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I. Large dimensional sample covariance
matrices

The Marchenko-Pastur Distribution



I. Marchenko-Pastur law
Sample covariance matrix and its spectrum

I H = Hp×n = (Zj ,k : j = 1, .., p, k = 1, ..., n) i.i.d.r.v.

E(Z1,1) = 0, E( |Z1,1|2) = 1, E( |Z1,1|4) < ∞.

I Sample covariance matrix

Sn =
1
n
HH∗

I If Zj ,k have N(0, 1) distribution, Sn is Wishart random matrix.

I Empirical Spectral Distribution (ESD)

F̂ Snp = F̂
1
nHH

∗
p =

1
p

p

∑
j=1

δλj (Sn).

where 0 ≤ λp(Sn) ≤ · · · ≤λ1(Sn) are eigenvalues of Sn.



I. Marchenko-Pastur theorem
Mat. Sb. (1967)

Theorem
If p/n→ c > 0, F̂ Snp converges weakly in probability to the
Marchenko-Pastur (MP) distribution:

µc (dx) =
{

fc (x)dx , if c ≥ 1
(1− c)δ0(dx) + fc (x)dx , if 0 < c < 1,

fc (x) =
c
2πx

√
(x − a)(b− x)1[a,b](x)

a = (1−
√
c)2, b = (1+

√
c)2.

I Haagerup & Thorbjorsen (2003, Expo. Math.), Gaussian
complex entries......

I MP distribution plays in free probability the role Poisson
distribution does in classical probability.
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II. RMT and Wireless Communications
Pioneering work of Emre Telatar



II. RMT and Wireless Communications
A Model for Multiple Inputs-Multiple Outputs (MIMO) antenna systems

Telatar (1999), Capacity of multi-antenna Gaussian channels.
European Transactions on Telecommunications.

I A p × 1 complex Gaussian random vector u = (u1 · · · up)>
has a Q-circularly symmetric complex Gaussian distribution if

E[(û−E[û])(û−E[û])∗] =
1
2

[
Re[Q ] − Im[Q ]
Im[Q ] Re[Q ]

]
,

for some nonnegative definite Hermitian p× p matrix Q where

û = [Re(u1), . . . ,Re(up), Im(u1), . . . , Im(up)]
> .



II. Telatar: RMT and Channel Capacity

I nT antennas at trasmitter and nR antennas at receiver.

I Linear channel with Gaussian noise

y = Hx+ n.

I x is the nT -dimensional input vector. (nT = n).

I y is the nR -dimensional output vector. (nR = p).

I n is the receiver 0-mean Gaussian noise, E (nn∗) = InT .

I The nR × nT random matrix H is the channel matrix.

I H = {hjk} is a random matrix. It models the propagation
coeffi cients between each pair of trasmitter-receiver antennas.

I x,H and n are independent.



I hjk are i.i.d. complex r.v. with 0-mean and variance one
(Re(Zjk ) ∼ N(0, 12 ) independent of Im(Zjk ) ∼ N(0,

1
2 )).

I Total power constraint P: upper bound for variance E||x||2 of
the input signal amplitude.

I Signal to Noise Ratio (SNR)

SNR =
E||x||2/nT
E||n||2/nR

=
P
nT
.

I Channel capacity is the maximum data rate which can be
transmitted reliably over a channel (Shannon (1948)).

I The capacity of this MIMO system channel is

C (nR , nT ) = max
Q

EH [log2 det (InR +HQH
∗)] .



I Maximum capacity when Q = SNRInT

C (nR , nT ) = EH

[
log2 det

(
InR +

P
nT
HH∗

)]

I In terms of ESD F̂
1
nT
HH∗

nT of sample covariance 1
nT
HH∗

C (nR , nT ) = nR
∫ ∞

0
log2 (1+ Px)dF̂

1
nT
HH∗

nT .

