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Series representation of Lévy processes

Let (Xt)t∈[0,1] be a d-dim. Lévy process with series representation

Xt =
∞∑

k=1

(
H(Γk ,Vk)1{Uk≤t} − ckt

)
a.s. t ∈ [0, 1]

where
1 (Γk) arrival times in Poisson process
2 (Vk) i.i.d. in V
3 (Uk) i.i.d. U(0, 1)-sequence
4 H : [0, 1]× V → Rd and ck ∈ Rd .

Applications:
1 Read structural properties of the process.
2 Simulations.
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Robustness of the series representation
Let (Xt)t∈[0,1] be a d-dim. Lévy process with series representation

Xt =
∞∑

k=1

(
H(Γk ,Vk)1{Uk≤t} − ckt

)
a.s. t ∈ [0, 1]. (1)

1 Kallenberg [1] and Rosiński [2] show that the series (1)
converges uniformly a.s.

2 This implies

∆Xt =
∞∑

k=1
H(Γk ,Vk)1{Uk=t}

since x 7→ ∆x is continuous in ‖ · ‖∞.

—————————–
[1] Kallenberg, O. (1974). Series of random processes without discontinuities
of the second kind. Ann. Probab. 2.
[2] Rosiński, J. (2001). Series representations of Lévy processes from the
perspective of point processes. In Lévy Processes.
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Rosiński ’11: Is the series representation robust wrt. SDEs?

Xt =
∞∑

k=1

(
H(Γk ,Vk)1{Uk≤t} − ckt

)
,

Xn
t =

n∑
k=1

(
H(Γk ,Vk)1{Uk≤t} − ckt

)
.

1 F ∈ C2(Rd ;Rd )

2
dZt = F (Zt−) dXt and dZn

t = F (Zn
t−) dXn

t .

3 Question (?): Will Zn
t → Zt?

Question (?) does not follow from the above mentioned results,
since the Itô map (solution map) X 7→ Z is discontinuous in ‖ · ‖∞.

However, the Itô map is continuous in the p-variation norm for
p < 2!
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Itô–Nisio theorem −→
Functional convergence of random series

Definition (Itô–Nisio theorem)
1 For i ∈ N let Xi = {Xi (t) : t ∈ T} be independent and

symmetric stochastic processes with sample paths in a Banach
space (F , ‖ · ‖).

2 Suppose that there exists a stochastic process S with sample
paths in F such that

{ ∞∑
j=1

Xj(t)
}

t∈T
d= {S(t)}t∈T .

Then, the series
∞∑

j=1
Xj converge almost surely in (F , ‖ · ‖).
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Separable Banach spaces

1 For F separable, the Itô–Nisio theorem holds due to Itô and
Nisio ’68.

2 The original motivation for the Itô–Nisio theorem came
showing uniform convergence of the Karhunen-Loève
represention of the Brownian motion and other Gaussian
processes. Use F = C [0, 1].

3 The proof relies heavily on the fact that probability measure
on separable Banach spaces are convex tight.
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Non-separable Banach spaces

1 The case of non-separable Banach spaces are especially
important for stochastic processes with jumps.

2 If (Xt) is a Poisson process then the law of X is not
concentrated on a separable subset of D[0, 1] or BVp for all
p ≥ 1.

3 For F non-separable space the Itô–Nisio theorem holds
sometimes holds and sometimes not.

4 It does not hold for the

Hölder spaces C0,α, α ∈ (0, 1] or bounded sequences `∞.
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Theorem (B. and Rosiński [1])
The Itô–Nisio theorem holds for (D[0, 1], ‖ · ‖∞).

1 The theorem implies uniform converges of general càdlàg
infinitely divisible processes (beyond Lévy processes).

2 D[0, 1] is separable under the Skorohod topology, but it does
not help since probability measures on D[0, 1] are not convex
tight due discontinuity of addition.

—————————–
[1] Basse-O’Connor, A. and J. Rosiński (2013). On the uniform convergence of
random series in Skorohod space and representations of càdlàg infinitely
divisible processes. Ann. Probab. 41.
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Bounded p-variation
Let BVp be set of all càdlàg functions f of bounded p-variation

‖f ‖BVp := sup
n∑

i=1
|f (ti )− f (ti−1)|p <∞.

BVp is a non-separable Banach space.
1 The Itô–Nisio theorem holds for BV1, cf. [1].
2 For 1 < p <∞ the Itô–Nisio theorem does not hold for BVp,

cf. [2].

