Some noncommutative processes and related topics

RMT & Wireless systems, Dyson-Brownian motion, free Brownian motion and noncommutative fractional processes.

> Victor Pérez-Abreu CIMAT, Guanajuato, Mexico

Second Conference on Ambit Fields and Related Topics, Aarhus, Denmark

Based on joint works with Diaz, Nualart, Pardo, Pèrez G.

I. Large dimensional sample covariance matrices

The Marchenko-Pastur Distribution

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

I. Marchenko-Pastur law

Sample covariance matrix and its spectrum

►
$$H = H_{p \times n} = (Z_{j,k} : j = 1, ..., p, k = 1, ..., n)$$
 i.i.d.r.v.

$$\mathbb{E}(Z_{1,1}) = 0, \ \mathbb{E}(|Z_{1,1}|^2) = 1, \ \mathbb{E}(|Z_{1,1}|^4) < \infty.$$

Sample covariance matrix

$$S_n = \frac{1}{n}HH^*$$

- ▶ If $Z_{j,k}$ have N(0,1) distribution, S_n is Wishart random matrix.
- Empirical Spectral Distribution (ESD)

$$\widehat{F}_{p}^{S_{n}}=\widehat{F}_{p}^{rac{1}{n}HH^{*}}=rac{1}{p}\sum_{j=1}^{p}\delta_{\lambda_{j}(S_{n})}.$$

where $0 \leq \lambda_p(S_n) \leq \cdots \leq \lambda_1(S_n)$ are eigenvalues of S_n .

I. Marchenko-Pastur theorem

Mat. Sb. (1967)

Theorem

If $p/n \rightarrow c > 0$, $\widehat{F}_{p}^{S_{n}}$ converges weakly in probability to the Marchenko-Pastur (MP) distribution:

$$\mu_c(dx) = \begin{cases} f_c(x)dx, & \text{if } c \ge 1\\ (1-c)\delta_0(dx) + f_c(x)dx, & \text{if } 0 < c < 1, \end{cases}$$

$$f_{c}(x) = \frac{c}{2\pi x} \sqrt{(x-a)(b-x)} \mathbf{1}_{[a,b]}(x)$$
$$a = (1-\sqrt{c})^{2}, \ b = (1+\sqrt{c})^{2}.$$

 Haagerup & Thorbjorsen (2003, Expo. Math.), Gaussian complex entries.....

I. Marchenko-Pastur theorem

Mat. Sb. (1967)

Theorem

If $p/n \rightarrow c > 0$, $\widehat{F}_{p}^{S_{n}}$ converges weakly in probability to the Marchenko-Pastur (MP) distribution:

$$\mu_c(dx) = \begin{cases} f_c(x)dx, & \text{if } c \ge 1\\ (1-c)\delta_0(dx) + f_c(x)dx, & \text{if } 0 < c < 1, \end{cases}$$

$$f_{c}(x) = \frac{c}{2\pi x} \sqrt{(x-a)(b-x)} \mathbf{1}_{[a,b]}(x)$$

$$a = (1-\sqrt{c})^{2}, \ b = (1+\sqrt{c})^{2}.$$

- Haagerup & Thorbjorsen (2003, Expo. Math.), Gaussian complex entries.....
- MP distribution plays in free probability the role Poisson distribution does in classical probability.

II. RMT and Wireless Communications Pioneering work of Emre Telatar

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

II. RMT and Wireless Communications

A Model for Multiple Inputs-Multiple Outputs (MIMO) antenna systems

Telatar (1999), Capacity of multi-antenna Gaussian channels. *European Transactions on Telecommunications.*

 A p × 1 complex Gaussian random vector u = (u₁ ··· u_p)[⊤] has a Q-circularly symmetric complex Gaussian distribution if

$$\mathbb{E}[(\hat{\mathbf{u}} - \mathbb{E}[\hat{\mathbf{u}}])(\hat{\mathbf{u}} - \mathbb{E}[\hat{\mathbf{u}}])^*] = \frac{1}{2} \begin{bmatrix} \operatorname{Re}[Q] & -\operatorname{Im}[Q] \\ \operatorname{Im}[Q] & \operatorname{Re}[Q] \end{bmatrix},$$

for some nonnegative definite Hermitian p imes p matrix Q where

$$\hat{\mathbf{u}} = \left[\mathsf{Re}(u_1), \dots, \mathsf{Re}(u_p), \mathsf{Im}(u_1), \dots, \mathsf{Im}(u_p)\right]^{\top}$$

II. Telatar: RMT and Channel Capacity

- n_T antennas at trasmitter and n_R antennas at receiver.
- Linear channel with Gaussian noise

$$\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{n}$$
.

- **x** is the n_T -dimensional input vector. $(n_T = n)$.
- ▶ **y** is the n_R -dimensional output vector. $(n_R = p)$.
- ▶ **n** is the receiver 0-mean Gaussian noise, $\mathbb{E}(\mathbf{nn}^*) = \mathbf{I}_{n_T}$.
- The $n_R \times n_T$ random matrix **H** is the channel matrix.
- ► H = {h_{jk}} is a random matrix. It models the propagation coefficients between each pair of trasmitter-receiver antennas.
- **x**, **H** and **n** are independent.

- ▶ h_{jk} are i.i.d. complex r.v. with 0-mean and variance one (Re(Z_{jk}) ~ N(0, ¹/₂) independent of Im(Z_{jk}) ~ N(0, ¹/₂)).
- Total power constraint P: upper bound for variance E||x||² of the input signal amplitude.
- Signal to Noise Ratio (SNR)

$$SNR = \frac{\mathbb{E}||\mathbf{x}||^2 / n_T}{\mathbb{E}||\mathbf{n}||^2 / n_R} = \frac{P}{n_T}$$

- Channel capacity is the maximum data rate which can be transmitted reliably over a channel (Shannon (1948)).
- The capacity of this MIMO system channel is

$$C(n_{R}, n_{T}) = \max_{Q} \mathbb{E}_{\mathbf{H}} \left[\log_{2} \det \left(\mathrm{I}_{n_{R}} + \mathbf{H} Q \mathbf{H}^{*} \right) \right]$$

$$C(n_R, n_T) = \mathbb{E}_{\mathbf{H}}\left[\log_2 \det\left(\mathbf{I}_{n_R} + \frac{P}{n_T}\mathbf{H}\mathbf{H}^*
ight)
ight]$$

$$C(n_R, n_T) = \mathbb{E}_{\mathbf{H}}\left[\log_2 \det\left(\mathbf{I}_{n_R} + \frac{P}{n_T}\mathbf{H}\mathbf{H}^*
ight)
ight]$$

• In terms of ESD $\hat{F}_{n_T}^{\frac{1}{n_T}HH^*}$ of sample covariance $\frac{1}{n_T}HH^*$

$$C(n_R, n_T) = n_R \int_0^\infty \log_2\left(1 + P_X\right) \mathrm{d}\widehat{F}_{n_T}^{\frac{1}{n_T}\mathsf{HH}^*}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$C(n_R, n_T) = \mathbb{E}_{\mathbf{H}}\left[\log_2 \det\left(\mathbf{I}_{n_R} + \frac{P}{n_T}\mathbf{H}\mathbf{H}^*
ight)
ight]$$

• In terms of ESD $\hat{F}_{n_T}^{\frac{1}{n_T}HH^*}$ of sample covariance $\frac{1}{n_T}HH^*$

$$C(n_R, n_T) = n_R \int_0^\infty \log_2\left(1 + Px\right) \mathrm{d}\widehat{F}_{n_T}^{\frac{1}{n_T} \mathsf{H} \mathsf{H}^*}$$

•

• By Marchenko-Pastur theorem, if $n_R/n_T \rightarrow c$,

$$\frac{\mathcal{C}(n_R, n_T)}{n_R} \to \int_a^b \log_2\left(1 + Px\right) d\mu_c(x) = \mathcal{K}(c, P).$$

$$C(n_R, n_T) = \mathbb{E}_{\mathbf{H}}\left[\log_2 \det\left(\mathbf{I}_{n_R} + \frac{P}{n_T}\mathbf{H}\mathbf{H}^*
ight)
ight]$$

• In terms of ESD $\hat{F}_{n_T}^{\frac{1}{n_T}HH^*}$ of sample covariance $\frac{1}{n_T}HH^*$

$$C(n_R, n_T) = n_R \int_0^\infty \log_2\left(1 + Px\right) \mathrm{d}\widehat{F}_{n_T}^{\frac{1}{n_T} \mathsf{H} \mathsf{H}^*}$$