I By Marchenko-Pastur theorem, if nR/nT → c,

C (nR , nT )
nR

→
∫ b

a
log2 (1+ Px)dµc (x) = K (c ,P).

I For fixed P
C (nR , nT ) ∼ nRK (c,P).

I Increase capacity with more transmitter and receiver
antennas with same total power constraint P.
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II. RMT and Wireless Communication
Some further developments (NOT TODAY)

I Non Gaussian distribution for i.i.d. entries hij of the channel
matrix H: universality of the Marchenko-Pastor law.
I Bai & Silverstein (2010). Spectral Analysis of Large
Dimensional Random Matrices.

I Correlation models for H, Kronecker correlation, etc..
I Lozano, Tulino & Verdú. (2005). Impact of antenna
correlation on the capacity of multiantenna channels. IEEE
Trans. Inform. Theor.

I Lozano, Tulino & Verdú (2006). Capacity-achieving input
covariance for single-user multi-antenna channels. IEEE Trans.
Wireless Comm.



II. RMT and Wireless Communication
Further developments (NOT TODAY)

I Books on RMT and Wireless Communications:
I Tulino & Verdú (2004). Random Matrix Theory and Wireless
Communications.

I Couillet & Debbah (2011). Random Matrix Methods for
Wireless Communications.

I Bai, Fang & Ying-Chang (2014). Spectral Theory of Large
Dimensional Random Matrices and Its Applications to Wireless
Communications and Finance Statistics.

I Main problem is the computation of the asymptotic channel
capacity, mainly done by a technique introduced by Girko
(1990), solving a non-linear system of functional equations.
I Couillet, R., Debbah, M., and Silverstein, J. (2011). A
deterministic equivalent for the analysis of correlated MIMO
multiple access channels. IEEE Trans. Inform.Theor.



II. RMT and Wireless Communication
Further developments (NOT TODAY)

I Recently, tools from Operator-valued free probability theory
have been successful used as alternative to approximate the
asymptotic capacity of new models:

I Ding (2014), Götze, Kösters & Tikhomirov (2015), Hachem,
Loubaton & Najim (2007), Shlyakhtenko (1996), Helton, Far &
Speicher (2007), Speicher, Vargas & Mai (2012), Belinschi,
Speicher, Treilhard & Vargas (2014), Belinschi, Mai & Speicher, R.
(2015),

I Diaz-Torres & PA (2017). On the capacity of block multiantena
channels. IEEE Trans. Inform.Theor.



II. Time-varying random matrices: why?
Motivation for TODAY

Couillet & Debbah (2011), Random Matrix Methods for Wireless
Communications. Chapter 19, Perspectives:

I Performance analysis of a typical network with users in motion
according to some stochastic behavior, is not accessible to this
date in the restrictive framework of random matrix theory.

I It is to be believed that random matrix theory for wireless
communications may move on a more or less long-term basis
towards random matrix process theory for wireless
communications. Nonetheless, these random matrix processes
are nothing new and have been the interest of several
generations of mathematicians.
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Part III: Dyson-Brownian motion



III. Hermitian Brownian motion

I B(t) = (Bn(t))n≥1, t ≥ 0.

I Bn(t) is n× n Hermitian Brownian motion:

Bn(t) = (bij (t)), t ≥ 0,

Re(bij (t)) ∼ Im(bij (t)) ∼ N(0, t(1+ δij )/2,

where Re(bij (t)), Im(bij (t)), 1 ≤ i ≤ j ≤ n are independent
one-dimensional Brownian motions.

I (λ1(t), ...,λn(t))t≥0 process of eigenvalues of {Bn(t)}t≥0

λ1(t) ≥ λ2(t) ≥ ... ≥ λn(t).



III. Dyson-Brownian motion
Time dynamics of the eigenvalues, dimension n fixed

Theorem
Dyson (1962):
1) If eigenvalues start at different positions, they never collide

P (λ1(t) > λ2(t) > ... > λn(t) ∀t > 0) = 1.

