SKEW DISPERSION & LOCAL TIME CONTINUITY

ED WAYMIRE

(with ]. Ramirez*, E.Thomann)
OREGON STATE UNIVERSITY

Celebrating the scientific achievements of Ole E. Barndorff-Nielsen

Aarhus, Denmak
June 2015

*Universidad Nacional de Colombia

Partially Supported by a grant DMS-1408947 from the National Science Foundation



“"Random change of time 1s key to understanding
the nature of various stochastic processes and gives
rise to interesting mathematical results and insights
of importance for the modeling and interpretation of
empirically observed dynamic processes.”

- O. E. Barndorff-Nielsen & A. N. Shiraev (2010)



OUTLINE OF TALK

® Some Motivating Examples
® An Applied Probability Perspective
® Statement of Main Results

® Sketch for Piecewise Constant Coefficients



Example |: Dispersion in Heterogeneous Media

B. Wood, CBEE LAB, OSU

D(y) = Dt ify >0
YT AD ity <o

c = concentration of injected dye

e AL
Fickean Dispersion Model:

o V(DY D(y)Velo = 0



Experimentally Observed Asymmetry

Figure 2. Experiments showing differences in
breakthrough behavior for coarse to fine (C-F)
and fine-to-coarse (F-C) directions of flow at
flow rates of 0.3,0.4, and 1 mL/min. The tracer
input pulse times are 5, 3.75, and 1.5 min, and
the sample collection intervals are 5, 3.75, and
1.5 min, respectively. Solid symbols represent
C-F direction, and open symbols represent F-C
direction. Two experiments in each direction
were measured for the 0.3 and 0.4 mL/min flow
rates. Each point represents an average of three
measurements. The vertical axis shows
electrical conductivity (EC), which is directly
proportional to concentration.

B. Berkowitz, A. Cortis, | Dror and
H Scher - 2009., B.Wood -2010.

PROBLEM: Explain the asymmetry from the Fickian Dispersion Model !

Q:Assume that D- < D+. Which is more likely removed
first, a particle injected at -l and removed at |, or a
particle injected at | and removed at -l ?



Example 2: Physical
Oceanography -
Upwelling off the coast of
Argentina

Highlighted region points to
flotilla of ‘fishing factories’

Concentration of ships on
the continental break where

upwelling occurs.

Acknowledgment: Ricardo Matano - COAS - Oregon State University



Arrested Topographic Wave Model

Quasi geostrophic balance - Hydrostatic Approximation.
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77(:17, y) = free surface, h(x) = ocean depth

Eliminate velocity in terms of free surface
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Arrested Topographic Wave Model

Transport = velocity times height of water column

Height of water column = h(x) + n(x, y)

st = slope of continental shelf (-)and slope (+)

2r N 2r
Dt = D = (Shelf Break Interface)

S5+ s~
Arrested Topographic Wave Model:
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Example 3: FENDERS BLUE BUTTERFLY

Fender’s Blue Kincaid’s Lupin _ Patch Dlstrlbutlon
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cology, 82(), 2001, pp. 1879-1892
© 2001 by the Ecological Society of America

EDGE-MEDIATED DISPERSAL BEHAVIOR IN A PRAIRIE BUTTERFLY

CHERYL B. ScHULTZ! AND ELIZABETH E. CRONE?

Given past research on the Fender’s blue and the
potential to investigate response to patch boundaries
in this system, we ask two central questions. First, how
do organisms respond to habitat edges? Second, wha
are the implications of this behavior for residence timel



Example 4: (MARINE PROTECTED AREAS)

+ (t,9) 1 / (t,(y,9))d
L ouwl(t,y) = C
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AO ______________ AT y

|
—— = biomass of individuals at cross-sectional location y

n(y)

c(t, (y,7)) = biomass concentration at location (y,7) at time ¢
0

ou 10 ,1_0u D U] 0, UO:O

ot n@y(ZDé’_y) [Z]

Rekow, J. (2015); Impact of biased movement on marine protected area effectiveness, OSU




EXAMPLE 5: DRIFT PARADOX IN RIVER NETWORKS

oc

prie rc(t,y) — pe(t,y) + p / p(x,y)c(t, z)dx
T

DRIFT PARADOX PROBLEM: IDENTIFY SUBNETWORKS

FORWHICH C =0 IS UNSTABLE EQUILIBRIA?