•

• By Marchenko-Pastur theorem, if $n_R/n_T \rightarrow c$,

$$\frac{C(n_R, n_T)}{n_R} \to \int_a^b \log_2\left(1 + Px\right) \mathrm{d}\mu_c(x) = K(c, P).$$

For fixed P

$$C(n_R, n_T) \sim n_R K(c, P)$$

$$C(n_R, n_T) = \mathbb{E}_{\mathbf{H}}\left[\log_2 \det\left(\mathbf{I}_{n_R} + \frac{P}{n_T}\mathbf{H}\mathbf{H}^*\right)\right]$$

• In terms of ESD $\hat{F}_{n_T}^{\frac{1}{n_T}HH^*}$ of sample covariance $\frac{1}{n_T}HH^*$

$$C(n_R, n_T) = n_R \int_0^\infty \log_2\left(1 + Px\right) \mathrm{d}\widehat{F}_{n_T}^{\frac{1}{n_T} \mathsf{H} \mathsf{H}^*}$$

• By Marchenko-Pastur theorem, if $n_R/n_T \rightarrow c$,

$$\frac{\mathcal{C}(n_R, n_T)}{n_R} \to \int_a^b \log_2\left(1 + Px\right) \mathrm{d}\mu_c(x) = \mathcal{K}(c, P).$$

For fixed P

$$C(n_R, n_T) \sim n_R K(c, P)$$

Increase capacity with more transmitter and receiver antennas with same total power constraint P.

II. RMT and Wireless Communication

Some further developments (NOT TODAY)

- Non Gaussian distribution for i.i.d. entries h_{ij} of the channel matrix H: universality of the Marchenko-Pastor law.
 - Bai & Silverstein (2010). Spectral Analysis of Large Dimensional Random Matrices.
- Correlation models for H, Kronecker correlation, etc...
 - Lozano, Tulino & Verdú. (2005). Impact of antenna correlation on the capacity of multiantenna channels. *IEEE Trans. Inform. Theor.*
 - Lozano, Tulino & Verdú (2006). Capacity-achieving input covariance for single-user multi-antenna channels. *IEEE Trans. Wireless Comm.*

II. RMT and Wireless Communication

Further developments (NOT TODAY)

- Books on RMT and Wireless Communications:
 - Tulino & Verdú (2004). Random Matrix Theory and Wireless Communications.
 - Couillet & Debbah (2011). Random Matrix Methods for Wireless Communications.
 - Bai, Fang & Ying-Chang (2014). Spectral Theory of Large Dimensional Random Matrices and Its Applications to Wireless Communications and Finance Statistics.
- Main problem is the computation of the asymptotic channel capacity, mainly done by a technique introduced by Girko (1990), solving a non-linear system of functional equations.
 - Couillet, R., Debbah, M., and Silverstein, J. (2011). A deterministic equivalent for the analysis of correlated MIMO multiple access channels. *IEEE Trans. Inform.Theor.*

II. RMT and Wireless Communication

Further developments (NOT TODAY)

- Recently, tools from Operator-valued free probability theory have been successful used as alternative to approximate the asymptotic capacity of new models:
- Ding (2014), Götze, Kösters & Tikhomirov (2015), Hachem, Loubaton & Najim (2007), Shlyakhtenko (1996), Helton, Far & Speicher (2007), Speicher, Vargas & Mai (2012), Belinschi, Speicher, Treilhard & Vargas (2014), Belinschi, Mai & Speicher, R. (2015),
- Diaz-Torres & PA (2017). On the capacity of block multiantena channels. *IEEE Trans. Inform.Theor.*

II. Time-varying random matrices: why? Motivation for TODAY

Couillet & Debbah (2011), *Random Matrix Methods for Wireless Communications*. Chapter 19, Perspectives:

Performance analysis of a typical network with users in motion according to some stochastic behavior, is not accessible to this date in the restrictive framework of random matrix theory.

II. Time-varying random matrices: why? Motivation for TODAY

Couillet & Debbah (2011), *Random Matrix Methods for Wireless Communications*. Chapter 19, Perspectives:

- Performance analysis of a typical network with users in motion according to some stochastic behavior, is not accessible to this date in the restrictive framework of random matrix theory.
- It is to be believed that random matrix theory for wireless communications may move on a more or less long-term basis towards random matrix process theory for wireless communications. Nonetheless, these random matrix processes are nothing new and have been the interest of several generations of mathematicians.

Part III: Dyson-Brownian motion

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

III. Hermitian Brownian motion

▶
$$\mathbf{B}(t) = (B_n(t))_{n \ge 1}, t \ge 0.$$

• $B_n(t)$ is $n \times n$ Hermitian Brownian motion:

$$egin{aligned} B_n(t) &= (b_{ij}(t)), t \geq 0, \ & ext{Re}(b_{ij}(t)) \sim ext{Im}(b_{ij}(t)) \sim N(0, t(1+\delta_{ij})/2, \end{aligned}$$

where $\text{Re}(b_{ij}(t))$, $\text{Im}(b_{ij}(t))$, $1 \le i \le j \le n$ are independent one-dimensional Brownian motions.

►
$$(\lambda_1(t), ..., \lambda_n(t))_{t \ge 0}$$
 process of eigenvalues of $\{B_n(t)\}_{t \ge 0}$
 $\lambda_1(t) \ge \lambda_2(t) \ge ... \ge \lambda_n(t).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

III. Dyson-Brownian motion

Time dynamics of the eigenvalues, dimension n fixed

Theorem **Dyson (1962):**

1) If eigenvalues start at different positions, they never collide

$$\mathbb{P}\left(\lambda_1(t)>\lambda_2(t)>...>\lambda_n(t)\quad orall t>0
ight)=1.$$

2) They satisfy the Stochastic Differential Equation (SDE)

$$\lambda_i(t) = \lambda_i(0) + W_i(t) + \sum_{j \neq i} \int_0^t rac{\mathrm{d}s}{\lambda_j(s) - \lambda_i(s)}, i = 1, ..., n.$$

 $\forall t > 0$, where $W_1, ..., W_n$ are 1-dimensional independent Bms.

Brownian part + repulsion force (at any time t).

Consider the Dyson spectral measure-valued processes

$$\mu_t^{(n)} = \frac{1}{n} \sum_{j=1}^n \delta_{\{\lambda_j(t)/\sqrt{n}\}}, \quad t \ge 0, n \ge 1.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Notation: For $f \mu$ -integrable function $\langle \mu, f \rangle = \int f(x)\mu(dx)$.

Consider the Dyson spectral measure-valued processes

$$\mu_t^{(n)} = rac{1}{n} \sum_{j=1}^n \delta_{\left\{ \lambda_j(t)/\sqrt{n}
ight\}}, \quad t \ge 0, n \ge 1.$$

- ▶ Notation: For $f \mu$ -integrable function $\langle \mu, f \rangle = \int f(x)\mu(dx)$.
- Uniform Wigner theorem

$$\mathbb{P}\left(\lim_{n\to\infty}\sup_{0\leq t\leq T}\left|\left\langle \mu_t^{(n)},f\right\rangle-\left\langle w_t,f\right\rangle\right|=0,\forall f\in C_b(\mathbb{R})\right)=1.$$

Consider the Dyson spectral measure-valued processes

$$\mu_t^{(n)} = rac{1}{n} \sum_{j=1}^n \delta_{\left\{ \lambda_j(t)/\sqrt{n}
ight\}}, \quad t \ge 0, n \ge 1.$$

- Notation: For $f \mu$ -integrable function $\langle \mu, f \rangle = \int f(x)\mu(dx)$.
- Uniform Wigner theorem

$$\mathbb{P}\left(\lim_{n\to\infty}\sup_{0\leq t\leq T}\left|\left\langle \mu_{t}^{(n)},f\right\rangle - \left\langle w_{t},f\right\rangle\right| = 0, \forall f\in C_{b}(\mathbb{R})\right) = 1.$$

► The family of probability measures {w_t}_{t≥0} is the Law of the Free Brownian motion,

$$w_t(dx) = \frac{1}{2\pi t} \sqrt{4t - x^2} \mathbb{1}_{[-2\sqrt{t}, 2\sqrt{t}]}(x) dx.$$

Consider the Dyson spectral measure-valued processes

$$\mu_t^{(n)} = \frac{1}{n} \sum_{j=1}^n \delta_{\{\lambda_j(t)/\sqrt{n}\}}, \quad t \ge 0, n \ge 1.$$

- Notation: For $f \mu$ -integrable function $\langle \mu, f \rangle = \int f(x) \mu(dx)$.
- Uniform Wigner theorem

$$\mathbb{P}\left(\lim_{n\to\infty}\sup_{0\leq t\leq T}\left|\left\langle \mu_{t}^{(n)},f\right\rangle - \left\langle w_{t},f\right\rangle\right| = 0, \forall f\in C_{b}(\mathbb{R})\right) = 1.$$

► The family of probability measures {w_t}_{t≥0} is the Law of the Free Brownian motion,

$$w_t(dx) = rac{1}{2\pi t} \sqrt{4t - x^2} \mathbb{1}_{[-2\sqrt{t}, 2\sqrt{t}]}(x) dx.$$

Semicircle distribution plays in free probability the role Gaussian distribution does in classical probability.