2) They satisfy the Stochastic Differential Equation (SDE)

λi (t) = λi (0) +Wi (t) +∑
j 6=i

∫ t

0

ds
λj (s)− λi (s)

, i = 1, ..., n.

∀t > 0, where W1, ...,Wn are 1-dimensional independent Bms.

I Brownian part + repulsion force (at any time t).



III. Time-varying Wigner theorem and law of Free Bm
I Consider the Dyson spectral measure-valued processes

µ
(n)
t =

1
n

n

∑
j=1

δ{λj (t)/
√
n}, t ≥ 0, n ≥ 1.

I Notation: For f µ-integrable function 〈µ, f 〉 =
∫
f (x)µ(dx).

I Uniform Wigner theorem

P

(
lim
n→∞

sup
0≤t≤T

∣∣∣〈µ
(n)
t , f

〉
− 〈wt , f 〉

∣∣∣ = 0, ∀f ∈ Cb(R)) = 1.
I The family of probability measures {wt}t≥0 is the Law of the
Free Brownian motion,

wt (dx) =
1
2πt

√
4t − x21[−2√t ,2√t ](x)dx .

I Semicircle distribution plays in free probability the role
Gaussian distribution does in classical probability.
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III. Smooth vs non smooth SDE
A detour to understand why free Bm

I Interacting SDE with both smooth drift & diffusion
coeffi cients β and α are of the form

Xn,i (t) = Xn,i (0) +
1√
n ∑
j 6=i

∫ t

0
β(Xn,j (s),Xn,i (s))dW

(n)
i (t)

+
1
n ∑
j 6=i

∫ t

0
α(Xn,j (s),Xn,i (s))ds.

I While Dyson-Brownian motion has non smooth drift

Xn,i (t) = Xn,i (0)+
1√
n
W (n)
i (t)+

1
n ∑
j 6=i

∫ t

0

1
Xn,i (s)− Xn,j (s)

ds.

I Empirical measure valued process

µ
(n)
t =

1
n

n

∑
j=1

δXn,j (t), t ≥ 0, n ≥ 1.



III. Smooth vs non smooth SDE
A detour to understand why free Bm

For Interacting SDE with both smooth drift & diffusion
coeffi cients:

I McKean (1967):
{

µ
(n)
t

}
t≥0

converges weakly in probability to

{µt}t≥0, which is the law of a stochastic differential equation.

I Interacting SDE with non smooth drift coeffi cient arise
from eigenvalue processes of matricial processes
[Bru (1989), Rogers & Shi (1993), Konig & O´Connell (2001),
Cabanal-Duvillard & Guionnet (2001), Katori & Tanemura (2004)].

I The family of probabilities {wt , t ≥ 0} is not the law of a
SDE equation, but the law of a noncommutative process: Free
Brownian motion.
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Part IV: Free Brownian motion



IV. Noncommutative probability spaces
I A noncommutative probability space (A, ϕ) is a unital
algebra A over C with a linear functional ϕ : A → C with
ϕ(1A) = 1. Elements of A are called noncommutative
random variables.

I We should think of ϕ as playing the role of the expectation in
classical probability theory.

I Distribution µ on R (bounded support), of a self-adjoint
a ∈ A in a C ∗-probability space (A, ϕ)

ϕ(f (a)) =
∫

R
f (x)µ(dx), ∀f ∈ Cb(R).

I A family of subalgebras {Ai}i∈I ⊂ A in a noncommutative
probability space is free (freely independent) if

ϕ(a1a2 · · · an) = 0

whenever ϕ(aj ) = 0, aj ∈ Aij , and i1 6= i2, i2 6= i3, ...,
in−1 6= in.