Reference:
Ramirez, J.M. (2012) Population persistence under advection-

dispersion in river networks, J. Math. Bio.



Example 6: Modeling Bounces and Sinks of Financial Firms

Financial firms in distress bounce or sink’ around some
distress level. How can the (stock price) probabilities be
coded into a model for distressed firms ?

Reference:

Nilsen,WV,, and H. Sayit (201 1): No arbitrage in markets
with bounces and sinks, Intl. Rev.Appld. Financial Issues and

Economics, v3(4), 696-699.



A. Fokker-Planck Conservation Equation:

ou 1 O ou
- D) ——
ot n(y) 33/( ) 8@/)
(Continuity of Flux) [D(y)%] =0
Y



A. Fokker-Planck Conservation Equation:

Ou 1 0 Ou
o~ i) oy PV ay)
(Continuity of Flux) [D(y)g—Z]I =0
B(y)ulr =0

NOTATION: [g]; = g(y]) — 9(y; )
[={ <y 1<yo=0<y1 <---}

D(y) piecewise continuous with jump discontinuities in I

(y) piecewise continuous with jump discontinuities in I

n(y)
B(y) piecewise constant with jump discontinuities in I
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B. Adjoint Backward Equation:

o) 1 9 0 v

o n(x) Ox (D() 5’:17(77)




B. Adjoint Backward Equation:

o) 1 9 D(x)a v

ot n(x) Ox (

ox ' n

(Fokker-Planck) (Adjoint)
n()

Q(ta Ly y) — Wy)p(t? Ly y)
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C. Generic Infinitesimal Generator:

0
Dy CCo(R) A= 9 9y A

2p(x) Ox (D(x)%) %]: )

X ={X(t) :t > 0} Associated Feller Diffusion

Three-fold Perspective:
A. Forward Equation as Backward Equation:

B=1,p=nA=D



C. Generic Infinitesimal Generator:

0
Dy CCo(R) A= 9 9y A

2p(x) Ox (D(x)%) %]: )

X ={X(t) :t > 0} Associated Feller Diffusion

Three-fold Perspective:
A. Forward Equation as Backward Equation:
P=Lp=nA=D

B. Adjoint Equation as Backward Equation:
D(x)
p=mn0=
B(z)




C. Generic Infinitesimal Generator:

0
Dy CCo(R) A= 9 9y A

2p(x) Ox (D(x)%) %]: )

X ={X(t) :t > 0} Associated Feller Diffusion

Three-fold Perspective:
A. Forward Equation as Backward Equation:
P=Lp=nA=D

B. Adjoint Equation as Backward Equation:
D(x)
p=mn0=
B(z)

B’. Prescribed Backward Equation:
o=1,D,A Given parameters



C. Generic Infinitesimal Generator:

Da € Col®) A= s 2L (D)) A2 ]

X ={X(t) :t > 0} Associated Feller Diffusion

0




C. Generic Infinitesimal Generator:

1
Dy C Co(R) A= Y o Ai]: 0

o) 3e P @ gz) A5
X ={X(t) :t > 0} Associated Feller Diffusion

€T . ZC+
Speed and Scale Measures: D( ’ )f’(:c;) = DS@? )f’<a:j)
p; _ DE)-x) 5+ o — 1.
Pj—1 D(z;)N  B;

Af(e) = ZH (GO s e @y

(o) = ks ma) = 1 o (a0




(D, I, p,A) — Assumptions:

D piecewise differentiable and bounded variation
p plecewlise continuous

I has no accumulation points.
g=1D,p € LeGall Class: 3 strictly increasing f

9(y) — g(@)|* < |f(y) — f(2)]

g 1s bounded between two positive constants.

