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Setup

Data matrix X = Xn: p× n matrix of iid entries.

X = (Xit)i=1,...,p;t=1,...,n

Sample covariance matrix S = XX ′

Ordered eigenvalues of S

λ(1) ≥ λ(2) ≥ · · · ≥ λ(p)

Applications:
Principal Component Analysis
Linear Regression, . . .
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Classical Situation

Assumptions:

1 iid, centered entries Xit
d
= X

2 Moment condition: E[X4] <∞

3 Growth regime: p/n→ γ ∈ (0,∞)
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Known Results

Assumptions:

1 iid, centered entries Xit
d
= X

2 Moment condition: E[X4] <∞
3 Growth regime: p/n→ γ ∈ (0,∞)

Behavior of λ(1) under finite fourth moment

Then Bai, Yin, Krishnaiah (1988)

1

n
λ(1) → (1 +

√
γ)2 E[X2] a.s.

If X ∼ N(0, 1), Johnstone (2001) showed that

n2/3 (
√
γ)1/3(

1 +
√
γ
)4/3(λ(1)

n
−
(
1 +

√
p
n

)2) d→ Tracy–Widom.
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Our Problem

New assumptions:

1 Xit iid, centered if the mean exists

2 Moment condition: E[X4] =∞

3 General growth regime: p = nβ`(n)→∞ for β ∈ [0,∞).

Goal: Understand precise asymptotic behavior of λ(1).
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Infinite Fourth Moment

Regular variation with index α ∈ (0, 4):

P(|X| > x) = x−αL(x),

where L is a slowly varying function.
This implies E[X4] =∞.

Normalizing sequence (a2
np) such that

npP(X2 > a2
npx)→ x−α/2, as n→∞ for x > 0.

Then anp = (np)1/α`(np) for a slowly varying function `.
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More Notation

Diagonal entries of S

Di = Sii =

n∑
t=1

X2
it

and their order statistics

D(1) ≥ D(2) ≥ · · · ≥ D(p)

Order statistics of X2
it, i = 1, . . . , p; t = 1, . . . , n

X2
(1) ≥ X

2
(2) ≥ . . . ≥ X

2
(np)
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Main Result

Theorem (Heiny and Mikosch, 2016)

X with iid regularly varying entries α ∈ (0, 4) and pn = nβ`(n)
with β ∈ [0, 1].

1 If β ∈ [0, 1], then

a−2
np max

i=1,...,p

∣∣λ(i) −D(i)

∣∣ P→ 0 .

2 If β ∈ ((α/2− 1)+, 1], then

a−2
np max

i=1,...,p

∣∣λ(i) −X2
(i)

∣∣ P→ 0 .
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Comparison

Figure: Smoothed histogram based on 20000 simulations of the
approximation error for the normalized eigenvalue a−2

npλ(1) for entries Xit

with α = 1.6, β = 1, n = 1000 and p = 200.
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Reduction to Diagonal

Diagonal

X with iid regularly varying entries α ∈ (0, 4) and pn = nβ`(n)
with β ∈ [0, 1]. We have

a−2
np ‖S− diag(S)‖2

P→ 0 ,

where ‖ · ‖2 denotes the spectral norm.

Sij =
n∑
t=1

XitXjt.
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Idea of the Proof

Weyl’s inequality

max
i=1,...,p

∣∣λ(i)(A + B)− λ(i)(A)
∣∣ ≤ ‖B‖2 .

Choose A + B = S and A = diag(S) to obtain

a−2
np max

i=1,...,p

∣∣λ(i) − λ(i)(diag(S))
∣∣ P→ 0 , n→∞ .

Note: Limit theory for (λ(i)) reduced to (D(i)).
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Point Process of Normalized Eigenvalues

Point process convergence

Nn =

p∑
i=1

δa−2
npλ(i)

d→
∞∑
i=1

δ
Γ
−2/α
i

= N

The limit is a PRM on (0,∞) with mean measure
µ(x,∞) = x−α/2, x > 0, and

Γi = E1 + · · ·+ Ei , (Ei) iid standard exponential.

J. Heiny Sample covariance and correlation matrices 12 / 30



Point Process of Normalized Eigenvalues

Limiting distribution: For k ≥ 1,

lim
n→∞

P(a−2
np λ(k) ≤ x) = lim

n→∞
P(Nn(x,∞) < k) = P(N(x,∞) < k)

=

k−1∑
s=0

(
x−α/2

)s
s!

e−x
−α/2

, x > 0 .

Largest eigenvalue
λ(1)

a2
np

d→ Γ
−α/2
1 ,

where the limit has a Fréchet distribution with parameter α/2.
Soshnikov (2006), Auffinger et al. (2009), Auffinger and Tang (2016),

Davis et al. (2014, 20162), JH and Mikosch (2016)
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Point Process of Normalized Eigenvalues

Mapping theorem: For fixed k,

a−2
np (λ(1), . . . , λ(k))

d→ (Γ
−2/α
1 , . . . ,Γ

−2/α
k ) .

We also have(λ(2)

λ(1)
, . . . ,

λ(k)

λ(k−1)

)
d→
((Γ1

Γ2

)2/α
, . . . ,

(Γk−1

Γk

)2/α)
.
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Eigenvectors

vk unit eigenvector of S associated to λ(k)

Unit eigenvectors of diag(S) are canonical basisvectors ej .

Eigenvectors

X with iid regularly varying entries with index α ∈ (0, 4) and
pn = nβ`(n) with β ∈ [0, 1]. Then for any fixed k ≥ 1,

‖vk − eLk‖`2
P→ 0 , n→∞ .

