asymptotic approximations, for example, as α ↓ 0,

$$\boldsymbol{\rho} = \mathbb{E}^*[\boldsymbol{H}] + \frac{\alpha}{2} \mathbb{E}^* \left[\left(\int_0^T \bar{\varphi}_s d\boldsymbol{S}_s - \tilde{\boldsymbol{H}}_T \right)^2 \right] + O(\alpha^2),$$

extending Kallsen and Rheinländer (11).

Non-asymptotic approximation: idea of the proof

Under the assumptions of the Theorem,

$$\bar{\varphi}_t = \frac{1}{S_{t-}} \frac{\sigma \sigma_t + \int_{\mathbb{R}} z \gamma_t(z) \nu(dz)}{\sigma^2 + \int_{\mathbb{R}} z^2 \nu(dz)}$$

and therefore $|S_{t-}\bar{\varphi}_t| \leq L$ a.s. for all $t \in [0, T]$.

Upper bound: use a suboptimal strategy:

Define

$$\tau = \inf\{t \ge 0 : \left|\int_0^t \bar{\varphi}_s dS_s - \tilde{H}_t\right| \ge 1\} \wedge T.$$

Then,

$$\left|\int_{0}^{ au}ar{arphi}_{s}dS_{s}- ilde{H}
ight|\leq 3L+1$$

and we can use the suboptimal strategy $\varphi_t = \bar{\varphi}_t \mathbf{1}_{t \leq \tau}$ and perform the Taylor expansion of the exponential.

Non-asymptotic approximation: idea of the proof

Lower bound: use the duality formula:

$$\rho = \sup_{\mathbb{Q} \in \mathsf{EMM}(\mathbb{Q}^*)} \left\{ \mathbb{E}^{\mathbb{Q}}[H] - \frac{1}{\alpha} H(\mathbb{Q}|\mathbb{Q}^*) \right\}, \qquad H(\mathbb{Q}|\mathbb{Q}^*) = \mathbb{E}^{\mathbb{Q}^*} \left[\frac{d\mathbb{Q}}{d\mathbb{Q}^*} \ln \frac{d\mathbb{Q}}{d\mathbb{Q}^*} \right],$$

and take $\mathbb{Q} = D\mathbb{Q}^*$ with

$$D = 1 + \alpha \int_0^\tau \bar{\varphi}_t dS_t - \alpha \tilde{H}_\tau$$

and

$$\tau = \inf\left\{t \ge 0: \left|\int_0^t \bar{\varphi}_s dS_s - \tilde{H}_t\right| \ge \frac{1}{2} - \alpha L\delta\right\} \wedge T.$$

・ロン ・回 ・ ・ ヨン・

How to measure 'closedness to Black-Scholes'

An idea proposed for smooth linear functionals by Cerny, Denkl and Kallsen (2013).

Lévy model:
$$\frac{dS_t}{S_{t-}} = dX_t$$
 Black-Scholes model: $\frac{dS_t}{S_{t-}} = \sigma dW_t$

Recall that X is a martingale Lévy process with diffusion coefficient A and Lévy measure ν .

Let
$$X_t^{\lambda} = \lambda X_{t/\lambda^2}$$
. If $\int x^2 \nu(dx) < \infty$ then
 $(X_t^{\lambda})_{t \ge 0} \xrightarrow{d} (\bar{\sigma} W_t)_{t \ge 0}, \quad \bar{\sigma}^2 = A + \int x^2 \nu(dx).$

 λ is an artificial small parameter allowing to expand a Lévy model around Black-Scholes.

Peter Tankov (Université Paris-Diderot)

A D A A B A A B A A B A

A Taylor expansion of the indifference price

Let p_{λ} be the indifference price evaluated for X^{λ} . Then, $p_1 = p$ is the price of interest and p_0 is the Black-Scholes price.

If we can find a representation

$$p_{\lambda} = p_0 + \lambda p'_0 + \frac{\lambda^2}{2} p''_0 + o(\lambda^2),$$

then *p* can be approximated by

$$p_0 + p_0' + rac{1}{2}p_0''.$$

Expansion for the indifference price

Assume that

- The pay-off satisfies *H* = *h*(*S_T*) where *h* is bounded, satisfies |*xh*(*x*)| ≤ *L* for some constant *L*, is a.e. differentiable and *h*' has finite variation.
- Either $\sigma > 0$ or there exists $\beta > 0$ such that $\liminf_{r \downarrow 0} \frac{\int_{[-r,r]} x^2 \nu(dx)}{r^{2-\beta}} > 0$.

Expansion for the indifference price

Assume that

• The pay-off satisfies $H = h(S_T)$ where *h* is bounded, satisfies $|xh(x)| \le L$ for some constant *L*, is a.e. differentiable and *h'* has finite variation.