—————————–
[1] Jain, N, and D. Monrad (1982). Gaussian quasimartingales. Z. Wahrsch.
Verw. Gebiete 59.
[2] Jain, N, and D. Monrad (1983). Gaussian measures in Bp. Ann. Probab. 11.
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The Wiener class

Let BV ∗p be the set of f ∈ BVp where

lim
κ

n∑
i=1
|f (ti )− f (ti−1)|p exists

where κ = {0 = t0 < · · · < tn = 1} and the limit is in refinement
of partitions.

1 Rough paths theory: A geometric rough path of order p is an
element in the Wiener class BV ∗p ([0, 1];G).

2 (BV ∗p , ‖ · ‖BVp ) is a non-separable Banach space
3 BV1 = BV ∗1 and BV∞ = BV ∗∞
4 ⋃

ε>0
BVp−ε ( BV ∗p ( BVp, 1 < p <∞.
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Theorem
The Itô–Nisio theorem holds for the Wiener class BV ∗p .

An important ingredient in the proof is:

Lemma
The family of separable subsets of BV ∗p coincide for ‖ · ‖∞ and
‖ · ‖BVp .

1 The lemma is not true for BVp.
2 Since A‖·‖∞ is much larger than A‖·‖BVp

, the result is somehow
surprising.
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Theorem
Let X = (Xt) be an infinitely divisible process.
Let H be a representation of the Lévy measure of X, which has
series representation

Xt =
∞∑

k=1

(
H(t, Γk ,Vk)− ck(t)

)
. (2)

Suppose that X ∈ BV ∗p a.s. Then the series (2) converges in
p-variation norm a.s.

1 Note that the assumption X ∈ BV ∗p is always satisfied if
X ∈ BVq for some q < p.

2 Conditionally on (Γk), the summans are independent.
3 In view of the Itô–Nisio theorem on BV ∗p , the difficulty consist

in dealing with the non-symmetry of the summans.
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Proposition
Let (Xt) be a Lévy process and p < 2.
Then X ∈ BVp a.s. if and only if X ∈ BV ∗p .

Theorem
Let (Xt) be a d-dim. Lévy process of bounded p-variation for
p < 2. Let F ∈ C2(Rd ,Rd ),

dZt = F (Zt−) dXt and dZn = F (Zn
t−) dXn

t .

Then
Zn → Z in p-variation norm a.s.

Proof: Proposition ⇒ X ∈ BV ∗p a.s. ⇒ (Xn
t )→ (Xt) in

p-variation norm by the functional converges for series
representation of ID process in BV ∗p . The continuity of the Itô map
in ‖ · ‖p concludes the proof. 2
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General conditions of the Itô–Nisio theorem

Theorem
The Itô–Nisio theorem holds for F if at least one of the following
two conditions (i) or (ii) are satisfied:

(i) BF∗(0, 1) is sequentially weak∗ compact

(ii) No subspace of F is isomorphic to c0.

Conversely, if the Itô–Nisio theorem holds for every subspace of F ,
then no subspace of F is isomorphic to `∞.

1 (i) is satisfied for all separable Banach space due to the
Banach–Alaoglu theorem.

2 (ii) is satisfied for some separable and some non-separable
Banach space.
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More examples

Theorem
For every d ≥ 1 then Itô–Nisio theorem holds for D([0, 1]d ;R).

Theorem
Let U and V be separable Banach spaces.

Then Itô–Nisio theorem holds for L(U,V ) if and only if no
subspace of L(U,V ) are isomorphic to `∞.
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Itô–Nisio theorem and Lévy measures

Theorem
Let (Xt)t∈T be an infinitely divisible process with Lévy measure ν.
Moreover, let F be a Banach space such that X ∈ F a.s.

If the Itô–Nisio theorem holds for F then ν(BF (0, r)) <∞ for
every r > 0.

Hence, the unit ball can always be used when the Itô–Nisio
theorem holds.

1 Without the Itô–Nisio theorem we only have existence for a
r > 0 such that ν(BF (0, r)) <∞, cf. [1].

2 For F = `∞, the conclusion of the theorem does not hold.

—————————–
[1] Rosiński, J. and G. Samorodnitsky (1993). Distributions of subadditive
functionals of sample paths of infinitely divisible processes. Ann. Probab. 21.
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Thank you for your attention!
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