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Introduction

Ambit fields as introduced by Barndorff-Nielsen and Schmiegel (2007):
(0= [ 8(tsxOos(OLdsde) + [ altsx,€)an(e) ds e,

where g and g are deterministic functions, o and a are stochastic
processes modelling aspects of intermittency, and A:(x) and D;(x) are
ambit sets.
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Introduction

Ambit fields as introduced by Barndorff-Nielsen and Schmiegel (2007):
Xf(X) = ﬁ (X) g(tasax7§)as(§)L(d57d€) + L (X) q(t7s7X’§)aS(€) dS df?

where g and g are deterministic functions, o and a are stochastic
processes modelling aspects of intermittency, and A:(x) and D;(x) are
ambit sets.

In this talk we consider Lévy driven moving average (LDMA) processes
of the form

Xi= [ glt-)-go(-s)dL..

where g and gy are deterministic functions, and L is a Lévy process on
the real line.
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Introduction

Motivation beyond ambit fields: Linear fractional stable motion

X; = [;(t _5)% — (=s)%dLs,

where the driving Lévy process is symmetric 3-stable, and x; := x1,s0.

and a e (-1/8,1-1/8) ~ {0}.
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Motivation beyond ambit fields: Linear fractional stable motion

t

X; = f (t - )" - (-5)%dLs,
where the driving Lévy process is symmetric 8-stable, and x; := x1,50.
and a e (-1/8,1-1/8) ~ {0}.

@ Stationary, self-similar process of order H := a.+ 1/3 with [3-stable
marginal distribution.

@ For =2, X is fractional Brownian motion with Hurst parameter
H=a+1/2.

@ X is Lévy driven moving average process with g(x) = go(x) =: x2.
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Introduction

Motivation beyond ambit fields: Linear fractional stable motion

X; = [;(t _5)% — (=s)%dLs,

where the driving Lévy process is symmetric 3-stable, and x; := x1,s0.
and a e (-1/8,1-1/8) ~ {0}.
@ Stationary, self-similar process of order H := a.+ 1/3 with [3-stable
marginal distribution.
@ For =2, X is fractional Brownian motion with Hurst parameter
H=a+1/2.
@ X is Lévy driven moving average process with g(x) = go(x) =: x2.
@ Limit theory presented in this talk is applicable when 3> 1, and
ae(0,1-1/5).
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Introduction

We denote by A7, X the kth order increments of the process X over
time-lag 1/n:

A7 X = Xign = X(i-1)/n>
AﬁkX = Aﬂk_lx - A?_l,k_lx, for k Z 2
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We denote by A7, X the kth order increments of the process X over
time-lag 1/n:

A7 X = Xign = X(i-1)/n>
AﬁkX = Aﬂk_lx - A?_l,k_lx, for k Z 2

Based on these increments, we consider for a (continuous) function f the
variation functional

[nt]
V(F)] = 2 F(anlA] kX)),
i=k

where (a,)nen is a suitable deterministic normalising sequence, and [x]
denotes the integer part of x.
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We denote by A7, X the kth order increments of the process X over
time-lag 1/n:

A7 X = Xign = X(i-1)/n>

AﬁkX = Aﬂk_lx - A?_l,k_lx, for k Z 2

Based on these increments, we consider for a (continuous) function f the
variation functional

[nt]
V(F)] = 2 F(anlA] kX)),
i=k

where (a,)nen is a suitable deterministic normalising sequence, and [x]
denotes the integer part of x.

Example: For f(x) =|x|P, p> 0 the functional V(f){ is the realised
power variation of X.

We derive first order and second order limit theorems for V/(f);.
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Throughout this talk:

Xe= [ g(t-9)-go(s) dLs

where (L;)ter is a symmetric pure jump Lévy process with Lévy measure
V.
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Introduction

Throughout this talk:

Xe= [ g(t-9)-go(s) dLs

where (L;)ter is a symmetric pure jump Lévy process with Lévy measure
V.

@ $¢[0,2): Blumenthal-Getoor index of L, defined as

1
B:= inf{r >0: [1 |x|"v(dx) < oo}.

If L is stable Lévy process, 8 is the index of stability.
@ a>0: Behavior of g at 0:

lim g(£)|/2° = 1€ (0,0).

The limiting behavior of V(f)] depends on «a, 3 and f. We obtain three
different regimes with different limits and convergence rates.
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Introduction

Some previous and related work:

@ Basse-O'Connor, Lachiéze-Rey, and Podolskij (2016): First and
second order limit theory for power variation of LDMAs driven by a
pure jump Lévy process.