IV. Free independence allows to compute joint moments
Example

Computation of ϕ(abab) when a & b are freely independent:
Suppose {a1, a3} and {a2, a4} are freely independent. Since

ϕ(ai − ϕ(ai )1A) = 0,

ϕ(a1− ϕ(a1)1A)ϕ(a2− ϕ(a2)1A)ϕ(a3− ϕ(a3)1A)ϕ(a4− ϕ(a4)1A) = 0

Computations yield

ϕ(a1a2a3a4) = ϕ(a1a3)ϕ(a2)ϕ(a4) + ϕ(a1)ϕ(a3)ϕ(a2a4)
− ϕ(a1)ϕ(a2)ϕ(a3)ϕ(a4).

In particular if a1 = a3 = a and a2 = a4 = b

ϕ(abab) = ϕ(a)2ϕ(b2)+ ϕ(a2)ϕ(b)2− ϕ(a)2ϕ(b)2 6= ϕ(a2)ϕ(b2).



IV. Free Brownian motion
A noncommutative process

A Free Brownian motion is a family S = {St}t≥0 of self-adjoint
random variables in a noncommutative probability space (A, ϕ)
such that:

1. S0 = 0.

2. For t2 ≥ t1 ≥ 0, St2 − St1 has law wt2−t1 .

3. For all n ≥ 1 and tn > · · · > t1 > 0, the increments
Stn − Stn−1 , ...,St2 − St1 ,St1 are freely independent with
respect to ϕ.

I For every t ≥ 0, St has semicircle law wt of zero mean and
variance one.



Part V: From Fractional Wishart process to
Noncommutative Wishart process



V. Fractional Wishart process
I m, n ≥ 1,m× n matrix process

{Bm,n(t)}t≥0 =
{(
bj ,km,n(t)

)
1≤j≤m,1≤k≤n

}
t≥0

,

{
Re
(
bj ,km,n (t)

)}
t≥0

&
{
Im
(
bj ,km,n (t)

)}
t≥0

independent

1-dimensional fractional Bm of parameter H ∈ [1/2, 1).

I Fractional Laguerre, fractional Wishart process: n× n
matrix-valued process

Lm,n(t) = B∗m,n(t)Bm,n(t), t ≥ 0.

I 0 ≤ λn(t) ≤ · · · ≤ λ1(t) eigenvalues of Lm,n(t)/n.

I For H ∈ [1/2, 1) the noncoliding property holds

P (λ1(t) > λ2(t) > ... > λn(t) > 0 ∀t > 0) = 1.



V. Fractional Wishart process

I H = 1/2:
I Bru (1989): noncoliding property and stochastic dynamics

dλi (t)= λi (0) +
1√
n

√
2λi (t)Wi (t)

+
1
n

∫ t
0

(
m+ ∑

j 6=i

λi (s)+λj (s)
λi (s)−λj (s)

)
ds, 1 ≤ i ≤ n.

I Cabanal-Duvillard & Guionnet (2001), PA & Tudor (2009):
limiting measure-valued process, when n/m→ c > 0, is
dilation of free Poisson law.

I H ∈ (1/2, 1): Pardo, Pérez G., PA (2017):
I Noncoliding, stochastic dynamics of eigenvalues.
I Limiting measure valued process is fractional dilation of MP
law.



V. Dilation of MP law
Law of noncommutative fractional Wishart process

The limit, when n/m→ c > 0, of µ
(n)
t = 1

n ∑n
j=1 δλj (t), t ≥ 0 ,

I is not the law {mct}t≥0 ,

mct (dx) =
{

fct (x)dx , ct ≥ 1
(1− ct)δ0(dx) + fct (x)dx , 0 ≤ ct < 1,

fct (x) =
1
2πx

√
4ct − (x − (1+ ct))21[(1−√ct)2,(1+√ct)2 ](x)

I rather fractional dilations of mc : µHc (t) = mc , ◦ h−1t , for
ht (x) = t2Hx , i.e.

µHc (t)(dx) =
{

f̃ tc (x)dx , c ≥ 1
(1− c)δ0(dx) + fa,b(x)dx , 0 ≤ c < 1,

f̃ tc (x) =
1

2πt2Hx

√
4ct2H − (x − tH (1+ c))21[t2H (1−√c )2,t2H (1+√c )2 ](x)
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V. Characterization of the law

Cabanal-Duvillard & Guionnet (2001): H = 1/2.