/ooo / g(<yy)> e /OOO / g(é)) = o




C. Generic Infinitesimal Generator:

1
Dy C Co(R) A= Y 9y 14a29=0

2p(x) Ox (D(x)%) | %]]_

X ={X(t) :t > 0} Associated Feller Diffusion

Speed and Scale Measures:

S(@) = 225 i) = ") g (ap2p0)

D(x) oy
Theorem X is the unique strong solution to
" D'(X(s)) 2X; —1
o= \/ ~Jy mxen 2 oy, )

t(t,x) is rlght continuous semimartingale local time of X.

Proof. Use BN-Shiraev time change principle !



Interfaces Abound !

Examples: Hydrology, Biology/Ecology,
Oceanography, Astrophysics, Finance

c.f. Ramirez, Thomann, W. (2013): Statistical Science, IMS

Basic Question: How do the sample path properties of
X exhibit the parameters D, I, A?

e.qg.,1. First Passage Times ,
{Stochastlc order problems

ii. Occupation Times

111. Local Times v



On Brownian Motion Observations

“"The trajectories are confused and complicated so often and so rapidly that
it is impossible to follow them; the trajectory actually measured is very much
simpler and shorter than the real one. Similarly, the apparent mean speed of a
grain during a given time varies in a wildest way in magnitude and direction,
and does not tend to a limit as the time taken for an observation decreases,
as may be easily shown by noting, in the camera lucida, the positions occupied
by a grain from minute to minute, and then every five seconds, or, better still,
by photographing them every twentieth of a second, as has been done by
Victor Henri Comandon, and de Broglie when kinematographing the
movement. It is impossible to fix a tangent, even approximately, at any point
on a trajectory, and we are thus reminded of the continuous underived
functions of the mathematicians.”

- Jean Baptiste Perrin, Atoms 1913

(QQ: What might Perrin report on paths of X 7

Ans: Characterize continuity /discontinuities in local time.



On Brownian Motion Observations

“"The trajectories are confused and complicated so often and so rapidly that
it is impossible to follow them; the trajectory actually measured is very much
simpler and shorter than the real one. Similarly, the apparent mean speed of a
grain during a given time varies in a wildest way in magnitude and direction,
and does not tend to a limit as the time taken for an observation decreases,
as may be easily shown by noting, in the camera lucida, the positions occupied
by a grain from minute to minute, and then every five seconds, or, better still,
by photographing them every twentieth of a second, as has been done by
Victor Henri Comandon, and de Broglie when kinematographing the
movement. It is impossible to fix a tangent, even approximately, at any point
on a trajectory, and we are thus reminded of the continuous underived
functions of the mathematicians.”

- Jean Baptiste Perrin, Atoms 1913

(QQ: What might Perrin report on paths of X 7
Ans: Characterize continuity /discontinuities in local time.

New Technology: Newburgh et al (2006): Einstein, Perrin, and
the reality of atoms: 1905 revisited, Am. J. Physics



LOCAL TIMES:

1. SEMIMARTINGALE LOCAL TIME:

/0 (X (5))d(X), = / o(2) L (2, t)da



LOCAL TIMES:

1. SEMIMARTINGALE LOCAL TIME:

/0 (X (5))d(X), = / o(2) L (2, t)da

2. DIFFUSION LOCAL TIME:

/Ot p(X(s))ds = /RSD(CL’)EX(w,t)m(d;U)



LOCAL TIMES:
1. SEMIMARTINGALE LOCAL TIME:
[ et = [ o i
2. DIFFUSION LOCAL TIME::
[ oxeis = [ o@)L¥ @ tmid