@ Basse-O'Connor, Heinrich, and Podolskij (2017): First order limit
theory for power variation of Lévy semi-stationary processes driven
by a pure jump Lévy process, that is for the model

Xe= [ {g(t-5) - go(-s)}sdl.

@ Barndorff-Nielsen, Corcuera, and Podolskij (2009, 2011): First and
second order limit theory for power variation of Brownian
semi-stationary processes (the model driven by Brownian motion).
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First order limit theorems

Theorem 1 (Basse-O’Connor, H., Podolskij)

(i) Let k> v and assume f(0) =0 and that f € C? for some
p> [V 2. We obtain the F-stable convergence

[tn] oo
S EALX) S Y F(ALr he(l+ Un)),
i=k m:Te[0,t] I=0

where (Upy,)ms1 is a sequence of independent and
U([0,1])-distributed random variables, defined on an extension of
the original probability space, independent of L. The function hy is
defined as

hk(x>=:§<—1>f(f)<x—j>f, x€R.

f eCP if f is [p]-times continuously differentiable and ([P is locally
Holder continuous of order p — [p].
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First order limit theorems

Theorem 1 (Basse-O'Connor, H., Podolskij)

(i) Suppose that (1v 8)(k—«) < 1. Let f be continuous and assume
that f(x) < C(1v |x]|?) for some g with g(k — «) < 1, and some
finite constant C. We have that

1 [nt
n

] t
> F(na1X) = [F(F)du,
i=k

)

where F, = [ g (u~-s)dL,.
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First order limit theorems

Theorem 1 (Basse-O'Connor, H., Podolskij)

(i) Suppose that (1v 8)(k—«) < 1. Let f be continuous and assume
that f(x) < C(1v |x]|?) for some g with g(k — «) < 1, and some
finite constant C. We have that

1 [nt
n

] t
> F(na1X) = [F(F)du,
i=k

)

where F, = [ g (u~-s)dL,.

Proof: For (1v 8)(k — ) < 1, the sample paths of X are almost surely
k times absolutely continuous with k-th derivative F, see Braverman and
Samorodnitsky (1998). It follows by the mean value theorem that

[nt] [nt]
nt > f(nkAﬂkX) ~nt > f(Fi1), for large n.
i-1 =1
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First order limit theorems

Theorem 1 (Basse-O'Connor, H., Podolskij)

(iii) Suppose that L is a symmetric S-stable Lévy process. Assume that
H:=a+1/8 < k and let f be continuous with E[|f(L;)|] < co. Then
we obtain

1 [nt] , P
LS fntagx) L ELA(S)]
i=k

where S is a symmetric §-stable random variable.
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First order limit theorems

Theorem 1 (Basse-O'Connor, H., Podolskij)

(iii) Suppose that L is a symmetric S-stable Lévy process. Assume that
H:=a+1/8 < k and let f be continuous with E[|f(L;)|] < co. Then
we obtain

[nt]
E 3 2 F(0"A7,X) > BIA(S)),

where S is a symmetric §-stable random variable.

Proof: Let Y; := ]foo(t -5)% = (-s)¢ dLs denote the linear fractional
stable motion driven by L, which is stationary and mixing. It holds that

1 [nt]

1 [nt]
- Z f( oc+1/ﬁAn X) ~ Z f(noﬁl/ﬁAﬁky)
i=1 i=1

Ll P
S X F(B]Y) — E[f()].
i=1
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First order limit theorems

Functional convergence

Does (V(f)])t=0 converge as a sequence of cadlag processes?
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Does (V(f)])t=0 converge as a sequence of cadlag processes?

@ Theorem 1 (ii) & (iii): Yes! The convergence holds uniformly on
compacts in probability.
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First order limit theorems

Functional convergence

Does (V(f)])t=0 converge as a sequence of cadlag processes?

@ Theorem 1 (ii) & (iii): Yes! The convergence holds uniformly on
compacts in probability.

@ Theorem 1 (i): Not in general! Consider the space of cadlag
functions D equipped with either of the 4 Skorokhod-topologies
J1,J2, Ml or M2 :

o (V(f)7)t=0 converges never stably w.r.t. J; or Jp.

o (V(f)])ts0 converges stably w.r.t. My and M, under certain
additional assumptions on f, e.g. if f is nonnegative.

o For many functions, such as for example f(x) = sin(x),
(V(f)7)ts0 does not converge stably with respect to either of
the 4 Skorokhod-topologies.
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Second order limit theorems

When L is symmetric 3-stable, we derive second order asymptotic results
of the form

(i S a0 - Bl s 0N £ s
i=k

where H = a +1/8. Here, S is a stable random variable and + > 0.
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When L is symmetric 3-stable, we derive second order asymptotic results
of the form

(i S a0 - Bl s 0N £ s
i=k

where H = a +1/8. Here, S is a stable random variable and + > 0.

d L . .
) nHAka ~ A}kY where Y is linear fractional stable motion.

