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Introduce the multivariate Ornstein-Uhlenbeck process
{Z(t)}t≥0 with values in Rp for p ∈ N by

dZ(t) = CpZ(t)dt + epdL(t), Z(0) = Z0 ∈ Rp.

L is real-valued, square integrable Lévy process with zero mean
{ei}pi=1 is the canonical basis in Rp, while the p × p matrix Cp
takes the particular form

Cp =



0 1 0 . . . 0
0 0 1 0 . . 0
. . . . . . .
. . . . . . .
0 . . . . . 1
−αp −αp−1 . . . . −α1

 ,

for constants αi >0, i = 1, . . . , p.
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Define a continuous-time autoregressive process of order p
(CAR(p)-process) by

X (t) = e>1 Z(t), t ≥ 0,

For q ∈ N with p >q, we define a CARMA(p,q)-process by

X (t) = b>Z(t), t ≥ 0,

Here, b = (b0,b1, ...,bq−1,1,0, ..,0)> ∈ Rp

Multivariate extensions of CARMA processes: Stelzer et al.
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Motivating example: the wave equation

∂2Y (t , x)

∂t2 =
∂2Y (t , x)

∂x2 +
∂L(t , x)

∂t
, t >0, x ∈ (0,1)

2nd order (in time) PDE: with ∆ = ∂2/∂x2

d

[
Y (t , x)
∂Y (t ,x)
∂t

]
=

[
0 Id
∆ 0

][
Y (t , x)
∂Y (t ,x)
∂t

]
dt +

[
0

dL(t , x)

]

OU-dynamics in Hilbert space: H := H1 × H2
H2 := L2(0,1), basis {en}n∈N with en(x) :=

√
2 sin(πnx)

L(t , ·) is an H2-valued Lévy process
H1 ⊂ L2(0,1), where |f |21 := π2∑∞

n=1 n2〈f ,en〉22 <∞
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General definition
H := H1 × H2 × . . .× Hp, p ∈ N

Hi ’s are separable Hilbert spaces
The projection operator Pi : H → Hi : Pix = xi for x ∈ H,
i = 1, . . . , p

Adjoint P∗i : Hi → H: P∗i x = (0, . . . , 0, x ,0, . . . , 0) for x ∈ Hi ,
where the x appears in the i th coordinate

L(t) Hp-valued Lévy process
Square integrable with zero mean
Covariance operator Q ∈ L(Hp)

H-valued OU process

dZ(t) = CpZ(t)dt + P∗pdL(t), Z(0) := Z0 ∈ H.
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Cp : H → H linear operator (unbounded), represented as a
p × p matrix of operators

Cp =



0 Ip 0 . . . 0
0 0 Ip−1 0 . . 0
. . . . . . .
. . . . . . .
0 . . . . . I2

Ap Ap−1 . . . . A1

 .

Ai : Hp+1−i → Hp, i = 1, . . . , p are p (unbounded) densely
defined linear operators, and Ii : Hp+2−i → Hp+1−i , i = 2, . . . , p
are another p − 1 (unbounded) densely defined linear
operators.
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Assume Cp is densely defined operator
If H1 = . . . = Hp and Ii = Id, Dom(Cp) is dense

Dom(Cp) = Dom(Ap)× Dom(Ap−1)× . . .× Dom(A1)

From theory of SPDEs (see Peszat and Zabczyk):

Proposition

Assume that Cp is the generator of a C0-semigroup {Sp(t)}t≥0 on H.
Then the H-valued stochastic process Z is given by

Z(t) = Sp(t)Z0 +

∫ t

0
Sp(t − s)P∗p dL(s)
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Definitions
General CARMA

Definition

Let U be a separable Hilbert space. For LU ∈ L(H ,U), define the
U-valued stochastic process X (t) by

X (t) := LUZ(t), t ≥ 0

We call X (t) a CARMA(p,U ,LU )-process.

A CARMA(p,H1,P1)-process X (t) is called an H1-valued
CAR(p)-process.

X (t) = P1Z(t) = Z1(t)
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CAR(p) as pth order differential equation
in H

By definition of the operator matrix Cp

Z ′1(t) = IpZ2(t),Z ′2(t) = Ip−1Z3(t), . . . ,Z ′p−1(t) = I2Zp(t)

and
Z ′p(t) = ApZ1(t) + · · ·A1Z1(t) + L′(t).