3. NATURAL LOCAL TIME:
t

/ H(X(5))ds = / o(2)0% (2, £)da
0 R



LOCAL TIMES: (+Right, Left, Symmetric Flavors)
1. SEMIMARTINGALE LOCAL TIME:

[ et = [ o i
2. DIFFUSION LOCAL TIME::

[ oxeis = [ o@)L¥ @ tmid

3. NATURAL LOCAL TIME:
t

/ H(X(5))ds = / o(2)0% (2, £)da
0 R



LOCAL TIMES: (+Right, Left, Symmetric Flavors)

'UNITS]
1. SEMIMARTINGALE LOCAL TIME: [LENGTH|

/0 (X (5))d(X), = / o(2)LX (x, t)da
2. DIFFUSION LOCAL TIME: [DIMENSIONLESS]
| ex@yis = [ o)L (@.om(do

3. NATURAL LOCAL TIME: [TIME/LENGTH]
2

| eX(s)ds = [ w@) (@)
0 R




Theorem
Consider the Feller diffusion X for n, D, A.

KX(taij ) n(z;) D(x;) X,
0 (t, ;) nx;) D(x;r) 1—A;

Corollary
Let u denote solution to FP eqn for D, n, 5;-:,3' e /.

(txl) ) B
(X (t,xy ) ;) B




Special Case: Appuhamillage, Bokil, Thomann, W., Wood (2014), Jour. Stat.Phys.

Assume piecewise constant D
Single interface at 0 (n=1)

oc o oc

= D _
oc oc

A —(1-N=— =
ay‘y ot ( )ayy:()— O



Theorem : X is a Feller diffusion such that

o MWD
X(t) = VD(BYWN) o) = N e
X(t) = X(0) + t\/E(X(s))dB(S)+E[A]O&L(O’t)
: 50 0)
where 7 — (@) _ L. (x,t) is continuous.
(@)
A
/ ) =T if x>0



PROOF OF THEOREM :

t

(! t)—hm1 10 < X(s) <

el0 € 0

1
= lim — 1[0 < VD+BW(s) < €)]ds —

el0 € 0

€)|ds

(o)

. 1
Similarly, /X (0. ¢) = ¢80, t
~(0,7) b= (0,¢)
00, 1) o) D—- AD™
Thus, 53_;(0,?5) T 1-a vD+r (1 —=X\Dt
DT D~
— (2 (0,¢ e




SOME IMPLICATIONS FOR RESIDENCE TIMES
(especially Examples 1, 3)

Definition: For a continuous semimartingale Y'we refer to

t
T5(t) = /0 1(Y(s) € G)ds  (Units of TIME)

as hatural occupation time. ,
(in place of integration w.r. to quadratic variation units [.“).

Corollary. Let Y be natural diffusion for the parameters

DT \. Then,
Y
ET(y ) (t) > ET{_ (1)
if and only if VD+

A >
VDT 4+ D-



PROOF.

ET/ ) = E/ 1Y @) () > 0]ds
0
E/O LWVDTBEM)(5) > 0]ds
:/O P(B*M)(s) > 0)ds
= ta(\)
ET\§ ) = t(1 — a(\)) Compute when ratio > |. QED



Recall: Conservative case

D+ - /Dt

)\ =
Dt 4+ D~- VDT +VD~

DT > D™

IMPLICATION: The physical diffusion spends a longer time

in the region with larger diffusion. Mass conservation
principles (models) may not be appropriate to ecological

examples, e.g., individual animal dispersion.



THANK YOU

(More References Follow)
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THEOREMS
Theorem (D, I, p,A) defines a Feller diffusion X

on R. X is the path-wise unique strong solution of

: 1 [ / | €_|_(£13j,d8)
+/O \/E(X(s))dB(s)Jr—/ D" (X (s))ds + = / Z/_A]xu ()
cf.LeGall(1984), Martmez—Talay(QOlQ) Bass-C hen(2005)