Pardo, Pérez G, PA (2017, JFA): H ∈ (1/2, 1).

Theorem
The family (µHc (t), t ≥ 0) is characterized by the property that its
Cauchy transform Gc ,H is the unique solution to

∂Gc ,H
∂t

(t, z) = 2Ht2H−1
[

G 2c ,H (t, z)+
(1− c + 2zGc ,1/2(t, z))

∂Gc ,H
∂z (t, z)

]
, t > 0

Gc ,H (0, z) =
∫

R

µc ,H (0)(dx)
x − z .



V. Identification H=1/2, general c
Free Wishart process of Capitanie and Donati-Martin (2005)

I If S = (St )t≥0 is a free (complex) Brownian motion
(H = 1/2), Wt = S∗t St is a free Wishart process.

I It is a free diffusion: c > 1, 0 < x ∈ A:

dWt = c1Adt +
√

WtdSt + dS∗t
√

Wt , W0 = x .

I (Wt )t≥0 does not have free increments, but If (St )t≥0 ,(
S̃t
)
t≥0

are free as well as x , x̃ , with parameters c1, c2 then(
Wt + W̃t

)
t≥0

is a free Wishart proces with parameter

c1 + c2 and initial condition x + x̃ .

I Open problems:
I H ∈ (1/2, 2), description of the noncommutative fractional
Wishart process?

I How is related to the noncommutative fractional Brownian
motion of Nourdin and Taqqu?
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Part V:

Free Brownian motion

and

Noncommutative fractional Brownian motion



V. Noncommutative probability spaces
I A noncommutative probability space (A, ϕ) is a unital
algebra A over C with a linear functional ϕ : A → C with
ϕ(1A) = 1. Elements of A are called noncommutative
random variables.

I A =Md (C) d × d matrices with complex entries

ϕ(·) = trd (·) =
1
d

tr(·).

I A = L∞(Ω,F ,P),
ϕ(·) = E(·).

I A = Md (L∞(Ω,F ,P)),

ϕ(·) = Etrd (·).

I A = L(H) algebra of linear operators on a Hilbert space,
u ∈ H, ‖u‖ = 1

ϕ(·) = 〈·u, u〉
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I We should think of ϕ as playing the role of the expectation in
classical probability theory.

I We talk about the moments of a, referring to the values of
ϕ
(
ak
)
, k ≥ 0.

I More generally, for a tuple a1, . . . , an ∈ A, the values

ϕ(am1i1 ...a
mk
ik
)

for k ≥ 0, 1 ≤ i1, . . . , ik ≤ n, m1, . . .mk ≥ 0, are known as
the joint moments of a1, . . . , an.

I Let C 〈X1, . . .Xn〉 the algebra of polynomials in n
noncommutative indeterminates with coeffi cients in C.

I Let a1, . . . , an be elements in a noncommutative probability
space (A, ϕ). The (algebraic) distribution of a1, . . . , an is the
µa1,...,an : C 〈X1, . . .Xn〉 → C determined by

µa1,...,an (X
m1
i1
...Xmkik ) = ϕ(am1i1 ...a

mk
ik
)

for each k ≥ 0, 1 ≤ i1, . . . , ik ≤ n, m1, . . .mk ≥ 0.
I When an algebraic distribution is given by an analytic
distribution?



V. Noncommutative probability spaces
Generality needed to deal with free probability

Remember classical case: A real random variable R has
distribution µ on R iff

Ef (R) =
∫

R
f (x)µ(dx), ∀f ∈ Bb(R).

Noncommutative case needs:
(i) Given a p.m. µ on R with bounded support, there exist a
C ∗-probability space (A, ϕ) and a self-adjoint a ∈ A with

ϕ(f (a)) =
∫

R
f (x)µ(dx), ∀f ∈ Cb(R).