• Either $\sigma > 0$ or there exists $\beta > 0$ such that $\liminf_{r \downarrow 0} \frac{\int_{[-r,r]} x^2 \nu(dx)}{r^{2-\beta}} > 0$. Then, as $\lambda \to 0$,

$$\begin{split} p^{\lambda} = & P_{BS}(S_0) + \frac{\lambda m_3 T}{6} S_0^3 P_{BS}^{(3)}(S_0) + \frac{\lambda^2 m_4 T}{24} S_0^4 P_{BS}^{(4)}(S_0) \\ & + \frac{\lambda^2 m_3^2 T^2}{72} \left\{ 6 S_0^3 P_{BS}^{(3)}(S_0) + 18 S_0^4 P_{BS}^{(4)}(S_0) + 9 S_0^5 P_{BS}^{(5)}(S_0) + S_0^6 P_{BS}^{(6)}(S_0) \right\} \\ & + \frac{\alpha \lambda^2}{8} \left(m_4 - \frac{m_3^2}{\bar{\sigma}^2} \right) \mathbb{E}^{BS} \left[\int_0^T \left(S_t^2 \frac{\partial^2 P_{BS}(t, S_t)}{\partial S^2} \right)^2 dt \right] + o(\lambda^2) \end{split}$$

where $m_3 = \int_{\mathbb{R}} x^3 \nu(dx)$, $m_4 = \int_{\mathbb{R}} x^4 \nu(dx)$ and \mathbb{E}^{BS} / P^{BS} denote the expectation / option price in the Black-Scholes model with volatility \bar{a} .

Expansion for the linear part

No pay-off regularity is needed for this part due to the smoothing effect of the Lévy density

- Assume that
 - The function *h* is bounded measurable with polynomial growth.
 - Either $\sigma > 0$ or there exists $\beta \in (0, 2)$ with $\liminf_{r \downarrow 0} \frac{\int_{[-r,r]} x^2 \nu(dx)}{r^{2-\beta}} > 0$.

イロト イポト イヨト イヨト

Expansion for the linear part

No pay-off regularity is needed for this part due to the smoothing effect of the Lévy density

Assume that

- The function *h* is bounded measurable with polynomial growth.
- Either $\sigma > 0$ or there exists $\beta \in (0, 2)$ with $\liminf_{r \downarrow 0} \frac{\int_{[-r,r]} x^2 \nu(dx)}{r^{2-\beta}} > 0$.

Then, as $\lambda \rightarrow 0$,

$$\mathbb{E}^{\mathbb{Q}^{*}}[H_{T}^{\lambda}] = P_{BS}(S_{0}) + \frac{\lambda m_{3}T}{6}S_{0}^{3}P_{BS}^{(3)}(S_{0}) + \frac{\lambda^{2}m_{4}T}{24}S_{0}^{4}P_{BS}^{(4)}(S_{0}) \\ + \frac{\lambda^{2}m_{3}^{2}T^{2}}{72} \{6S_{0}^{3}P_{BS}^{(3)}(S_{0}) + 18S_{0}^{4}P_{BS}^{(4)}(S_{0}) + 9S_{0}^{5}P_{BS}^{(5)}(S_{0}) + S_{0}^{6}P_{BS}^{(6)}(S_{0})\} + o(\lambda^{2}).$$

See also Cerny, Denkl and Kallsen (2013) for the case of C^{∞} pay-offs.

Expansion for the quadratic part

Put-style regularity needed, otherwise convergence in λ is slower Under the assumptions of the Theorem,

$$\begin{split} \mathbb{E}^{\mathbb{Q}^*} \left[\left(\int_0^T \bar{\varphi}_s^{\lambda} dS_s^{\lambda} - \tilde{H}_T^{\lambda} \right)^2 \right] \\ &= \frac{\lambda^2}{4} \left(m_4 - \frac{m_3^2}{\bar{\sigma}^2} \right) \mathbb{E}^{BS} \left[\int_0^T \left(S_t^2 \frac{\partial^2 P_{BS}(t, S_t)}{\partial S^2} \right)^2 dt \right] + o(\lambda^2). \end{split}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Expansion for the quadratic part

Put-style regularity needed, otherwise convergence in λ is slower Under the assumptions of the Theorem,

$$\begin{split} \mathbb{E}^{\mathbb{Q}^*} \left[\left(\int_0^T \bar{\varphi}_s^{\lambda} dS_s^{\lambda} - \tilde{H}_T^{\lambda} \right)^2 \right] \\ &= \frac{\lambda^2}{4} \left(m_4 - \frac{m_3^2}{\bar{\sigma}^2} \right) \mathbb{E}^{BS} \left[\int_0^T \left(S_t^2 \frac{\partial^2 P_{BS}(t, S_t)}{\partial S^2} \right)^2 dt \right] + o(\lambda^2). \end{split}$$

