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o Data matrix X = X ,;: p X n matrix of iid entries.

X = (Xit)iZI,...7]);15:1.4..,72

e Sample covariance matrix S = X X’

@ Ordered eigenvalues of S

A1) ZA2) 2 2 Aw)

o Applications:

e Principal Component Analysis
o Linear Regression, ...
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Classical Situation

Assumptions:

.. . d
@ iid, centered entries X;; = X

@ Moment condition:[ E[X4] < 00 ]

© Growth regime: p/n — v € (0,00)
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Known Results

Assumptions:
@ iid, centered entries X, 4 X
@ Moment condition: E[X*] < oo
© Growth regime: p/n — v € (0, 00)

Behavior of A1) under finite fourth moment

Then Bai, Yin, Krishnaiah (1988)

1 f
Ay = 1+v7)?E[X?] as.

n

If X ~ N(0,1), Johnstone (2001) showed that

13 )
i (01 ) Tt
Y
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Our Problem

New assumptions:

@ X, iid, centered if the mean exists

© Moment condition: E[X4] — 59 ]

© General growth regime: p = n’{(n) — oo for 3 € [0,00).

Goal: Understand precise asymptotic behavior of ).
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Infinite Fourth Moment

e Regular variation with index o € (0,4):
P(|X| > z) =2 “L(z),

where L is a slowly varying function.
This implies E[X%] = cc.
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Infinite Fourth Moment

e Regular variation with index o € (0,4):
P(|X| > z) =2 “L(z),

where L is a slowly varying function.
This implies E[X?4] = oo
o Normalizing sequence (a;,,) such that
npP(X? > a2 pT) = a” @2 asn — oo for & > 0.

Then a,,;, = (np)"*¢(np) for a slowly varying function ¢,
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More Notation

e Diagonal entries of S

D; =8 = ZX,%
=1

and their order statistics
Dy 2 D) 2 -+ =2 Dy
@ Order statistics ofot,z' =1,....;;t=1,...,n

2 2 2
Xy = X(g)y 2 -+ = Xy
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Main Result

Theorem (Heiny and Mikosch, 2016)
X with iid regularly varying entries a € (0,4) and p,, = n”¢(n)
with 3 € [0, 1].

Q If 5 €[0,1], then

_ P
anp max |Aq) = Dgy| = 0.

Q If 5 e ((«/2—1)4,1], then

—2 ‘max |/\(z) —X(ZZ)} E) 0.

a
np i=1,...,p
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Comparison

S -2
= - ang(x(“) - D2(1))
""" anp(x(“) _x(1))
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Figure: Smoothed histogram based on 20000 simulations of the
approximation error for the normalized eigenvalue a;ﬁ)\(l) for entries X;;
with a = 1.6, 8 =1, n = 1000 and p = 200.
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Reduction to Diagonal

X with iid regularly varying entries o € (0,4) and p,, = n¢(n)
with 3 € [0, 1]. We have

[ an2||S — diag(S)l2 = 0, ]

where || - ||2 denotes the spectral norm.

n
Sij = XuXjr.
t=1
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Idea of the Proof

o Weyl’s inequality
max [\ (A+B) = Xo(A)] < Bl
@ Choose A +B =S and A = diag(S) to obtain
a,’ 'maxp ‘)\(i) = 0) (diag(S))| 5 0, n—o0.

np i=1,..

e Note: Limit theory for ()(;)) reduced to (D).
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Point Process of Normalized Eigenvalues

Point process convergence

p [e']
R d R
Ny = Z ‘)a;;fAm — Z OITQ/“ =N
=1 =1

The limit is a PRM on (0, c0) with mean measure
p(z,00) = 272 2 > 0, and

I'y=FE +---+ F;, (E;) iid standard exponential.
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Point Process of Normalized Eigenvalues

o Limiting distribution: For £ > 1,

lim P(a, A < @) = lim P(Ny(z,00) < k) = P(N(z,00) < k)

n—oo n—oo

k—1 —a/2\8
= Z ueﬂ”—a/z, z>0.