(ii) Given a p.m. µ on R, there exists a W ∗-probability space
(A, ϕ) and self-adjoint operator a on a Hilbert space H such that

f (a) ∈ A ∀f ∈ Bb(R), (1)

ϕ(f (a)) =
∫

R
f (x)µ(dx), ∀f ∈ Bb(R).

If (1) holds, it is said that a is affi liated with A.



V. Free Random Variables

Definition
(i) A family of subalgebras {Ai}i∈I ⊂ A in a noncommutative
probability space is free (freely independent) if

ϕ(a1a2 · · · an) = 0

whenever ϕ(aj ) = 0, aj ∈ Aij , and i1 6= i2, i2 6= i3, ..., in−1 6= in.

Definition
If a1, a2 are freely independent, with distributions µa1 and µa2 , the
distribution of a1 + a2 is the free convolution µa1 � µa2 .



V. Free independence allows to compute joint moments
Example

Computation of ϕ(abab) when a & b are freely independent:
Suppose {a1, a3} and {a2, a4} are freely independent. Since

ϕ(ai − ϕ(ai )1A) = 0,

ϕ(a1− ϕ(a1)1A)ϕ(a2− ϕ(a2)1A)ϕ(a3− ϕ(a3)1A)ϕ(a4− ϕ(a4)1A) = 0

Computations yield

ϕ(a1a2a3a4) = ϕ(a1a3)ϕ(a2)ϕ(a4) + ϕ(a1)ϕ(a3)ϕ(a2a4)
− ϕ(a1)ϕ(a2)ϕ(a3)ϕ(a4).

In particular if a1 = a3 = a and a2 = a4 = b

ϕ(abab) = ϕ(a)2ϕ(b2)+ ϕ(a2)ϕ(b)2− ϕ(a)2ϕ(b)2 6= ϕ(a2)ϕ(b2).



V. Application: Free Central Limit Theorem

Theorem
Let a1, a2,... be a sequence of independent free random variables
with the same distribution with all moments. Assume that
ϕ(a1) = 0 and ϕ(a21) = t. Then the distribution of

Zm =
1√
m
(a1 + ...+ am)

converges, as m→ ∞, to the semicircle distribution

wt (x) =
1
2π

√
4t − x2, |x | ≤ 2

√
t

with moments m2k+1 = 0 and m2k = t2k (
2k
k )/(k + 1).

I Semicircle or Wigner distribution plays the role of
classical Gaussian in free probability.



V. Free Brownian motion
A noncommutative process

A Free Brownian motion is a family S = {St}t≥0 of self-adjoint
random variables in a noncommutative probability space (A, ϕ)
such that:

1. S0 = 0.

2. For t2 ≥ t1 ≥ 0, St2 − St1 has law wt2−t1 .

3. For all n ≥ 1 and tn > · · · > t1 > 0, the increments
Stn − Stn−1 , ...,St2 − St1 ,St1 are freely independent with
respect to ϕ.

I For every t ≥ 0, St has semicircle law wt of zero mean and
variance one.

I One has Stochastic calculus for the free Brownian motion
(Anshelevich, 2002, Biane, 1997, Biane & Speicher, 1998).
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V. Semicircular process
I Free Brownian motion is an example of a Semicircular process
X = {Xt}t≥0 ⊂ A, self-adjoint random variables: For every
k ≥ 1, t1, ..., tk ∈ [0,∞) and θ1, .., θk ∈ R, the
noncommutative random variable θ1Xt1 + · · ·+ θkXtk has
Semicircle law

wm,σ2(dx) =
1

2πσ2

√
4σ2 − (x −m)21[m−2σ,m+2σ](x)dx .

for some m ∈ R, σ2 > 0.

I The law of a centered semicircular processes (ϕ(Xt ) = 0 for
every t > 0) is uniquely determined by its covariance function

Γ(s, t) = ϕ(XtXs ).