A detour to understand why free Bm

 Interacting SDE with both smooth drift & diffusion coefficients β and α are of the form

$$egin{aligned} X_{n,i}(t) &= X_{n,i}(0) + rac{1}{\sqrt{n}} \sum_{j
eq i} \int_{0}^{t} eta(X_{n,j}(s), X_{n,i}(s)) \mathrm{d}W_{i}^{(n)}(t) \ &+ rac{1}{n} \sum_{j
eq i} \int_{0}^{t} lpha(X_{n,j}(s), X_{n,i}(s)) \mathrm{d}s. \end{aligned}$$

While Dyson-Brownian motion has non smooth drift

$$X_{n,i}(t) = X_{n,i}(0) + \frac{1}{\sqrt{n}} W_i^{(n)}(t) + \frac{1}{n} \sum_{j \neq i} \int_0^t \frac{1}{X_{n,i}(s) - X_{n,j}(s)} \mathrm{d}s.$$

Empirical measure valued process

$$\mu_t^{(n)} = rac{1}{n} \sum_{j=1}^n \delta_{X_{n,j}(t)}, \quad t \ge 0, n \ge 1.$$

A detour to understand why free Bm

For Interacting SDE with both **smooth drift & diffusion coefficients**:

• McKean (1967): $\left\{\mu_t^{(n)}\right\}_{t\geq 0}$ converges weakly in probability to $\{\mu_t\}_{t\geq 0}$, which is the law of a stochastic differential equation.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A detour to understand why free Bm

For Interacting SDE with both **smooth drift & diffusion coefficients**:

- McKean (1967): $\left\{\mu_t^{(n)}\right\}_{t\geq 0}$ converges weakly in probability to $\left\{\mu_t\right\}_{t>0}$, which is the law of a stochastic differential equation.
- Interacting SDE with non smooth drift coefficient arise from eigenvalue processes of matricial processes [Bru (1989), Rogers & Shi (1993), Konig & O'Connell (2001), Cabanal-Duvillard & Guionnet (2001), Katori & Tanemura (2004)].

A detour to understand why free Bm

For Interacting SDE with both **smooth drift & diffusion coefficients**:

- McKean (1967): $\left\{\mu_t^{(n)}\right\}_{t\geq 0}$ converges weakly in probability to $\left\{\mu_t\right\}_{t\geq 0}$, which is the law of a stochastic differential equation.
- Interacting SDE with non smooth drift coefficient arise from eigenvalue processes of matricial processes [Bru (1989), Rogers & Shi (1993), Konig & O´Connell (2001), Cabanal-Duvillard & Guionnet (2001), Katori & Tanemura (2004)].
- ► The family of probabilities {w_t, t ≥ 0} is not the law of a SDE equation, but the law of a noncommutative process: Free Brownian motion.

Part IV: Free Brownian motion

<□ > < @ > < E > < E > E のQ @

IV. Noncommutative probability spaces

- A noncommutative probability space (A, φ) is a unital algebra A over C with a linear functional φ : A → C with φ(1_A) = 1. Elements of A are called noncommutative random variables.
- \blacktriangleright We should think of φ as playing the role of the expectation in classical probability theory.
- Distribution μ on ℝ (bounded support), of a self-adjoint a ∈ A in a C*-probability space (A, φ)

$$\varphi(f(\mathbf{a})) = \int_{\mathbb{R}} f(x)\mu(\mathrm{d}x), \quad \forall f \in C_b(\mathbb{R}).$$

A family of subalgebras {A_i}_{i∈I} ⊂ A in a noncommutative probability space is *free* (freely independent) if

$$\varphi(\mathbf{a}_1\mathbf{a}_2\cdots\mathbf{a}_n)=\mathbf{0}$$

whenever $\varphi(\mathbf{a}_j) = 0$, $\mathbf{a}_j \in \mathcal{A}_{i_j}$, and $i_1 \neq i_2$, $i_2 \neq i_3$, ..., $i_{n-1} \neq i_n$.

IV. Free independence allows to compute joint moments Example

Computation of $\varphi(abab)$ when a & b are freely independent: Suppose $\{a_1, a_3\}$ and $\{a_2, a_4\}$ are freely independent. Since

$$arphi(\mathbf{a}_i-arphi(\mathbf{a}_i)\mathbf{1}_\mathcal{A})=\mathsf{0}$$
,

$$\begin{split} \varphi(\mathbf{a}_1 - \varphi(\mathbf{a}_1)\mathbf{1}_{\mathcal{A}})\varphi(\mathbf{a}_2 - \varphi(\mathbf{a}_2)\mathbf{1}_{\mathcal{A}})\varphi(\mathbf{a}_3 - \varphi(\mathbf{a}_3)\mathbf{1}_{\mathcal{A}})\varphi(\mathbf{a}_4 - \varphi(\mathbf{a}_4)\mathbf{1}_{\mathcal{A}}) = 0 \\ \text{Computations yield} \end{split}$$

$$\begin{split} \varphi(\mathbf{a}_1\mathbf{a}_2\mathbf{a}_3\mathbf{a}_4) &= \varphi(\mathbf{a}_1\mathbf{a}_3)\varphi(\mathbf{a}_2)\varphi(\mathbf{a}_4) + \varphi(\mathbf{a}_1)\varphi(\mathbf{a}_3)\varphi(\mathbf{a}_2\mathbf{a}_4) \\ &- \varphi(\mathbf{a}_1)\varphi(\mathbf{a}_2)\varphi(\mathbf{a}_3)\varphi(\mathbf{a}_4). \end{split}$$

In particular if $\mathbf{a}_1 = \mathbf{a}_3 = \mathbf{a}$ and $\mathbf{a}_2 = \mathbf{a}_4 = \mathbf{b}$

 $\varphi(\mathbf{a}\mathbf{b}\mathbf{a}\mathbf{b}) = \varphi(\mathbf{a})^2\varphi(\mathbf{b}^2) + \varphi(\mathbf{a}^2)\varphi(\mathbf{b})^2 - \varphi(\mathbf{a})^2\varphi(\mathbf{b})^2 \neq \varphi(\mathbf{a}^2)\varphi(\mathbf{b}^2).$

IV. Free Brownian motion

A noncommutative process

A Free Brownian motion is a family $S = \{S_t\}_{t \ge 0}$ of self-adjoint random variables in a noncommutative probability space (\mathcal{A}, φ) such that:

1.
$$S_0 = 0$$
.

2. For
$$t_2 \ge t_1 \ge 0$$
, $S_{t_2} - S_{t_1}$ has law $w_{t_2-t_1}$.

- 3. For all $n \ge 1$ and $t_n > \cdots > t_1 > 0$, the increments $S_{t_n} S_{t_{n-1}}, \dots, S_{t_2} S_{t_1}, S_{t_1}$ are freely independent with respect to φ .
- For every t ≥ 0, St has semicircle law wt of zero mean and variance one.

Part V: From Fractional Wishart process to Noncommutative Wishart process

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

V. Fractional Wishart process

• $m, n \ge 1, m \times n$ matrix process

$$\{B_{m,n}(t)\}_{t\geq 0} = \left\{ \left(b_{m,n}^{j,k}(t) \right)_{1\leq j\leq m, 1\leq k\leq n} \right\}_{t\geq 0},$$

 $\left\{ \operatorname{Re}\left(b_{m,n}^{j,k}\left(t\right)\right) \right\}_{t\geq 0} \& \left\{ \operatorname{Im}\left(b_{m,n}^{j,k}\left(t\right)\right) \right\}_{t\geq 0} \text{ independent}$ 1-dimensional fractional Bm of parameter $H \in [1/2, 1)$.