s!
s=0
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Point Process of Normalized Eigenvalues

o Limiting distribution: For £ > 1,

lim P(a, A < @) = lim P(Ny(z,00) < k) = P(N(z,00) < k)

n—oo P n—oo

k—1 —a/2\8
= Z (xs')em_ap, z>0.

s=0

o Largest eigenvalue

where the limit has a Fréchet distribution with parameter a/2.
Soshnikov (2006), Auffinger et al. (2009), Auffinger and Tang (2016),
Davis et al. (2014,2016%), JH and Mikosch (2016)
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Point Process of Normalized Eigenvalues

@ Mapping theorem: For fixed £,

< d -2/« -2/«
a 2()\<1>,...,)\(k))—>(1‘1 / Fk / )

lnp

@ We also have

A A a —1\ e
G S () G )
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@ vy unit eigenvector of S associated to A

@ Unit eigenvectors of diag(S) are canonical basisvectors e;.

Eigenvectors

X with iid regularly varying entries with index o € (0,4) and
pn = nl(n) with 3 € [0,1]. Then for any fixed k > 1,

P
le, 0, n—o0.
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Localization vs. Delocalization

Pareto data Normal Data
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Indices of components Indices of Components

Figure: X ~ Pareto(0.8) Figure: X ~ N(0,1)

Components of eigenvector vi. p = 200, n = 1000.
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High-dimensional sample correlation matrices
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Sample Correlation Matrix

Assumptions:

@ iid, centered entries X, 4 X
@ Growth regime: lim 2 =~ € (0,1]
n—oo v
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Sample Correlation Matrix

Assumptions:

@ iid, centered entries X, 4 X
@ Growth regime: lim 2 =~ € (0,1]

o T
@ Sample correlation matrix R with entries
N XX
NE ¢ Ly

e R=YY’ where

i,7=1,...,p

X
Y - (Y;j)T)XTL — (W)
- /) pxXn
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e Eigenvalues of R

By 20 2 )

e Problem: Asymptotic behavior of (1) and 1)
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With F = (diag(S))~!, we have

R =FY2SF!/2,

e Weyl’s inequality:

 max \,u(l —n- )\(Z | <|ISF —n718|;

77777

<n 1IISII [nF — 1|2
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With F = (diag(S))~!, we have

R =FY2SF!/2,

e Weyl’s inequality:
 max \,u(l —n- )\(Z | <|ISF —n718|;

-----

<n 1IISII [nF — I||2

e Conclusion: If E[X*] < oo,

pay — (1+ V)7 and ppy — (1 — V)2 as.
Jiang (2004), Xiao and Zhou (2010)
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A Way To Study Eigenvalues

e Empirical spectral distribution of p x p matrix A with real
eigenvalues A\ (A),..., A\,(A):

1 p
Fa@@)=> > lpvasay, @ €R.
=1

o Limiting spectral distribution:
Weak convergence of (Fla, ) to distribution function F' a.s.
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Maréenko—Pastur Law

Mar€enko—Pastur law I, has density

! —z)(x—a if x € |a,
o) - { g O i )

0, otherwise,

where a = (1 — /7)* and b = (1 + /7).
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Limiting Spectral Distribution

Mar&enko—Pastur Theorem

If E[X?] =1, then (F,,-1g) converges weakly to F,.
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Limiting Spectral Distribution

Mar&enko—Pastur Theorem

If E[X?] =1, then (F,,-1g) converges weakly to F,.

Heiny and Mikosch (2017)

Under the domain of attraction type-condition for the Gaussian
law,

E[Y11Y12] = o(n™?) and E[Ylﬂ =o(n71),

the sequence (FRr) converges weakly to F,.