In addition, for the put option,

$$\mathbb{E}^{BS}\left[\int_0^T \left(S_t^2 \frac{\partial^2 P_{BS}(t, S_t)}{\partial S^2}\right)^2 dt\right] = \frac{K^2}{2\pi\bar{\sigma}^2} \int_0^1 \frac{dt}{\sqrt{1-t^2}} e^{-\frac{d^2}{1+t}}$$

where $d = \frac{1}{\sigma\sqrt{T}} \log \frac{S_0}{K} - \frac{\sigma\sqrt{T}}{2}$. See also Cerny, Denkl and Kallsen (2013) for the case of \mathcal{C}^{∞} pay-offs.

Estimation of the residual term

Put-style regularity needed

Under the assumptions of the theorem, let $M_t^{\lambda} = \int_0^t \bar{\varphi}_s^{\lambda} dS_s^{\lambda} - H_t^{\lambda}$ and define $\bar{M}_T^{\lambda} = \sup_{0 \le t \le T} |M_t^{\lambda}|$. Then $\forall q > 2$, as $\lambda \to 0$

$$\mathbb{E}^*\left[(\bar{M}^{\lambda}_T)^q\right] = O(\lambda^q (\ln \frac{1}{\lambda})^{\frac{q}{2}})$$

・ロト ・回ト ・ヨト ・ヨト … ヨ

Numerical illustration

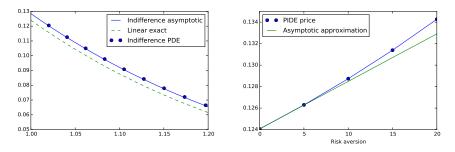
In the numerical illustration, we let $\lambda=1$ and approximate the indifference price by

$$\begin{split} p^{1} = & P_{BS}(S_{0}) + \frac{m_{3}T}{6} S_{0}^{3} P_{BS}^{(3)}(S_{0}) + \frac{m_{4}T}{24} S_{0}^{4} P_{BS}^{(4)}(S_{0}) \\ & + \frac{m_{3}^{2}T^{2}}{72} \left\{ 6 S_{0}^{3} P_{BS}^{(3)}(S_{0}) + 18 S_{0}^{4} P_{BS}^{(4)}(S_{0}) + 9 S_{0}^{5} P_{BS}^{(5)}(S_{0}) + S_{0}^{6} P_{BS}^{(6)}(S_{0}) \right\} \\ & + \frac{\alpha}{8} \left(m_{4} - \frac{m_{3}^{2}}{\bar{\sigma}^{2}} \right) \mathbb{E}^{BS} \left[\int_{0}^{T} \left(S_{t}^{2} \frac{\partial^{2} P_{BS}(t, S_{t})}{\partial S^{2}} \right)^{2} dt \right]. \end{split}$$

3

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Numerical illustration



Left: Indifference price with PIDE / asymptotic method, together with the linear part of the price $\mathbb{E}^{\mathbb{Q}^*}[(K - S_T)_+]$, in Merton model as function of S_0 for $\alpha = 10$. Parameters: strike K = 1, maturity T = 1, diffusion volatility $\sigma = 0.2$, jump intensity $\lambda = 5$, average log jump -5%, log jump size std. dev. 10%.

Right: indifference price for ATM put as function of α .

Spread between buyer's and seller's price

The (half)-spread between the buyer's and the seller's indifference price may be seen as a valuation adjustment reflecting the difference between the model value of the option and its potential market price.

In the neighborhood of the Black-Scholes model, this spread is approximately

$$p^{\text{sell}} - p^{\text{buy}} \approx \underbrace{\alpha}_{\text{Risk aversion}} \times \underbrace{\frac{1}{4} \left(m_4 - \frac{m_3^2}{\bar{\sigma}^2} \right)}_{\text{Lévy model}} \times \underbrace{\mathbb{E}^{BS} \left[\int_0^T \left(S_t^2 \frac{\partial^2 P_{BS}(t, S_t)}{\partial S^2} \right)^2 dt \right]}_{\text{Jump risk sensitivity of the option}}$$

イロト イポト イヨト イヨト

Spread between buyer's and seller's price

The (half)-spread between the buyer's and the seller's indifference price may be seen as a valuation adjustment reflecting the difference between the model value of the option and its potential market price.