@ Close connection to second order limit theorems of discrete time
moving averages driven by stable noise, e.g. Ho and Hsing (1997);
Pipiras and Taqqu (2003); Surgailis (2004).
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Second order limit theorems

When L is symmetric 3-stable, we derive second order asymptotic results
of the form

(i S a0 - Bl s 0N £ s
i=k

where H = a +1/8. Here, S is a stable random variable and + > 0.

d L . .
) nHAka ~ A}kY where Y is linear fractional stable motion.

@ Close connection to second order limit theorems of discrete time
moving averages driven by stable noise, e.g. Ho and Hsing (1997);
Pipiras and Taqqu (2003); Surgailis (2004).

@ Two cases may occur: If (k—-«)f > 2, a central limit theorem
applies, if (k—«)f <2 the limiting variable S has stability index
(k — o)) and the convergence rate is 7y = 1 — m

16/23 Limit theory for LDMAs



Second order limit theorems

Conditions on f

We assume that E[f(L;)?] < oo, which is for example satisfied if
[f(x)] < C(1 v |x|P) for some p < 3/2.
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Conditions on f

We assume that E[f(L;)?] < oo, which is for example satisfied if
[f(x)] < C(1 v |x|P) for some p < 3/2.
For p >0 and a symmetric 3-stable random variable S with scale

parameter 1 let
®,(x) = E[f(x + pS) - F(pS)].
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We assume that E[f(L;)?] < oo, which is for example satisfied if
[f(x)] < C(1 v |x|P) for some p < 3/2.

For p >0 and a symmetric 3-stable random variable S with scale
parameter 1 let

®,(x) = E[f (x + pS) - £(pS)].

Conditions on ¢,

For all p in a compact subset K c R, there is a constant C = Ck such
that

Q [0,(x) -, (y)l
< C{A A+ LA TYDIX = YL geoyicay + X = Py oy |

@ &, is twice differentiable and both derivatives are bounded.
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Second order limit theorems

Conditions on f

We assume that E[f(L;)?] < oo, which is for example satisfied if
[f(x)] < C(1 v |x|P) for some p < 3/2.
For p >0 and a symmetric 3-stable random variable S with scale
parameter 1 let

®,(x) =E[f(x+pS)-f(pS)].

Conditions on ¢,

For all p in a compact subset K c R, there is a constant C = Ck such
that

Q [®,(x) - ®,(y)l

< C{A A+ LA TYDIX = YL geoyicay + X = Py oy |

@ &, is twice differentiable and both derivatives are bounded.

The two conditions imply in particular that /,(0) =0 for all p > 0.
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Second order limit theorems

Conditions on ¢,

For all p in a compact subset K c R, there is a constant C = Ck such
that

Q [®,(x) - ®,(y)

< C{ A X+ LA lyDIx = YL peyicy + X = YIPL{xmypo1y }

@ o, is twice differentiable and both derivatives are bounded.

Intuitively speaking, this is satisfied whenever f is even around 0 (or
f'(0) = 0), and grows slower than |x|P for some p € (0,3/2), as |x| > oo.

18/23 Limit theory for LDMAs



Second order limit theorems

Conditions on ¢,

For all p in a compact subset K c R, there is a constant C = Ck such
that

Q [®,(x) - ®,(y)

< C{ A X+ LA lyDIx = YL peyicy + X = YIPL{xmypo1y }

@ o, is twice differentiable and both derivatives are bounded.

Intuitively speaking, this is satisfied whenever f is even around 0 (or
f'(0) = 0), and grows slower than |x|P for some p € (0,3/2), as |x| > oo.
Examples:

@ power functions f(x) = |x|P with p € (0, 3/2),

18/23 Limit theory for LDMAs



Second order limit theorems

Conditions on ¢,

For all p in a compact subset K c R, there is a constant C = Ck such
that

Q [®,(x) - ®,(y)

< C{ A X+ LA lyDIx = YL peyicy + X = YIPL{xmypo1y }

@ o, is twice differentiable and both derivatives are bounded.

