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A motivating result

I Let X be a linear Brownian motion with variance σ2 and drift γ

I Define

M := sup{Xt : t ∈ [0,T ]}, Mε := max{Xiε : i = 0, . . . , bT/εc}
I Asmussen, Glynn, and Pitman [1995] showed that

M −Mε

σ
√
ε
⇒ V , as ε ↓ 0, (1)

where V is defined using two independent copies of a 3-dimensional
Bessel process and an independent uniform time shift

I asymptotic error in simulation of the supremum M

I approximation of a discrete-time (financial) model by a continuous-time
model with an explicit solution [Broadie, Glasserman, and Kou, 1999]

I ≈120 citations

What if X is an arbitrary non-monotone Lévy process with
(
γ, σ2,Π(dx)

)
?

I Intuitive that (1) holds when σ > 0,Π(R) <∞ [Dia and Lamberton,
2011].

I Asymptotic expansions of the expected error E(M −Mε):
[Janssen and Van Leeuwaarden, 2009], [Dia, 2010], [Chen, 2011] . . .
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Further applications

Discretization error in simulation of a two-sided reflected Lévy process (with
Søren Asmussen):
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Figure: Example of a reflected sample path (black) and its discretized
version (red) for n = 100.



Main ideas and results

Let τ be the time of the supremum of X on [0,T ].

I Study the weak (Renyi-mixing) limit

((Xτ+tε −M)/aε)t∈R ⇒ (ξt)t∈R as ε ↓ 0, (2)

for an appropriate scaling function aε > 0

I Conditional on τ /∈ {0,T} it holds that frac(τ/ε)⇒ U
for a uniform random variable U: [Kosulajeff, 1937] and [Chaumont,
2013] showing that τ has a Lebesgue density

Theorem
Under assumption (3) and conditional on τ /∈ {0,T} it holds that(

Mε −M

aε
,
τε − τ
ε

)
⇒
(

max
i∈Z

ξU+i ,U + argmaxi∈ZξU+i

)
ε ↓ 0,

where U and ξ are independent, and the convergence can be strengthened to
Renyi-mixing.
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The underlying assumption

I We assume that
Xε/aε ⇒ X̂1 as ε ↓ 0 (3)

for some function aε > 0 and a non-zero random variable X̂1

I Necessarily X̂1 is infinitely divisible and

(Xtε/aε)t≥0 ⇒ (X̂t)t≥0 (4)

I Zoming-in instead of the classical zooming-out of Lamperti [1962]:

Theorem
Assume that (4) holds for a stochastically continuous, non-trivial process X̂ .

Then X̂ is self-similar with some index H > 0:

(Xut)t≥0
d
=(uHXt)t≥0 for all u > 0,

and aε ∈ RVH as ε ↓ 0.

Note: (ξt)t≥0, (ξ(−t)−)t≥0 must be self-similar as well
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Self-similar Lévy processes

Let α = 1/H then it must be that α ∈ (0, 2].

The following is an exhaustive list of self-similar Lévy processes X̂ :

(i) Brownian motion: γ̂ = 0, σ̂ > 0, Π̂ = 0, in which case α = 2;

(ii) Linear drift process: γ̂ 6= 0, σ̂ = 0, Π̂ = 0, in which case α = 1;

(iii) Strictly α-stable Lévy process for α ∈ (0, 2): σ̂ = 0,

Π̂(dx) = 1{x>0}ĉ+x
−1−αdx + 1{x<0}ĉ−|x |−1−αdx (5)

for some ĉ± ≥ 0, ĉ+ + ĉ− > 0, and, additionally,

γ̂ = (ĉ+ − ĉ−)/(1− α) if α 6= 1,

ĉ+ = ĉ−, if α = 1,



Domains of attraction under zooming-in: literature

For each self-similar Lévy process X̂ specify the class of Lévy processes X with
corresponding aε such that Xε/aε ⇒ X̂1.

I Rather similar to the classical zooming-out theory and the
characterization of the strict domains of attraction for sums of i.i.d.
random variables: Gnedenko and Kolmogorov [1954], Bingham, Goldie,
and Teugels [1987] and Shimura [1990]

I Extensive literature on various aspects of small-time behavior of Lévy
processes

I Doney and Maller [2002]: attraction to a Brownian motion and a linear
drift process (simplification provided)

I Maller and Mason [2008]: non-strict attraction to stable processes



Domains of attraction under zooming-in
Define truncated mean and variance functions as well as the tails of Π:

m(x) = γ −
∫
x≤|y|<1

yΠ(dy), v(x) = σ2 +

∫
|y|<x

y2Π(dy),

Π+(x) = Π(x ,∞), Π−(x) = Π(−∞,−x), Π(x) = Π+(x) + Π−(x).