 Fractional Laguerre, fractional Wishart process: n × n matrix-valued process

$$L_{m,n}(t) = B^*_{m,n}(t)B_{m,n}(t), t \ge 0.$$

▶ $0 \le \lambda_n(t) \le \cdots \le \lambda_1(t)$ eigenvalues of $L_{m,n}(t)/n$.

▶ For $H \in [1/2, 1)$ the noncoliding property holds

$$\mathbb{P}\left(\lambda_1(t) > \lambda_2(t) > \ldots > \lambda_n(t) > 0 \quad \forall t > 0\right) = 1.$$
V. Fractional Wishart process

► *H* = 1/2:

▶ Bru (1989): noncoliding property and stochastic dynamics

$$\begin{split} \mathrm{d}\lambda_i(t) &= \lambda_i(0) + \frac{1}{\sqrt{n}} \sqrt{2\lambda_i(t)} W_i(t) \\ &+ \frac{1}{n} \int_0^t \left(m + \sum_{j \neq i} \frac{\lambda_i(s) + \lambda_j(s)}{\lambda_i(s) - \lambda_j(s)} \right) \mathrm{d}s, \ 1 \leq i \leq n. \end{split}$$

- Cabanal-Duvillard & Guionnet (2001), PA & Tudor (2009): limiting measure-valued process, when n/m→ c > 0, is dilation of free Poisson law.
- $H \in (1/2, 1)$: Pardo, Pérez G., PA (2017):
 - Noncoliding, stochastic dynamics of eigenvalues.
 - Limiting measure valued process is fractional dilation of MP law.

V. Dilation of MP law

Law of noncommutative fractional Wishart process

The limit, when n/m o c > 0, of $\mu_t^{(n)} = rac{1}{n} \sum_{j=1}^n \delta_{\lambda_j(t)}, t \ge 0$,

lacksim is not the law $\{m_{ct}\}_{t\geq 0}$,

$$\mathbf{m}_{ct}(\mathbf{d}x) = egin{cases} f_{ct}(x)\mathbf{d}x, & ct \geq 1 \ (1-ct)\delta_0(\mathbf{d}x) + f_{ct}(x)\mathbf{d}x, & 0 \leq ct < 1, \end{cases}$$

$$f_{ct}(x) = \frac{1}{2\pi x} \sqrt{4ct - (x - (1 + ct))^2} \mathbf{1}_{[(1 - \sqrt{ct})^2, (1 + \sqrt{ct})^2]}(x)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

V. Dilation of MP law

Law of noncommutative fractional Wishart process

The limit, when n/m o c > 0, of $\mu_t^{(n)} = rac{1}{n} \sum_{j=1}^n \delta_{\lambda_j(t)}$, $t \ge 0$,

• is not the law $\{\mathbf{m}_{ct}\}_{t\geq 0}$,

$$egin{aligned} {
m m}_{ct}({
m d} x) &= egin{cases} f_{ct}(x){
m d} x, & ct \geq 1\ (1-ct)\delta_0({
m d} x) + f_{ct}(x){
m d} x, & 0 \leq ct < 1, \end{aligned}$$
 $f_{ct}(x) &= rac{1}{2\pi x}\sqrt{4ct - (x-(1+ct))^2} {
m 1}_{[(1-\sqrt{ct})^2,(1+\sqrt{ct})^2]}(x)$

rather fractional dilations of m_c: µ^H_c(t) = m_c, ◦ h⁻¹_t, for h_t(x) = t^{2H}x, i.e.

$$\mu_c^H(t)(\mathrm{d} x) = \begin{cases} \widetilde{f}_c^t(x)\mathrm{d} x, & c \ge 1\\ (1-c)\delta_0(\mathrm{d} x) + f_{a,b}(x)\mathrm{d} x, & 0 \le c < 1, \end{cases}$$

 $\widetilde{f}_{c}^{t}(x) = \frac{1}{2\pi t^{2H} x} \sqrt{4ct^{2H} - (x - t^{H}(1 + c))^{2}} \mathbf{1}_{[t^{2H}(1 - \sqrt{c})^{2}, t^{2H}(1 + \sqrt{c})^{2}]}$

V. Characterization of the law

Cabanal-Duvillard & Guionnet (2001): H = 1/2. Pardo, Pérez G, PA (2017, *JFA*): $H \in (1/2, 1)$.

Theorem

The family $(\mu_c^H(t), t \ge 0)$ is characterized by the property that its Cauchy transform $G_{c,H}$ is the unique solution to

$$\begin{aligned} \frac{\partial G_{c,H}}{\partial t}(t,z) &= 2Ht^{2H-1} \left[\begin{array}{c} G_{c,H}^2(t,z) + \\ (1-c+2zG_{c,1/2}(t,z)) \frac{\partial G_{c,H}}{\partial z}(t,z) \end{array} \right], t > 0 \\ G_{c,H}(0,z) &= \int_{\mathbb{R}} \frac{\mu_{c,H}(0)(dx)}{x-z}. \end{aligned}$$

V. Identification H=1/2, general c

Free Wishart process of Capitanie and Donati-Martin (2005)

 If S = (S_t)_{t≥0} is a free (complex) Brownian motion (H = 1/2), W_t = S^{*}_tS_t is a free Wishart process.

• It is a free diffusion: $c > 1, 0 < x \in A$:

$$dW_t = c1_A dt + \sqrt{W_t} dS_t + dS_t^* \sqrt{W_t}, \quad W_0 = x.$$

► $(W_t)_{t\geq 0}$ does not have free increments, **but** If $(S_t)_{t\geq 0}$, $(\widetilde{S}_t)_{t\geq 0}$ are free as well as x, \widetilde{x} , with parameters c_1, c_2 then $(W_t + \widetilde{W}_t)_{t\geq 0}$ is a free Wishart proces with parameter $c_1 + c_2$ and initial condition $x + \widetilde{x}$.

Open problems:

- ► H ∈ (1/2, 2), description of the noncommutative fractional Wishart process?
- How is related to the noncommutative fractional Brownian motion of Nourdin and Taqqu?

Dyson-Brownian motion and other noncoliding processes

- Anderson, Guionnet & Zeitouni (2010). An Introduction to Random Matrices. Cambridge University Press..
- Bru (1989). Diffusions of perturbed principal component analysis. J. Multivariat. Anal.
- Cabanal-Duvillard & Guionett (2001). Large deviations upper bounds for the laws of matrix-valued processes and non-communicative entropies. Ann. Probab.
- Dyson (1962). A Brownian-motion model for the eigenvalues of a random matrix. J. Math. Phys.
- König & O 'Connel (2001). Eigenvalues of the Laguerre process as Non-colliding squared Bessel processes. *Electron. Commun. Probab.*
- Tao (2012). Topics on Random Matrix Theory. American Mathematical Society.

Dyson-Brownian motion and other noncoliding processes, more recently

- Holcomb & Paquette (2017). Tridiagonal models for Dyson Brownian motion. Arxive 1707.02700.
- Katori & Tanemura (2013). Complex Brownian motion representation of the Dyson model. *Electron. Commun. Probab.*
- ▶ Pérez-Abreu & Nualart (2014). Stoch. Proces. & Appl.
- Pérez-Abreu & Rocha-Arteaga (2016). On the process of the eigenvalues of Hermitian Lévy processes. In: The Fascination of Probability, Statistics and their Applications: Festschrift in Honour of Ole E. Barndorff-Nielsen.

Free stochastic calculus and infinite divisibility

- Anshelevich (2002). Itô formula for free stochastic integrals.
 J. Funct. Anal.
- Biane (1995). Brownian motion, free stochastic calculus and random matrices. Free Probability Theory. Fields Inst. Commun. Amer. Math. Soc.
- Biane & Speicher (1998). Stochastic calculus with respect to free Brownian motion and analysis on Wigner space. Probab. Theory. Relat. Fields.
- Bercovici & Pata with an appendix by Biane (1999). Stable laws and domains of attraction in free probability theory. Ann. Math.
- Benaych-Georges (2005). Classical and free i.d. distributions and random matrices. Ann. Probab.
- Cabanal-Duvillard (2005): A matrix representation of the Bercovici-Pata bijection. *Electron. J. Probab.*

Noncommutative processes: free and fractional

- An & Gao (2015). Poisson processes in free probability. Arxive 1506.03130.
- Barndorff-Nielsen and Thorjorsen (2006). Classical and free infinite divisibility and Lévy processes. Lecture Note Math.
- Capitanie & Donata-Martin (2005). Free Wishart processes.
 J. Theoret. Probab.
- Nica and Speicher (2006). Lectures on Combinatorics for Free Probability. CUP.
- Voiculescu, Dykema and Nica (1992). Free Random Variables. Amer. Math. Soc.
- Nourdin & Taqqu (2014). Central and non-central limit theorems in a free probability setting. J. Theoret. Probab.
- Pardo, Pérez G. & Pérez-Abreu (2016). A random matrix approximation to the noncommutative fractional Brownian motion. J. Theoret. Probab.
- Pardo, Pérez G. & Pérez-Abreu (2017). On the free fractional Wishart process. J. Funct. Anal.