Intuitively speaking, this is satisfied whenever f is even around 0 (or
f'(0) = 0), and grows slower than |x|P for some p € (0,3/2), as |x| > oo.
Examples:

@ power functions f(x) = |x|P with p € (0, 3/2),
@ negative power functions f(x) = |x|9 with g € (-1/2,0),

18/23 Limit theory for LDMAs



Second order limit theorems

Conditions on ¢,
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that
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Intuitively speaking, this is satisfied whenever f is even around 0 (or
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Examples:

@ power functions f(x) = |x|P with p € (0, 3/2),
@ negative power functions f(x) = |x|9 with g € (-1/2,0),

@ bounded functions that are continuously differentiable at 0 with
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Second order limit theorems

Second order Asymptotics

Theorem 5, (Basse-O’Connor, H., Podolskij)

Let L be a symmetric S-stable Lévy process and previously discussed
conditions on f be satisfied. Set H = a + %

(i) Suppose that a € (0, k —2/3), then it holds that

ﬁ(nl Z {f(n" ], X) - E[f(n”A”kX)]}) iw\/(o,nz).
i=k
(ii) Suppose that a € (k—2/5,k-1/3). It holds that
R (n lz (F(n"27,X) ~E[f(n HA”kX)]}) £,

where S is a (k — ) B-stable random variable with location
parameter 0.
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@ Apply central limit theorem for m-dependent sequences.
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Proof of CLT:

@ Approximate n"'A; »X ~ A}, Y where Y is linear fractional stable
motion. '

® For m>0 large, replace A}, Y by A}, Y™, where

t
Vo= [ (t-9)7 - (-s)dL
t—-m

@ Apply central limit theorem for m-dependent sequences.

@ Let m— oo.
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@ Assume E[f(A}’kY)] =0. It holds that

5 (f(A}m CSE[F(ALY) |f3j]) L,
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Second order limit theorems

Proof of the SLT:

@ Approximate nHA?kX ~ A}kY where Y is linear fractional stable
motion.

@ Assume E[f(A}’kY)] =0. It holds that
n oo 2
> (raho - SErral 1)) o
r=k Jj=1
where Fli=0(L, - L, : u,ve[t t+1)).
® The random variables (E[f (A}, Y)|F{])tez are independent.

@ Reordering the summands on the right hand side we obtain an
expression of the form Y7, Z,, where (Z,) e«
i.i.d. random variables.
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@ Approximate nHA?kX ~ A}kY where Y is linear fractional stable
motion.

@ Assume E[f(A}’kY)] =0. It holds that
n oo 2
> (raho - SErral 1)) o
r=k j=1
where Fli=0(L, - L, : u,ve[t t+1)).
® The random variables (E[f (A}, Y)|F{])tez are independent.
@ Reordering the summands on the right hand side we obtain an

expression of the form Y7_, Z,, where (Z:)reg,...,ny are
i.i.d. random variables.
@ The proof is completed by deriving
¢, = lim xX*PP[Z > x], and c:= lim |x|*PP[Z < x].

X—> 00 X—>—00
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@ The central limit theorem applies for « € (0, k —2//3). In particular,
since a >0 and (3 < 2, it never applies for first order increments.
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Additional remarks:

@ The central limit theorem applies for « € (0, k —2//3). In particular,
since a >0 and (3 < 2, it never applies for first order increments.

@ Main difference to limit theory of discrete time moving averages is
that the increments nHA}’,kX are symmetric [3-stable distributed
with scale parameter p, depending on n. The sequence p,
converges to the scale parameter of the associated linear fractional
stable motion.

@ Koul and Surgailis (2001): When ®’(0) # 0, the discrete time
statistic 3.7, f(A,{kX) is asymptotically a-stable.
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Second order limit theorems

Application:

Estimation of H = a+ 1/8 by taking quotients of power variations based
on different frequencies. When L is S-stable the power variation
functional V(p){ satisfies by Theorem 1 (iii)

Tita|Xs = Xz P ooH
Yity [Xi = Xz P ’
n n

for all p < 8, and similarly for higher order increments.
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Second order limit theorems

Application:

Estimation of H = a+ 1/8 by taking quotients of power variations based
on different frequencies. When L is S-stable the power variation
functional V(p){ satisfies by Theorem 1 (iii)

Tita|Xs = Xz P

b S - oPH
S X~ Xalp

)

for all p < 8, and similarly for higher order increments.
@ For p >0 this was shown in Basse-O'Connor et al. (2016).
@ Theorem 1 (iii) allows us to use negative powers, which ensures
p<p.
@ Theorem 2 implies the asymptotic normality of the estimator for
sufficiently high order of increments k.
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