Theorem
(i) X is attracted to the Brownian motion with variance σ̂ if and only if

v ∈ RV0 or equivalently x2Π(x)/v(x)→ 0

as x ↓ 0, and aε is chosen to satisfy a2
ε/v(aε) ∼ ε/σ̂2.

(ii) X is attracted to the non-zero linear drift (γ̂t)t≥0 if and only if

σ = 0, m(x)/γ̂ is eventually positive, xΠ(x)/m(x)→ 0
as x ↓ 0, and aε is chosen to satisfy aε/m(aε) ∼ ε/γ̂.

(iii) X is attracted to the strictly α-stable Lévy process with parameters ĉ+, ĉ−, γ̂ if

and only if

(a) σ = 0, and γ′ = 0 when X is b.v.,

(b) Π± ∈ RV−α if ĉ± > 0, and Π+(x)/Π−(x)→ ĉ+/ĉ− as x ↓ 0,
(c) for α = 1 it is additionally required that

m(x)

xΠ+(x)
→ γ̂/ĉ+ as x ↓ 0, (6)

and aε is chosen to satisfy Π±(aε) ∼ ε−1ĉ±/α if ĉ± > 0.



Domains of attraction under zooming-in: comments

I If σ 6= 0 then take a standard Bm X̂ and aε ∼ σ
√
ε

I If X is b.v. with linear drift γ′ 6= 0 then take X̂t = sign(γ′)t and
aε ∼ |γ′|ε

I There are Lévy processes not attracted to any X̂

I If not as above then α = βBG := inf{β > 0 :
∫
|x|<1

|x |βΠ(dx) <∞}
I Possible to get limiting Bm, α = 2, even when σ = 0

I α = 1 corresponds to two different limits: linear drift and 1-strictly stable
process

I ub.v process may have b.v. limit and vice versa, but only when α = 1

I Non-strictly 1-stable process is attracted to linear drift



What is ξ appearing in the limit?

Completing the main result:

I (ξt)t≥0 and (−ξ(−t)−)t≥0 are independent and have the laws of X̂
conditioned to stay negative and positive, respectively

I X̂ conditioned to be negative can be seen as the limit law of the
post-supremum process of X̂ on some finite time interval [0,T ] as
T →∞

I Many other representations exist

I If X̂ is a standard Bm then (−ξt)t≥0 and (ξ(−t)−)t≥0 have the law of a
3-dimensional Bessel process

Proof ingredients: time-reversal and splitting of a killed Lévy process,
invariance principle for conditioned processes (random walk case analyzed by
Chaumont and Doney [2010]), existent theory on conditioned processes.



Conclusions

Assumption: Xε/aε ⇒ X̂1, see domains of attraction.

Result: (M −Mε)/aε ⇒ VL(X̂ ), where the limit depends on the law of X̂ only.

I VL(−X̂ )

d
= VL(X̂ ) and for any c > 0: VL(cX̂ )

d
= cVL(X̂ )

I The result of Asmussen, Glynn, and Pitman [1995] holds true whenever
σ > 0

I The same limit can be obtained when σ = 0, but then necessarily βBG = 2

I If X is b.v. with linear drift γ′ 6= 0 then

M −Mε

|γ′|ε ⇒ U on the event τ /∈ {0,T}.

I Additionally, there is class (iii) of limits stemming from strictly-α-stable
processes (single parameter class for a fixed α)
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Figure: Estimated densities of V for strictly-α-stable process with
skewness β ∈ [−1, 1]

Smaller α lead to a better rate but more disperse limit V .

Thank you!
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P Kosulajeff. Sur la répartition de la partie fractionnaire d’une variable. Math. Sbornik, 2(5):1017–1019, 1937.

John Lamperti. Semi-stable stochastic processes. Trans. Amer. Math. Soc., 104:62–78, 1962.

Ross Maller and David M. Mason. Convergence in distribution of Lévy processes at small times with
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