In the neighborhood of the Black-Scholes model, this spread is approximately

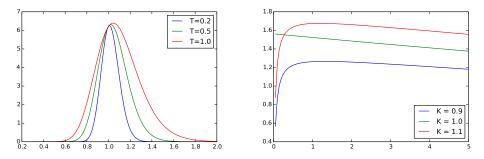
$$p^{\text{sell}} - p^{\text{buy}} \approx \underbrace{\alpha}_{\text{Risk aversion}} \times \underbrace{\frac{1}{4} \left(m_4 - \frac{m_3^2}{\bar{\sigma}^2} \right)}_{\text{Lévy model}} \times \underbrace{\mathbb{E}^{BS} \left[\int_0^T \left(S_t^2 \frac{\partial^2 P_{BS}(t, S_t)}{\partial S^2} \right)^2 dt \right]}_{\text{Jump risk sensitivity of the option}}$$

The factor

$$\mathbb{E}^{BS}\left[\int_0^T \left(S_t^2 \frac{\partial^2 P_{BS}}{\partial S^2}(t, S_t)\right)^2 dt\right]$$

can therefore be seen as a model-independent adjustment for mark to market risk for a European option in a Lévy model in the limit of small jumps.

Jump risk sensitivity



Left: jump risk sensitivity as function of K, $S_0 = 1$, $\bar{\sigma} = 0.2$. Right: jump risk sensitivity as function of T, $S_0 = 1$, $\bar{\sigma} = 0.4$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Extension: Indifference price and bid-ask spread under calibration constraints

- Assume that in the market, options with pay-offs *B* = (*B*₁,..., *B_n*) are liquidly traded, and (WLOG) their prices at time zero are equal to zero.
- For liquid options bid and ask prices coincide: $\mathbb{E}^*[B] = 0$.
- In practice, MEMM can be found by *calibration* to market prices.
- Allowing (static) investment into the liquid options, the seller's indifference price becomes

$$\bar{\boldsymbol{p}}^{\boldsymbol{s}} = \frac{1}{\alpha} \log \min_{\varphi \in \Theta, \boldsymbol{\beta} \in \mathbb{R}^{n}} \mathbb{E}^{*} \left[\exp \left(-\alpha \int_{0}^{T} \varphi_{t} d\boldsymbol{S}_{t} + \alpha \boldsymbol{H} - \alpha \boldsymbol{\beta}^{T} \boldsymbol{B} \right) \right]$$

Asymptotic spread of a European option under calibration constraints

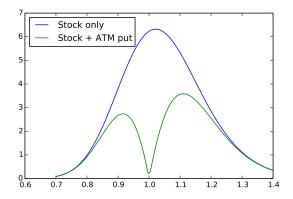
$$\bar{p}^{\text{sell}} - \bar{p}^{\text{buy}} \approx \underbrace{\alpha}_{\text{Risk aversion}} \times \underbrace{\frac{1}{4} \left(m_4 - \frac{m_3^2}{\bar{\sigma}^2} \right)}_{\text{Lévy model}} \times \min_{\beta \in \mathbb{R}^n} \underbrace{\mathbb{E}^{BS} \left[\int_0^T S_t^4 \left(\frac{\partial^2 P_{BS}(t, S_t)}{\partial S^2} - \sum_{i=1}^n \beta_i \frac{\partial^2 P_{BS}^i(t, S_t)}{\partial S^2} \right)^2 dt \right]}_{\text{Lévy model}}$$

Jump risk valuation adjustment under calibration constraints

A D A A B A A B A A B A

 \Rightarrow the jump risk valuation adjustment and the hedge ratios β_i are model independent.

Jump risk sensitivity reduction: hedging with options



Jump risk sensitivity of a European put as function of strike, hedged by an ATM put. Parameters: $S_0 = 1$, T = 0.5, $\bar{\sigma} = 20\%$.

• □ ▶ • □ ▶ • □ ▶ • □ ▶

References

- D. Becherer et al. Bounded solutions to backward sdes with jumps for utility optimization and indifference hedging. *The Annals of Applied Probability*, 16(4):2027–2054, 2006.
- F. Bellini and M. Frittelli. On the existence of minimax martingale measures. *Mathematical Finance*, 12(1):1–21, 2002.
- A. Černý, S. Denkl, and J. Kallsen. Hedging in Lévy models and the time step equivalent of jumps. ArXiv preprint, September 2013.
- F. Delbaen et al., Exponential hedging and entropic penalties. *Math. Fin.*, 12(2), 2002.
- S. D. Hodges and A. Neuberger. Optimal replication of contingent claims under transaction costs. *Review of futures markets*, 8(2):222–239, 1989.
- J. Kallsen and T. Rheinländer. Asymptotic utility-based pricing and hedging for exponential utility. Statistics & Risk Modeling, 28(1):17–36, 2011.
- D. Kramkov and M. Sîrbu. Asymptotic analysis of utility-based hedging strategies for small number of contingent claims. *Stoch. Proc. Appl.*, 117(11):1606 – 1620, 2007.
- M. Mania and M. Schweizer. Dynamic exponential utility indifference valuation. *The Annals of Applied Probability*, 15(3):2113–2143, 2005.