Thanks

◆□ → < @ → < E → < E → ○ < ○ < ○ </p>

Part V: Free Brownian motion and Noncommutative fractional Brownian motion

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A noncommutative probability space (A, φ) is a unital algebra A over C with a linear functional φ : A → C with φ(1_A) = 1. Elements of A are called noncommutative random variables.

- A noncommutative probability space (A, φ) is a unital algebra A over C with a linear functional φ : A → C with φ(1_A) = 1. Elements of A are called noncommutative random variables.
- ▶ $\mathcal{A} = \mathbb{M}_d(\mathbb{C}) \ d imes d$ matrices with complex entries

$$\varphi(\cdot) = \operatorname{tr}_d(\cdot) = \frac{1}{d}\operatorname{tr}(\cdot).$$

- A noncommutative probability space (A, φ) is a unital algebra A over C with a linear functional φ : A → C with φ(1_A) = 1. Elements of A are called noncommutative random variables.
- ▶ $\mathcal{A} = \mathbb{M}_d(\mathbb{C}) \ d imes d$ matrices with complex entries

$$\varphi(\cdot) = \operatorname{tr}_d(\cdot) = \frac{1}{d}\operatorname{tr}(\cdot).$$

►
$$\mathcal{A} = L_{\infty}(\Omega, \mathcal{F}, \mathbb{P}),$$

 $\varphi(\cdot) = \mathbb{E}(\cdot).$

A noncommutative probability space (A, φ) is a unital algebra A over C with a linear functional φ : A → C with φ(1_A) = 1. Elements of A are called noncommutative random variables.

▶ $\mathcal{A} = \mathbb{M}_d(\mathbb{C}) \ d imes d$ matrices with complex entries

$$\varphi(\cdot) = \operatorname{tr}_{d}(\cdot) = \frac{1}{d}\operatorname{tr}(\cdot).$$

$$\varphi(\cdot) = \mathbb{E}(\cdot).$$

$$\varphi(\cdot) = \mathbb{E}(\cdot).$$

$$\varphi(\cdot) = \mathbb{E}\operatorname{tr}_{d}(L_{\infty}(\Omega, \mathcal{F}, \mathbb{P})),$$

$$\varphi(\cdot) = \mathbb{E}\operatorname{tr}_{d}(\cdot).$$

- A noncommutative probability space (A, φ) is a unital algebra A over C with a linear functional φ : A → C with φ(1_A) = 1. Elements of A are called noncommutative random variables.
- ▶ $\mathcal{A} = \mathbb{M}_d(\mathbb{C}) \ d imes d$ matrices with complex entries

$$\varphi(\cdot) = \operatorname{tr}_{d}(\cdot) = \frac{1}{d}\operatorname{tr}(\cdot).$$

$$\varphi(\cdot) = \mathbb{E}(\cdot).$$

$$\varphi(\cdot) = \mathbb{E}(\cdot).$$

$$\mathcal{A} = \mathbb{M}_{d}(L_{\infty}(\Omega, \mathcal{F}, \mathbb{P})),$$

$$\varphi(\cdot) = \mathbb{E}\mathrm{tr}_d(\cdot).$$

► $\mathcal{A} = L(\mathcal{H})$ algebra of linear operators on a Hilbert space, $u \in H$, ||u|| = 1 $\varphi(\cdot) = \langle \cdot u, u \rangle$

- We should think of φ as playing the role of the expectation in classical probability theory.
- We talk about the moments of a, referring to the values of φ (a^k), k ≥ 0.
- More generally, for a tuple $a_1, \ldots, a_n \in \mathcal{A}$, the values

$$\varphi(\mathbf{a}_{i_1}^{m_1}...\mathbf{a}_{i_k}^{m_k})$$

for $k \ge 0$, $1 \le i_1, \ldots, i_k \le n$, $m_1, \ldots, m_k \ge 0$, are known as the joint moments of a_1, \ldots, a_n .

- Let C (X₁,...X_n) the algebra of polynomials in n noncommutative indeterminates with coefficients in C.
- ▶ Let a_1, \ldots, a_n be elements in a noncommutative probability space (\mathcal{A}, φ) . The (algebraic) distribution of a_1, \ldots, a_n is the $\mu_{a_1,\ldots,a_n} : \mathbb{C} \langle X_1, \ldots, X_n \rangle \to \mathbb{C}$ determined by

$$\mu_{\mathbf{a}_1,...,\mathbf{a}_n}(X_{i_1}^{m_1}...X_{i_k}^{m_k}) = \varphi(\mathbf{a}_{i_1}^{m_1}...\mathbf{a}_{i_k}^{m_k})$$

for each $k \ge 0, \ 1 \le i_1, \dots, i_k \le n, \ m_1, \dots m_k \ge 0.$

When an algebraic distribution is given by an analytic distribution?

Generality needed to deal with free probability

Remember classical case: A real random variable R has distribution μ on \mathbbm{R} iff

$$\mathbb{E}f(R) = \int_{\mathbb{R}} f(x)\mu(\mathrm{d}x), \quad \forall f \in B_b(\mathbb{R}).$$

Noncommutative case needs:

(i) Given a p.m. μ on \mathbb{R} with bounded support, there exist a C^* -probability space (\mathcal{A}, φ) and a self-adjoint $\mathbf{a} \in \mathcal{A}$ with

$$\varphi(f(\mathbf{a})) = \int_{\mathbb{R}} f(x)\mu(\mathrm{d}x), \quad \forall f \in C_b(\mathbb{R}).$$

(ii) **Given a p.m.** μ on \mathbb{R} , there exists a W^* -probability space (\mathcal{A}, φ) and self-adjoint operator **a** on a Hilbert space H such that

$$f(\mathbf{a}) \in \mathcal{A} \quad \forall f \in B_b(\mathbb{R}),$$
 (1)

$$\varphi(f(\mathbf{a})) = \int_{\mathbb{R}} f(x)\mu(\mathrm{d}x), \quad \forall f \in B_b(\mathbb{R}).$$

V. Free Random Variables

Definition

(i) A family of subalgebras $\{A_i\}_{i \in I} \subset A$ in a noncommutative probability space is *free* (freely independent) if

$$\varphi(\mathbf{a}_1\mathbf{a}_2\cdots\mathbf{a}_n)=\mathbf{0}$$

whenever $\varphi(\mathbf{a}_j) = 0$, $\mathbf{a}_j \in \mathcal{A}_{i_j}$, and $i_1 \neq i_2, i_2 \neq i_3, ..., i_{n-1} \neq i_n$.

Definition

If \mathbf{a}_1 , \mathbf{a}_2 are freely independent, with distributions μ_{a_1} and μ_{a_2} , the distribution of $\mathbf{a}_1 + \mathbf{a}_2$ is the free convolution $\mu_{a_1} \boxplus \mu_{a_2}$.