I Centered semicircular X = {Xt}t≥0 has stationary increments

Γ(s, t) = Γ(|t − s |) = ϕ(X|t−s |).
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V. Noncommutative Fractional Brownian Motion
Nourdin and Taqqu (2104)

I Let H ∈ (0, 1). A noncommutative fractional Brownian
motion (ncfBm) of Hurst parameter H is a centered
semicircular process SH =

{
SHt
}
t≥0 in a noncommutative

probability space (A, ϕ) with covariance function

ϕ(SHt S
H
s ) =

1
2

(
t2H + s2H − |t − s |2H

)
.

I For each t > 0, SHt has the semicircle law wH
t on (−2tH , 2tH )

wH
t (dx) =

1
2πt2H

√
4t2H − x2dx , |x | ≤ 2tH .

I ncfBm has stationary increments: For every t, s > 0

ϕ(
(
SHt − SHs

)2
) = |t − s |2H .
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V. Noncommutative Fractional Brownian Motion
As in the classical probability case

I SHt − SHs has the same law as SHt−s .

I H = 1/2 is free Brownian motion (St )t≥0 (the only ncfBm
with freely independent increments).

I For H > 1/2 the process has long-range dependence

∞

∑
n=1

ϕ(SH1 (S
H
n+1 − SHn )) = ∞

I and the increments are positively correlated: For
s1 < t1 < s2 < t2

ϕ((SHt2 − S
H
s2 )(S

H
t1 − S

H
s1 )) > 0.

I For H < 1/2 the increments are negatively correlated.
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V. Noncommutative Fractional Brownian Motion
Nourdin and Taqqu (2104)

I ncfBm is self-similar: For all a > 0, (a−HSHat )t≥0
law
= (SHt )t≥0

ϕ(a−HSHata
−HSHas ) =

1
2

(
t2H + s2H − |t − s |2H

)
.

I Existence: Wigner integral representation of SH with respect
to free Brownian motion S

SHt =
1
cH

(∫ ∞

0

(
(t − u)H−

1
2

+ − (−u)H−
1
2

+

)
dSu

)
.

I Similar to the Wiener integral representation of 1-dimensional
fractional Brownian motion bH =

(
bH (t)

)
t≥0 with respect to

1-dimensional Brownian motion b = (b(t))t≥0

bH (t) =
1
cH

(∫ ∞

0

(
(t − u)H−

1
2

+ − (−u)H−
1
2

+

)
db(u)

)
.
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Part VI: From matrix fractional Bm to
noncommutative fractional Bm

(Time-varying random matrix models for the
noncommutative fractional Bm)



VI. One-dimensional fractional Brownian motion
A one-dimensional fractional Brownian motion bH =

{
bH (t)

}
t≥0

is a zero-mean classical Gaussian process with covariance

EbH (t)bH (s)) =
1
2

(
t2H + s2H − |t − s |2H

)
.

I Stationary increments: For s, t > 0

E

∣∣∣bH (t)− bH (s))∣∣∣2 = |t − s |2H .
I Self-similarity: (a−HbH (at))t≥0

law
= (bH (t))t≥0.

I H = 1/2 is 1-dimensional Bm (independent increments).

I Itô stochastic calculus cannot be used for H 6= 1/2.
I Need classical fractional stochastic calculus: Skorohod,
Young.
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VI. Motivation for ncfBm of Nourdin and Taqqu
I Let {Xk}k≥1 be a stationary sequence of semicircular random
variables with (Xk ) = 0, ϕ(X 2k ) = 1.

I Suppose its correlation kernel ρ(k − l) = ϕ(XkXl ) verifies

n

∑
k ,l

ρ(k − l) ∼ Kn2HL(n) as n→ ∞

with 0 < H < 1, K > 0 and L : (0,∞)→ (0,∞) a slowly
varying function at infinity (∀a > 0, limx→∞ L(ax)/L(x) = 1).