Assume there exist p − 1 linear (unbounded) operators
B1,B2, . . . ,Bp−1 : H1 → H1,

Ip · · · I2Aq = BqIpIp−1 · · · Iq+1, q = 1, . . . , p − 1 (1)

Additionally, define the operator Bp : H1 → H1 as

Bp := Ip · · · I2Ap. (2)
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By iteration,

Z (q)
1 (t) = IpIp−1 · · · Ip−(q−1)Zq+1(t), q = 1, . . . , p − 1

Thus,

Z (p)
1 (t) =

d
dt

Z (p−1)
1 (t) = Ip · · · I2Z ′p(t)

= Ip · · · I2ApZ1(t) + Ip · · · I2Ap−1Z2(t) + · · ·+ Ip · · · I2A1Zp(t)
+ Ip · · · I2L′(t)

= BpZ1(t) + Bp−1Z ′1(t) + Bp−2Z (2)
1 (t) + . . .+ B1Z (p−1)

1 (t)
+ Ip · · · I2L′(t).
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Introduce the operator-valued pth-order polynomial Qp(λ) for
λ ∈ C,

Qp(λ) = λp − B1λp−1 − B2λp−2 − · · · − Bp−1λ− Bp.

In conclusion, a CAR(p) process X (t) = Z1(t) can be viewed as
the solution of the pth-order differential equation,

Qp

(
d
dt

)
X (t) = Ip · · · I2L′(t).
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If H1 = ... = Hp, Cp is a bounded operator and Ii = Id for
i = 2, . . . , p, we have

Aq = Bq , q = 1, . . . , p

Further suppose X is a CARMA(p,H1,LH1)
I.e., H = H×p

1 and U = H1
LH1 is a vector-valued operator LH1 := (M1, . . . ,Mp), where
Mi ∈ L(H1), i = 1, ...,p.

Assume Mi commutes with Aj for all i , j

X (t) =

p∑
i=1

MiZi(t)

Using the relationships for Z1, ...,Zp and the commutation
assumptions.......
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Qp

(
d
dt

)
X (t) = Rp−1

(
d
dt

)
L′(t)

Operator-valued (p − 1)th-order polynomial Rp−1(λ), λ ∈ C,

Rp−1(λ) = Mpλp−1 + Mp−1λp−2 + · · ·+ M2λ+ M1.

Hence, informally, a CARMA(p,H1,LH1)-process {X (t)}t≥0 can
be represented by an autoregressive polynomial operator Qp
and a moving average polynomial operator Rp−1.

With rather strong conditions on commutativity on the A’s and
M ’s...
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Functional AR(p) process
Focus on X being CAR(p) process, i.e. LH1 = P1

For δ >0, ti = i · δ, i = 0,1,2......
Introduce nth-order forward differencing operator ∆n

δ

∆n
δf (t) =

n∑
k=0

(
n
k

)
(−1)k f (t + (n − k)δ)

for a function f and n ∈ N.
Define (formally) a time series {xi}∞i=0 in H1 by

Qp

(
∆δ
δ

)
xi = �i , �i :=

1
δ(L(ti+1)− L(ti)).

We use the notation xi = x(ti ) when applying ∆δ
Initial values x0, . . . , xp−1 ∈ H given
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Proposition

{xi}∞i=0 is an AR(p) process in H1 with dynamics

xi+p =

p∑
q=1

Ãqxi+(p−q) + δp
�i

where

Ãq = (−1)q+1
(

p
q

)
Id +

q∑
k=1

δkAk (−1)q−k
(

p − k
q − k

)
,q = 1, . . . , p

Result can be extenbded to unbounded case!
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Pathwise regularity
Proposition

For p ∈ N with p > 1, assume that Cp is the generator of a C0-
semigroup {Sp(t)}t≥0. Then the H1-valued CAR(p) process X has
the representation

X (t) = P1Sp(t)Z0 + P1Cp

∫ t

0

∫ u

0
Sp(u − s)P∗p dL(s) du,

for all t ≥ 0.
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Proof.

Representation of semigroup and generator:

Sp(t) = Id + Cp

∫ t

0
Sp(s)ds.

Thus,

X (t) = P1Sp(t)Z0 + P1

∫ t

0
Cp

∫ t

s
Sp(u − s)P∗p du dL(s).

Show that Cp can be pulled out of dL(s)-integral. Invoke stochastic
Fubini theorem. �
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Concluding remarks
When is Cp generating a C0-semigroup?

Special case: A1, . . . ,Ap, I2, . . . , Ip are bounded operators
Partial extension: A1 unbounded....recursive representation of
semigroup

Existence of limiting distribution for X?
Semigroup Sp must be exponentially stable
If Cp is bounded, Sp(t) exponentially stable iff Re(λ) <0 for all
λ ∈ σ(Cp), the spectrum of Cp

Characteristic functional (cumulant) of the limiting distribution is
available

Fred Espen Benth, CARMA processes in Hilbert space Aug 14-16, 2017 21 / 23



Thank you for your attention!
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