V. Free independence allows to compute joint moments Example

Computation of $\varphi(abab)$ when a & b are freely independent: Suppose $\{a_1, a_3\}$ and $\{a_2, a_4\}$ are freely independent. Since

$$arphi(\mathbf{a}_i-arphi(\mathbf{a}_i)\mathbf{1}_\mathcal{A})=\mathsf{0}$$
 ,

$$\begin{split} \varphi(\mathbf{a}_1 - \varphi(\mathbf{a}_1)\mathbf{1}_{\mathcal{A}})\varphi(\mathbf{a}_2 - \varphi(\mathbf{a}_2)\mathbf{1}_{\mathcal{A}})\varphi(\mathbf{a}_3 - \varphi(\mathbf{a}_3)\mathbf{1}_{\mathcal{A}})\varphi(\mathbf{a}_4 - \varphi(\mathbf{a}_4)\mathbf{1}_{\mathcal{A}}) = 0 \\ \text{Computations yield} \end{split}$$

$$\begin{split} \varphi(\mathbf{a}_1\mathbf{a}_2\mathbf{a}_3\mathbf{a}_4) &= \varphi(\mathbf{a}_1\mathbf{a}_3)\varphi(\mathbf{a}_2)\varphi(\mathbf{a}_4) + \varphi(\mathbf{a}_1)\varphi(\mathbf{a}_3)\varphi(\mathbf{a}_2\mathbf{a}_4) \\ &- \varphi(\mathbf{a}_1)\varphi(\mathbf{a}_2)\varphi(\mathbf{a}_3)\varphi(\mathbf{a}_4). \end{split}$$

In particular if $\mathbf{a}_1 = \mathbf{a}_3 = \mathbf{a}$ and $\mathbf{a}_2 = \mathbf{a}_4 = \mathbf{b}$

 $\varphi(\mathbf{a}\mathbf{b}\mathbf{a}\mathbf{b}) = \varphi(\mathbf{a})^2\varphi(\mathbf{b}^2) + \varphi(\mathbf{a}^2)\varphi(\mathbf{b})^2 - \varphi(\mathbf{a})^2\varphi(\mathbf{b})^2 \neq \varphi(\mathbf{a}^2)\varphi(\mathbf{b}^2).$

V. Application: Free Central Limit Theorem

Theorem

Let $\mathbf{a}_1, \mathbf{a}_2,...$ be a sequence of independent free random variables with the same distribution with all moments. Assume that $\varphi(\mathbf{a}_1) = \mathbf{0}$ and $\varphi(\mathbf{a}_1^2) = t$. Then the distribution of

$$\mathsf{Z}_m = rac{1}{\sqrt{m}}(\mathsf{a}_1 + ... + \mathsf{a}_m)$$

converges, as $m \to \infty$, to the semicircle distribution

$$w_t(x) = \frac{1}{2\pi}\sqrt{4t - x^2}, \quad |x| \le 2\sqrt{t}$$

with moments $m_{2k+1} = 0$ and $m_{2k} = t^{2k} {\binom{2k}{k}}/{(k+1)}$.

 Semicircle or Wigner distribution plays the role of classical Gaussian in free probability.

V. Free Brownian motion

A noncommutative process

A Free Brownian motion is a family $S = \{S_t\}_{t \ge 0}$ of self-adjoint random variables in a noncommutative probability space (\mathcal{A}, φ) such that:

1. $S_0 = 0$.

- 2. For $t_2 \geq t_1 \geq$ 0, $S_{t_2} S_{t_1}$ has law $w_{t_2-t_1}$.
- 3. For all $n \ge 1$ and $t_n > \cdots > t_1 > 0$, the increments $S_{t_n} S_{t_{n-1}}, \dots, S_{t_2} S_{t_1}, S_{t_1}$ are freely independent with respect to φ .
- For every t ≥ 0, St has semicircle law wt of zero mean and variance one.

V. Free Brownian motion

A noncommutative process

A Free Brownian motion is a family $S = \{S_t\}_{t \ge 0}$ of self-adjoint random variables in a noncommutative probability space (\mathcal{A}, φ) such that:

1. $S_0 = 0$.

- 2. For $t_2 \geq t_1 \geq$ 0, $S_{t_2} S_{t_1}$ has law $w_{t_2-t_1}$.
- 3. For all $n \ge 1$ and $t_n > \cdots > t_1 > 0$, the increments $S_{t_n} S_{t_{n-1}}, \dots, S_{t_2} S_{t_1}, S_{t_1}$ are freely independent with respect to φ .
- For every t ≥ 0, St has semicircle law wt of zero mean and variance one.
- One has Stochastic calculus for the free Brownian motion (Anshelevich, 2002, Biane, 1997, Biane & Speicher, 1998).

V. Semicircular process

Free Brownian motion is an example of a Semicircular process $X = \{X_t\}_{t \ge 0} \subset \mathcal{A}$, self-adjoint random variables: For every $k \ge 1, t_1, ..., t_k \in [0, \infty)$ and $\theta_1, ..., \theta_k \in \mathbb{R}$, the noncommutative random variable $\theta_1 X_{t_1} + \cdots + \theta_k X_{t_k}$ has Semicircle law

$$\mathbf{w}_{m,\sigma^2}(\mathbf{d} x) = \frac{1}{2\pi\sigma^2} \sqrt{4\sigma^2 - (x-m)^2} \mathbf{1}_{[m-2\sigma,m+2\sigma]}(x) \mathbf{d} x.$$

for some $m \in \mathbb{R}$, $\sigma^2 > 0$.

V. Semicircular process

Free Brownian motion is an example of a Semicircular process $X = \{X_t\}_{t \ge 0} \subset \mathcal{A}$, self-adjoint random variables: For every $k \ge 1, t_1, ..., t_k \in [0, \infty)$ and $\theta_1, ..., \theta_k \in \mathbb{R}$, the noncommutative random variable $\theta_1 X_{t_1} + \cdots + \theta_k X_{t_k}$ has Semicircle law

$$\mathbf{w}_{m,\sigma^2}(\mathbf{d} x) = \frac{1}{2\pi\sigma^2} \sqrt{4\sigma^2 - (x-m)^2} \mathbf{1}_{[m-2\sigma,m+2\sigma]}(x) \mathbf{d} x.$$

for some $m \in \mathbb{R}$, $\sigma^2 > 0$.

► The law of a centered semicircular processes (φ(X_t) = 0 for every t > 0) is uniquely determined by its covariance function

$$\Gamma(s,t) = \varphi(X_t X_s).$$

V. Semicircular process

Free Brownian motion is an example of a Semicircular process X = {X_t}_{t≥0} ⊂ A, self-adjoint random variables: For every k ≥ 1, t₁, ..., t_k ∈ [0, ∞) and θ₁, ..., θ_k ∈ ℝ, the noncommutative random variable θ₁X_{t₁} + · · · + θ_kX_{t_k} has Semicircle law

$$\mathbf{w}_{m,\sigma^2}(\mathbf{d} x) = \frac{1}{2\pi\sigma^2} \sqrt{4\sigma^2 - (x-m)^2} \mathbf{1}_{[m-2\sigma,m+2\sigma]}(x) \mathbf{d} x.$$

for some $m \in \mathbb{R}$, $\sigma^2 > 0$.

► The law of a centered semicircular processes (φ(X_t) = 0 for every t > 0) is uniquely determined by its covariance function

$$\Gamma(s,t)=\varphi(X_tX_s).$$

Centered semicircular X = {X_t}_{t≥0} has stationary increments $Γ(s, t) = Γ(|t - s|) = φ(X_{|t-s|}).$

Let H ∈ (0, 1). A noncommutative fractional Brownian motion (ncfBm) of Hurst parameter H is a centered semicircular process S^H = {S_t^H}_{t≥0} in a noncommutative probability space (A, φ) with covariance function

$$\varphi(S_t^H S_s^H) = \frac{1}{2} \left(t^{2H} + s^{2H} - |t - s|^{2H} \right).$$

Let H ∈ (0, 1). A noncommutative fractional Brownian motion (ncfBm) of Hurst parameter H is a centered semicircular process S^H = {S_t^H}_{t≥0} in a noncommutative probability space (A, φ) with covariance function

$$\varphi(S_t^H S_s^H) = \frac{1}{2} \left(t^{2H} + s^{2H} - |t - s|^{2H} \right)$$

▶ For each t > 0, S_t^H has the semicircle law w_t^H on $(-2t^H, 2t^H)$

$$w_t^H(dx) = \frac{1}{2\pi t^{2H}} \sqrt{4t^{2H} - x^2} dx, \quad |x| \le 2t^H$$

Let H ∈ (0, 1). A noncommutative fractional Brownian motion (ncfBm) of Hurst parameter H is a centered semicircular process S^H = {S^H_t}_{t≥0} in a noncommutative probability space (A, φ) with covariance function

$$\varphi(S_t^H S_s^H) = \frac{1}{2} \left(t^{2H} + s^{2H} - |t - s|^{2H} \right)$$

▶ For each t > 0, S_t^H has the semicircle law w_t^H on $(-2t^H, 2t^H)$

$$w_t^H(dx) = \frac{1}{2\pi t^{2H}} \sqrt{4t^{2H} - x^2} dx, \quad |x| \le 2t^H$$

ncfBm has stationary increments: For every t, s > 0

$$\varphi(\left(S_t^H - S_s^H\right)^2) = |t - s|^{2H}$$

As in the classical probability case

•
$$S_t^H - S_s^H$$
 has the same law as S_{t-s}^H .