I Take the sequence of noncommutative stochastic processes

Zn(t) =
1

nH
√
L(n)

[nt ]

∑
k=1

Xk , t ≥ 0, n ≥ 1.

I Then the finite dimensional distributions (f.d.d.) of Zn
converge in law to those of

√
KSH where SH is a

noncommutative fractional Brownian motion.
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VI. Matrix fractional Brownian motion

Consider n(n+ 1)/2 independent 1-dimensional fractional
Brownian motions with H ∈ (1/2, 1).

{{bHi ,j (t), t ≥ 0}, 1 ≤ i , j ≤ n}.

I n× n symmetric matrix fractional Brownian motion:

BHn (t) = (B
H
ij (t))

n
i ,j=1

BHij (t) = b
H
i ,j if i < j

BHii (t) =
√
2bHi ,i (t).

I For 0 < t1 < · · · < tp , the increments (BHn (tk − tk−1))n≥1,
k = 1, ..., p are not independent nor asymptotically free.

I Let λ1(t) ≥ λ2(t) ≥ ... ≥ λn(t) be the eigenvalues of BHn (t).



VI. Matrix fractional Brownian motion
Nualart and PA (2014)

1. If λ1(0) > λ2(0) > ... > λn(0)) the eigenvalues never collide:

P (λ1(t) > λ2(t) > ... > λn(t) ∀t > 0) = 1. (*)

2. For any t > 0 and i = 1, ..., n

λi (t) = λi (0) + Yi (t) + 2H∑
j 6=i

∫ t

0

1
λi (s)− λj (s)

ds

Yi (t) = ∑
k≤h

∫ t

0

∂λi (s)
∂bHkh(s)

δbHkh(s). (**)

I Stochastic integral in (**) is in the sense of Skorohod.
Classical Itô stochastic calculus cannot be used for H 6= 1/2.

I Proof of (*) uses the Young stochastic integral.
I Yi (t) is not a fractional Brownian motion, but it is a

self-similar process: ∀ a > 0, (a−HYi (at))t≥0 law= (Yi (t))t≥0.
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VI. Time-varying Wigner theorem
Pardo, Pérez G, PA (2016)

Consider the empirical spectral measure-valued processes of the
re-scaled matrix fractional Bm BHn (t)/

√
n

µ
(n)
t =

1
n

n

∑
j=1
1{λj (t)/

√
n}, t ≥ 0, n ≥ 1.

1. Fix T > 0. For all continuous bounded function f and ε > 0

lim
n→∞

P

(
sup

0≤t≤T

∣∣∣∣∫ f (x)dµ
(n)
t (x)−

∫
f (x)wH

t (x)dx
∣∣∣∣ > ε

)
= 0

where wH
t is the semicircle distribution on (−2tH , 2tH ).

2. The family of measure-valued processes {(µ(n)t )t≥0 : n ≥ 1}
converges to (wH

t )t≥0, the law of a noncommutative
fractional Bm of Hurst parameter H ∈ (1/2, 1).



VI. Precise statement
Pardo, Pérez G, PA (2016)

1. The family of measure-valued empirical spectral processes
{(µ(n)t )t≥0 : n ≥ 1} converges weakly in C (R+,P(R)) to the
unique continuous probability-measure valued function
(µt )t≥0 satisfying, for each t ≥ 0, f ∈ C 2b (R),

〈µt , f 〉 = 〈µ0, f 〉+H
∫ t

0
ds
∫

R2

f ′(x)− f ′(y)
x − y s2H−1µs (dx)µs (dy).

Moreover µt = wH
t .

2. The Cauchy transform Gt (z) =
∫

R

µt (dx )
z−x of µt is the unique

solution to the initial value problem

{
∂
∂tGt (z) = Ht

2H−1Gt (z) ∂
∂zGt (z), t > 0,

G0(z) =
∫

R

µ0(dx )
z−x , z ∈ C+.