J. Heiny Sample covariance and correlation matrices 15 / 30



Localization vs. Delocalization
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Figure: X ∼ Pareto(0.8)
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Components of eigenvector v1. p = 200, n = 1000.
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High-dimensional sample correlation matrices
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Sample Correlation Matrix

Assumptions:

1 iid, centered entries Xit
d
= X

2 Growth regime: lim
n→∞

p
n = γ ∈ (0, 1]

Sample correlation matrix R with entries

Rij =
1
n

∑n
t=1XitXjt√

1
n

∑n
t=1X

2
it

√
1
n

∑n
t=1X

2
jt

, i, j = 1, . . . , p

R = Y Y ′, where

Y = (Yij)p×n =

(
Xij√∑n
t=1X

2
it

)
p×n
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Objective

Eigenvalues of R

µ(1) ≥ · · · ≥ µ(p)

Problem: Asymptotic behavior of µ(1) and µ(p)
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A Comparison

With F = (diag(S))−1, we have

R = F1/2 SF1/2 .

Weyl’s inequality:

max
i=1,...,p

|µ(i) − n−1λ(i)| ≤ ‖SF− n−1S‖2

≤ n−1‖S‖2‖nF− I‖2

= n−1λ(1) max
i=1,...,p

∣∣∣ n
Di
− 1
∣∣∣ .

Conclusion: If E[X4] <∞,

µ(1) → (1 +
√
γ)2 and µ(p) → (1−√γ)2 a.s.

Jiang (2004), Xiao and Zhou (2010)
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A Way To Study Eigenvalues

Empirical spectral distribution of p× p matrix A with real
eigenvalues λ1(A), . . . , λp(A):

FA(x) =
1

p

p∑
i=1

1{λi(A)≤x}, x ∈ R .

Limiting spectral distribution:
Weak convergence of (FAn) to distribution function F a.s.
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Marčenko–Pastur Law

Marčenko–Pastur law Fγ has density

fγ(x) =

{
1

2πxγ

√
(b− x)(x− a) , if x ∈ [a, b],

0 , otherwise,

where a = (1−√γ)2 and b = (1 +
√
γ)2.
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Limiting Spectral Distribution

Marčenko–Pastur Theorem

If E[X2] = 1, then (Fn−1S) converges weakly to Fγ .

Heiny and Mikosch (2017)

Under the domain of attraction type-condition for the Gaussian
law,

E
[
Y11Y12

]
= o(n−2) and E

[
Y 4

11

]
= o(n−1) ,

the sequence (FR) converges weakly to Fγ .

Here Yij =
Xij√∑n
t=1X

2
it

.
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Simulation Study

Regular variation with index α > 0

This implies E[|X|α+ε] =∞ for any ε > 0.

Procedure:
1 Simulate X
2 Plot histograms of (µ(i)) and (λ(i)/n)
3 Compare with Marčenko–Pastur density
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α = 6

α = 6, n = 2000, p = 1000
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α = 3.99

α = 3.99, n = 2000, p = 1000
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α = 2.1

α = 2.1, n = 10000, p = 1000
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Limits of Extreme Eigenvalues, Heiny and Mikosch (2017)

Assume X is symmetric.

Limiting spectral distribution

Under the domain of attraction type-condition for the Gaussian
law,

lim
n→∞

nE
[
Y 4

11

]
= 0 ,

the sequence (FR) converges weakly to Fγ .

Limits of extreme eigenvalues

If
lim
n→∞

(log n)5 nE
[
Y 4

11

]
= 0 ,

we have
µ(1) → (1 +

√
γ)2 and µ(p) → (1−√γ)2 a.s.
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Summary

Sample covariance matrix
Normalization
E[X4]

Sample correlation matrix
Self-normalization
E[X2]

Same results if E[X4] <∞.

Non-iid case and application to financial time series on
demand.
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Thank you!
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Materials of this Talk
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under infinite fourth moment. Submitted for publication.
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sample autocovariance matrix function of multivariate time series. In
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α < 2

n = 2000, p = 1000 n = 10000, p = 1000
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Heavy Tails and Dependence

(Zit): iid field of regularly varying random variables.

Stochastic volatility model:

X =
(
Zit σ

(n)
it

)
p×n

σ(n)-field: distribution changes with n, possible long range
dependence

Generate deterministic covariance structure A:

X = A1/2Z
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Heavy Tails and Dependence

(Zit): iid field of regularly varying random variables.

Dependence among rows and columns:

Xit =

∞∑
l=0

∞∑
k=0

hklZi−k,t−l

with some constants hkl. Davis et al. (2016)

J. Heiny Sample correlation matrices 34 / 30



Known Results
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distribution. p = 200, n = 1000, 2000 simulations. Tao and Vu (2010)
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Application: S&P 500 Index
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Application: S&P 500 Index
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Figure: Logarithms of the ratios λ(i+1)/λ(i) for the S&P 500 series after
rank transform. Quantiles at level 1, 50 and 99% of log((Γi/Γi+1)2).
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Figure: Logarithms of the ratios λ(i+1)/λ(i) for the S&P 500 log-return
data.
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Condition (Cq)

There exists a sequence q = qn →∞ such that for some
integer sequence k = kn with k/ log n→∞ we have
(k3q)/n→ 0, and the moment inequality

E[Y 2m1
1 · · ·Y 2mr

r ] ≤ qn
n

E[Y 2m1
1 · · ·Y 2mr−1

r−1 Y 2mr−2
r ] (Cq)

holds for 1 ≤ r ≤ k − 1 and any positive integers m1, . . . ,mr

satisfying m1 + · · ·+mr = k.

Giné et al. (1997):

E[Y 2m1
1 · · ·Y 2mr

r ] =

1

(k − 1)!

∫ ∞
0

λk−1(E[e−λX
2
])n−r

r∏
j=1

E[X2mj e−λX
2
] dλ
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