Here V;, = ——~L—.
VL X2
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Simulation Study

e Regular variation with index o > 0
e This implies E[|X|*"¢] = oo for any £ > 0.
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Simulation Study

e Regular variation with index o > 0
e This implies E[|X|*"¢] = oo for any £ > 0.
@ Procedure:

@ Simulate X
@ Plot histograms of (11(;)) and (A\(;)/n)
© Compare with Mar¢enko—Pastur density
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Normalized histogram of eigenvalues and MP density Normalized histogram of eigenvalues and MP density
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(a) Sample correlation (b) Sample covariance

a = 6,n = 2000, p = 1000
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Normalized histogram of eigenvalues and MP density

[ Histogram of eigenvalues
)

(a) Sample correlation

Normalized histogram of eigenvalues and MP density

[ Histogram of eigenvalues
\ -

(b) Sample covariance

a = 3.99,n = 2000, p = 1000
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Normalized histogram of eigenvalues and MP density Normalized histogram of eigenvalues and MP density
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(a) Sample correlation (b) Sample covariance

a = 2.1,n = 10000, p = 1000
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Limits of Extreme Eigenvalues, Heiny and Mikosch (2017)

Assume X is symmetric.

Limiting spectral distribution

Under the domain of attraction type-condition for the Gaussian
law,
lim nE[Y}}] =0,

n—o0

the sequence (FRr) converges weakly to F,.
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Limits of Extreme Eigenvalues, Heiny and Mikosch (2017)

Assume X is symmetric.

Limiting spectral distribution

Under the domain of attraction type-condition for the Gaussian
law,
lim nE[Y}}] =0,

n—o0

the sequence (FRr) converges weakly to F,.

Limits of extreme eigenvalues

|
N

lim (logn)® nE[Yf—J =0,

n— o0

we have
(1) — (1 + W)Q and H(p) — (1 — ﬁ)z a.s.
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Sample covariance matrix Sample correlation matrix
Normalization Self-normalization
E[X] E[X?]

e Same results if E[X*] < oo.

@ Non-iid case and application to financial time series on
demand.
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Thank you!
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(a) Sample correlation: o = 1.5
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Normalized histogram of eigenvalues and MP density

[ Histogram of eigenvalues
)

n = 10000, p = 1000
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Heavy Tails and Dependence

(Zit): iid field of regularly varying random variables.

@ Stochastic volatility model:

X = (Zit Uvgv‘Tz’))pxn

o("_field: distribution changes with n, possible long range
dependence
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Heavy Tails and Dependence

(Zit): iid field of regularly varying random variables.

@ Stochastic volatility model:

X = (Zioy"

)pxn

o("_field: distribution changes with n, possible long range
dependence

@ Generate deterministic covariance structure A:

X =A'?zZ
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Heavy Tails and Dependence

(Zyt): iid field of regularly varying random variables.

o Dependence among rows and columns:

0o 0o
Xit = Z Z " Zi k1

=0 k=0

with some constants /. Davis et al. (2016)
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Known Results

Sample Density function and Tracy-Widom

/ N\
— sample A
— Tracy-Widom //r\
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Figure: P(X = /3) =P(X = —/3) = 1/6, P(X = 0) = 2/3.
Note: The first 4 moments of X match those of the standard normal
distribution. p = 200, n = 1000, 2000 simulations. Tao and Vu (2010)
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Application: S&P 500 Index

4.5

Upper tail index
3.0 35
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I
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Figure: Estimated tail indices of log-returns of 478 time series in
the S&P 500 index.
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Application: S&P 500 Index

log(A 1)/ A)

Figure: Logarithms of the ratios A(;1)/A(;) for the S&P 500 series after
rank transform. Quantiles at level 1, 50 and 99% of log((I';/T+1)?).
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Application: S&P 500 Index

€l et e etLteeattecenatoie e

g
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log(AGa)/Agy)
0

Figure: Logarithms of the ratios A\(;1)/A(;) for the S&P 500 log-return
data.
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Condition (C,)

o There exists a sequence q = q,, — oo such that for some
integer sequence k = ky, with k/logn — oo we have
(k3q)/n — 0, and the moment inequality

E[Y12m1 o sz’} quLI E[YZNL] o }/;‘21711'71}/;2777,,‘—2} (Cq)

holds for 1 < r < k — 1 and any positive integers mq, ..., m,
satisfying my + - -+ + m, = k.
@ Giné et al. (1997):

E[Y12m1 L )/;,2'"1/"} _

<k—11>! /x N B T ELX™ e 2] da
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