As in the classical probability case

- $S_t^H S_s^H$ has the same law as S_{t-s}^H .
- ► H = 1/2 is free Brownian motion (S_t)_{t≥0} (the only ncfBm with freely independent increments).

As in the classical probability case

- $S_t^H S_s^H$ has the same law as S_{t-s}^H .
- ► H = 1/2 is free Brownian motion (S_t)_{t≥0} (the only ncfBm with freely independent increments).
- For H > 1/2 the process has long-range dependence

$$\sum_{n=1}^{\infty} \varphi(S_1^H(S_{n+1}^H - S_n^H)) = \infty$$

As in the classical probability case

- $S_t^H S_s^H$ has the same law as S_{t-s}^H .
- ► H = 1/2 is free Brownian motion (S_t)_{t≥0} (the only ncfBm with freely independent increments).
- For H > 1/2 the process has long-range dependence

$$\sum_{n=1}^{\infty} \varphi(S_1^H(S_{n+1}^H - S_n^H)) = \infty$$

▶ and the increments are positively correlated: For s₁ < t₁ < s₂ < t₂

$$\varphi((S_{t_2}^H - S_{s_2}^H)(S_{t_1}^H - S_{s_1}^H)) > 0.$$

As in the classical probability case

- $S_t^H S_s^H$ has the same law as S_{t-s}^H .
- ► H = 1/2 is free Brownian motion (S_t)_{t≥0} (the only ncfBm with freely independent increments).
- For H > 1/2 the process has long-range dependence

$$\sum_{n=1}^{\infty}\varphi(S_1^H(S_{n+1}^H-S_n^H))=\infty$$

▶ and the increments are positively correlated: For s₁ < t₁ < s₂ < t₂

$$\varphi((S_{t_2}^H - S_{s_2}^H)(S_{t_1}^H - S_{s_1}^H)) > 0.$$

For H < 1/2 the increments are negatively correlated.

▶ ncfBm is self-similar: For all a > 0, $(a^{-H}S^{H}_{at})_{t \ge 0} \stackrel{\text{law}}{=} (S^{H}_{t})_{t \ge 0}$

$$\varphi(\mathbf{a}^{-H}S_{at}^{H}\mathbf{a}^{-H}S_{as}^{H}) = \frac{1}{2}\left(t^{2H} + s^{2H} - |t-s|^{2H}\right).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▶ ncfBm is self-similar: For all a > 0, $(a^{-H}S^{H}_{at})_{t \ge 0} \stackrel{\text{law}}{=} (S^{H}_{t})_{t \ge 0}$

$$\varphi(\mathbf{a}^{-H}S_{at}^{H}\mathbf{a}^{-H}S_{as}^{H}) = \frac{1}{2}\left(t^{2H} + s^{2H} - |t-s|^{2H}\right).$$

Existence: Wigner integral representation of S^H with respect to free Brownian motion S

$$S_t^H = \frac{1}{c_H} \left(\int_0^\infty \left((t-u)_+^{H-\frac{1}{2}} - (-u)_+^{H-\frac{1}{2}} \right) \mathrm{d}S_u \right).$$
V. Noncommutative Fractional Brownian Motion Nourdin and Taqqu (2104)

▶ ncfBm is self-similar: For all a > 0, $(a^{-H}S^{H}_{at})_{t \ge 0} \stackrel{\text{law}}{=} (S^{H}_{t})_{t \ge 0}$

$$\varphi(\mathbf{a}^{-H}S_{at}^{H}\mathbf{a}^{-H}S_{as}^{H}) = \frac{1}{2}\left(t^{2H} + s^{2H} - |t-s|^{2H}\right).$$

 Existence: Wigner integral representation of S^H with respect to free Brownian motion S

$$S_t^H = \frac{1}{c_H} \left(\int_0^\infty \left((t-u)_+^{H-\frac{1}{2}} - (-u)_+^{H-\frac{1}{2}} \right) \mathrm{d}S_u \right).$$

Similar to the Wiener integral representation of 1-dimensional fractional Brownian motion b^H = (b^H(t))_{t≥0} with respect to 1-dimensional Brownian motion b = (b(t))_{t≥0}

$$b^{H}(t) = \frac{1}{c_{H}} \left(\int_{0}^{\infty} \left((t-u)_{+}^{H-\frac{1}{2}} - (-u)_{+}^{H-\frac{1}{2}} \right) db(u) \right).$$

Part VI: From matrix fractional Bm to noncommutative fractional Bm

(Time-varying random matrix models for the noncommutative fractional Bm)

VI. One-dimensional fractional Brownian motion

A one-dimensional fractional Brownian motion $b^{H} = \{b^{H}(t)\}_{t \ge 0}$ is a zero-mean classical Gaussian process with covariance

$$\mathbb{E}b^{H}(t)b^{H}(s)) = rac{1}{2}\left(t^{2H} + s^{2H} - |t-s|^{2H}
ight).$$

• Stationary increments: For s, t > 0

$$\mathbb{E}\left|b^{H}(t)-b^{H}(s)\right|^{2}=|t-s|^{2H}.$$

• Self-similarity:
$$(a^{-H}b^{H}(at))_{t\geq 0} \stackrel{\text{law}}{=} (b^{H}(t))_{t\geq 0}$$
.

• H = 1/2 is 1-dimensional Bm (independent increments).

VI. One-dimensional fractional Brownian motion

A one-dimensional fractional Brownian motion $b^{H} = \{b^{H}(t)\}_{t \ge 0}$ is a zero-mean classical Gaussian process with covariance

$$\mathbb{E}b^{H}(t)b^{H}(s)) = rac{1}{2}\left(t^{2H} + s^{2H} - |t-s|^{2H}
ight).$$

• Stationary increments: For s, t > 0

$$\mathbb{E}\left|b^{H}(t)-b^{H}(s)\right|^{2}=|t-s|^{2H}.$$

• Self-similarity:
$$(a^{-H}b^{H}(at))_{t\geq 0} \stackrel{\text{law}}{=} (b^{H}(t))_{t\geq 0}.$$

• H = 1/2 is 1-dimensional Bm (independent increments).

• Itô stochastic calculus cannot be used for $H \neq 1/2$.

VI. One-dimensional fractional Brownian motion

A one-dimensional fractional Brownian motion $b^{H} = \{b^{H}(t)\}_{t \ge 0}$ is a zero-mean classical Gaussian process with covariance

$$\mathbb{E}b^{H}(t)b^{H}(s)) = rac{1}{2}\left(t^{2H} + s^{2H} - |t-s|^{2H}
ight).$$

• Stationary increments: For s, t > 0

$$\mathbb{E}\left|b^{H}(t)-b^{H}(s)\right|^{2}=|t-s|^{2H}.$$

► Self-similarity:
$$(a^{-H}b^{H}(at))_{t\geq 0} \stackrel{\text{law}}{=} (b^{H}(t))_{t\geq 0}.$$

- H = 1/2 is 1-dimensional Bm (independent increments).
- Itô stochastic calculus cannot be used for $H \neq 1/2$.
- Need *classical* fractional stochastic calculus: Skorohod, Young.

Let {X_k}_{k≥1} be a stationary sequence of semicircular random variables with (X_k) = 0, φ(X_k²) = 1.

- Let {X_k}_{k≥1} be a stationary sequence of semicircular random variables with (X_k) = 0, φ(X_k²) = 1.
- ▶ Suppose its correlation kernel $\rho(k l) = \phi(X_k X_l)$ verifies

$$\sum_{k,l}^n
ho(k-l) \sim K n^{2H} L(n)$$
 as $n o \infty$

with 0 < H < 1, K > 0 and $L : (0, \infty) \rightarrow (0, \infty)$ a slowly varying function at infinity $(\forall a > 0, \lim_{x \to \infty} L(ax)/L(x) = 1)$.

- Let {X_k}_{k≥1} be a stationary sequence of semicircular random variables with (X_k) = 0, φ(X_k²) = 1.
- ▶ Suppose its correlation kernel $\rho(k l) = \phi(X_k X_l)$ verifies

$$\sum_{k,l}^n
ho(k-l) \sim K n^{2H} L(n)$$
 as $n o \infty$

with 0 < H < 1, K > 0 and $L : (0, \infty) \rightarrow (0, \infty)$ a slowly varying function at infinity $(\forall a > 0, \lim_{x \to \infty} L(ax)/L(x) = 1)$.

Take the sequence of noncommutative stochastic processes

$$Z_n(t) = rac{1}{n^H \sqrt{L(n)}} \sum_{k=1}^{[nt]} X_k, \ t \ge 0, n \ge 1.$$

- Let {X_k}_{k≥1} be a stationary sequence of semicircular random variables with (X_k) = 0, φ(X_k²) = 1.
- Suppose its correlation kernel $ho(k-l) =
 ho(X_k X_l)$ verifies

$$\sum_{k,l}^n
ho(k-l) \sim K n^{2H} L(n)$$
 as $n o \infty$

with 0 < H < 1, K > 0 and $L : (0, \infty) \rightarrow (0, \infty)$ a slowly varying function at infinity $(\forall a > 0, \lim_{x\to\infty} L(ax)/L(x) = 1)$.

Take the sequence of noncommutative stochastic processes

$$Z_n(t) = rac{1}{n^H \sqrt{L(n)}} \sum_{k=1}^{[nt]} X_k, \ t \ge 0, n \ge 1.$$

► Then the finite dimensional distributions (f.d.d.) of Z_n converge in law to those of √KS^H where S^H is a noncommutative fractional Brownian motion.

VI. Matrix fractional Brownian motion

Consider n(n+1)/2 independent 1-dimensional fractional Brownian motions with $H \in (1/2, 1)$.

$$\{\{b_{i,j}^{H}(t), t \ge 0\}, 1 \le i, j \le n\}.$$

n × n symmetric matrix fractional Brownian motion:

$$\begin{split} \mathbf{B}_{n}^{H}(t) &= (B_{ij}^{H}(t))_{i,j=1}^{n} \\ B_{ij}^{H}(t) &= b_{i,j}^{H} \text{ if } i < j \\ B_{ii}^{H}(t) &= \sqrt{2} b_{i,i}^{H}(t). \end{split}$$

For 0 < t₁ < · · · < t_p, the increments (**B**^H_n(t_k − t_{k-1}))_{n≥1}, k = 1, ..., p are not independent nor asymptotically free.
 Let λ₁(t) ≥ λ₂(t) ≥ ... ≥ λ_n(t) be the eigenvalues of **B**^H_n(t).

1. If $\lambda_1(0) > \lambda_2(0) > ... > \lambda_n(0)$) the eigenvalues never collide:

$$\mathbb{P}\left(\lambda_1(t)>\lambda_2(t)>...>\lambda_n(t)\quad orall t>0
ight)=1.$$
 (*)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

1. If $\lambda_1(0) > \lambda_2(0) > ... > \lambda_n(0)$ the eigenvalues never collide: $\mathbb{P} \left(\lambda_1(t) > \lambda_2(t) > ... > \lambda_n(t) \quad \forall t > 0\right) = 1. \quad (*)$

2. For any t > 0 and i = 1, ..., n

$$egin{aligned} \lambda_i(t) &= \lambda_i(0) + Y_i(t) + 2H \sum_{j
eq i} \int_0^t rac{1}{\lambda_i(s) - \lambda_j(s)} \mathrm{d}s \ Y_i(t) &= \sum_{k \leq h} \int_0^t rac{\partial \lambda_i(s)}{\partial b^H_{kh}(s)} \delta b^H_{kh}(s). \end{aligned}$$

1. If $\lambda_1(0) > \lambda_2(0) > ... > \lambda_n(0)$ the eigenvalues never collide: $\mathbb{P} \left(\lambda_1(t) > \lambda_2(t) > ... > \lambda_n(t) \quad \forall t > 0\right) = 1. \quad (*)$

2. For any t > 0 and i = 1, ..., n

$$egin{aligned} \lambda_i(t) &= \lambda_i(0) + Y_i(t) + 2H \sum_{j
eq i} \int_0^t rac{1}{\lambda_i(s) - \lambda_j(s)} \mathrm{d}s \ Y_i(t) &= \sum_{k \leq h} \int_0^t rac{\partial \lambda_i(s)}{\partial b_{kh}^H(s)} \delta b_{kh}^H(s). \end{aligned}$$

1. If $\lambda_1(0) > \lambda_2(0) > ... > \lambda_n(0)$ the eigenvalues never collide: $\mathbb{P} \left(\lambda_1(t) > \lambda_2(t) > ... > \lambda_n(t) \quad \forall t > 0\right) = 1. \quad (*)$

2. For any t > 0 and i = 1, ..., n

$$\lambda_i(t) = \lambda_i(0) + Y_i(t) + 2H \sum_{j
eq i} \int_0^t rac{1}{\lambda_i(s) - \lambda_j(s)} \mathrm{d}s$$

$$Y_i(t) = \sum_{k \le h} \int_0^t \frac{\partial \lambda_i(s)}{\partial b_{kh}^H(s)} \delta b_{kh}^H(s). \tag{**}$$

- Stochastic integral in (**) is in the sense of Skorohod. Classical Itô stochastic calculus cannot be used for H ≠ 1/2.
- Proof of (*) uses the Young stochastic integral.

1. If $\lambda_1(0) > \lambda_2(0) > ... > \lambda_n(0)$ the eigenvalues never collide: $\mathbb{P} \left(\lambda_1(t) > \lambda_2(t) > ... > \lambda_n(t) \quad \forall t > 0\right) = 1. \quad (*)$

2. For any t > 0 and i = 1, ..., n

$$\lambda_i(t) = \lambda_i(0) + Y_i(t) + 2 H \sum_{j
eq i} \int_0^t rac{1}{\lambda_i(s) - \lambda_j(s)} \mathrm{d}s$$

$$Y_i(t) = \sum_{k \le h} \int_0^t \frac{\partial \lambda_i(s)}{\partial b_{kh}^H(s)} \delta b_{kh}^H(s). \tag{**}$$

- Stochastic integral in (**) is in the sense of Skorohod. Classical Itô stochastic calculus cannot be used for H ≠ 1/2.
- Proof of (*) uses the Young stochastic integral.
- Y_i(t) is not a fractional Brownian motion, but it is a self-similar process: ∀ a > 0, (a^{-H}Y_i(at))_{t≥0} ^{law} (Y_i(t))_{t≥0}.

VI. Time-varying Wigner theorem

Pardo, Pérez G, PA (2016)

Consider the empirical spectral measure-valued processes of the re-scaled matrix fractional Bm $\mathbf{B}_n^H(t)/\sqrt{n}$

$$\mu_t^{(n)} = rac{1}{n} \sum_{j=1}^n \mathbf{1}_{\{\lambda_j(t)/\sqrt{n}\}}, \ t \ge 0, n \ge 1.$$

1. Fix T > 0. For all continuous bounded function f and $\varepsilon > 0$

$$\lim_{n \to \infty} \mathbb{P}\left(\sup_{0 \le t \le T} \left| \int f(x) d\mu_t^{(n)}(x) - \int f(x) w_t^H(x) dx \right| > \varepsilon \right) = 0$$

where w_t^H is the semicircle distribution on $(-2t^H, 2t^H)$.

2. The family of measure-valued processes $\{(\mu_t^{(n)})_{t\geq 0}: n\geq 1\}$ converges to $(w_t^H)_{t\geq 0}$, the law of a noncommutative fractional Bm of Hurst parameter $H \in (1/2, 1)$.

VI. Precise statement

Pardo, Pérez G, PA (2016)

1. The family of measure-valued empirical spectral processes $\{(\mu_t^{(n)})_{t\geq 0}:n\geq 1\}$ converges weakly in $C(\mathbb{R}_+,\mathcal{P}(\mathbb{R}))$ to the unique continuous probability-measure valued function $(\mu_t)_{t\geq 0}$ satisfying, for each $t\geq 0$, $f\in C_b^2(\mathbb{R})$,

$$\langle \mu_t, f \rangle = \langle \mu_0, f \rangle + H \int_0^t ds \int_{\mathbb{R}^2} \frac{f'(x) - f'(y)}{x - y} s^{2H-1} \mu_s(dx) \mu_s(dy).$$

Moreover $\mu_t = \mathbf{w}_t^H$.

2. The Cauchy transform $G_t(z) = \int_{\mathbb{R}} \frac{\mu_t(dx)}{z-x}$ of μ_t is the unique solution to the initial value problem

$$\begin{cases} \frac{\partial}{\partial t}G_t(z) = Ht^{2H-1}G_t(z)\frac{\partial}{\partial z}G_t(z), & t > 0, \\ G_0(z) = \int_{\mathbb{R}}\frac{\mu_0(dx)}{z-x}, & z \in \mathbb{C}^+. \end{cases}$$