On the basic estimation problem for symmetric

 random graphs and networks
Olav Kallenberg

Aarhus, 8/14-16, 2017

```
On the basic
estimation
problem for
symmetric
random
graphs and
    networks
        Olav
Kallenberg
1. Graphs and graphons
2. Exchangeable representations
3. Basic estimation problem
```


1. Graphs and Graphons

On the basic

estimation
problem for
symmetric
random
graphs and
networks
Olav
Kallenberg
Aarhus,
8/14-16, 2017

A directed graph G consists of a countable set S of nodes, and an array of pairwise interactions $x_{i j}: i \rightarrow j$, where we allow $x_{i j} \neq x_{j i}$. In a general network we may have two sets of nodes, S and T, along with some pairwise interactions $x_{i j}$, $(i, j) \in S \times T$. To reduce to the previous case, we may replace S by $S \cup T$.

We often assume $x_{i j} \in\{0,1\}$ for all (i, j), where 1 means existence of a (directed) link from i to j. The array $x=\left(x_{i j}\right)$ is then called the adjacency matrix. A colored graph is one where the $x_{i j}$ take more general values (=colors).

Random graphs and graphons

On the basic

estimation
problem for
symmetric
random
graphs and
networks
Olav
Kallenberg

Aarhus,

In a random graph, the interactions $x_{i j}$ are random variables, now denoted by $\xi_{i j}$. The simplest case is when the $\xi_{i j}$ are independent with distributions $\mu_{i j}$. Or, we may take the pairs $\left(\xi_{i j}, \xi_{j i}\right)$ to be independent with distributions $\mu_{i j}$, which includes the case of symmetric interactions $\xi_{i j}=\xi_{j i}$.

For on/off interactions, it is enough to specify the probabilities $p_{i j}=P\left\{\xi_{i j}=1\right\}$, but in general we need to specify the entire distributions $\mu_{i j}$. The array $M=\left(\mu_{i j}\right)$, called the graphon of X, clearly determines the distribution of the whole array $X=\left(\xi_{i j}\right)$.

On the basic

estimation
problem for
symmetric
random
graphs and
networks
Olav
Kallenberg

Aarhus 8/14-16, 2017

Now randomize with respect to the graphon $M=\left(\mu_{i j}\right)$. Thus, even M is considered as random, and we choose the $\xi_{i j}$ to be conditionally independent, given M, with random distributions $\mu_{i j}$, so that

$$
\mathcal{L}\left(\xi_{i j} \mid M\right)=\mu_{i j}, \quad i, j \in S
$$

In other words, we first choose the graphon M at random, and then, given M, we choose an array X with graphon M. Though the distribution $\mathcal{L}(M)$ clearly determines $\mathcal{L}(X)$, the converse is false in general. (Thus, estimation of $\mathcal{L}(M)$ makes no sense!)

2. Exchangeable Representations

Symmetric graphs and arrays

On the basic

estimation
problem for
symmetric
random
graphs and
networks
Olav
Kallenberg
Aarhus,
8/14-16, 2017

An random graph or array $X=\left(\xi_{i j}\right)$ is said to be jointly exchangeable if its distribution is invariant under permutations $\pi=\left(\pi_{i}\right)$ of the index set S, in the sense that

$$
X \circ \pi^{\otimes 2}=\left(\xi_{\pi_{i}, \pi_{j}} ; i, j \in S\right) \stackrel{d}{=} X
$$

We may also consider separately exchangeable arrays X, where invariance is assumed under possibly different permutations π^{\prime} and $\pi^{\prime \prime}$ in the two indices:

$$
X \circ\left(\pi^{\prime} \otimes \pi^{\prime \prime}\right)=\left(\xi_{\pi_{i}^{\prime}, \pi_{j}^{\prime \prime}} ; i, j \in S\right) \stackrel{d}{=} X
$$

Aldous-Hoover representations

On the basic

estimation
problem for
symmetric
random
graphs and
networks
Olav
Kallenberg
Aarhus, 8/14-16, 2017

- An infinite array $X=\left(\xi_{i j}\right)$ is jointly exchangeable iff

$$
\xi_{i j}=f\left(\alpha, \beta_{i}, \beta_{j}, \gamma_{i j}\right), \quad i, j \in S
$$

for some measurable function f on $[0,1]^{4}$ and some i.i.d. $U(0,1)$ variables α, β_{i}, and $\gamma_{i j}=\gamma_{j i}$.

- An infinite array X is separately exchangeable iff

$$
\xi_{i j}=f\left(\alpha, \beta_{i}^{\prime}, \beta_{j}^{\prime \prime}, \gamma_{i j}\right), \quad i, j \in S
$$

for some f as before and some i.i.d. $U(0,1)$ variables α, $\beta_{i}^{\prime}, \beta_{j}^{\prime \prime}, \gamma_{i j}$.

Reduction to ergodic case

On the basic

estimation
problem for
symmetric
random
graphs and
networks
Olav
Kallenberg
Aarhus,
8/14-16, 2017

If we consider only a single graph or network (sample of size 1), we may reduce to the ergodic case where α is a constant:

- $X=\left(\xi_{i j}\right)$ is ergodic jointly exchangeable iff

$$
\xi_{i j}=f\left(\beta_{i}, \beta_{j}, \gamma_{i j}\right), \quad i, j \in S
$$

■ X is ergodic separately exchangeable iff

$$
\xi_{i j}=f\left(\beta_{i}^{\prime}, \beta_{j}^{\prime \prime}, \gamma_{i j}\right), \quad i, j \in S
$$

for some function f on $[0,1]^{3}$ and some i.i.d. $U(0,1)$ random variables $\beta_{i}, \gamma_{i j}$ or $\beta_{i}^{\prime}, \beta_{j}^{\prime \prime}, \gamma_{i j}$.

Exchangeable graphon representation

On the basic

estimation
problem for
symmetric
random
graphs and
networks
Olav
Kallenberg

Aarhus
8/14-16, 2017

The latter arrays are conditional graphon models with simple symmetric arrays of conditional distributions

$$
\begin{aligned}
& \mu_{i j}=\Phi\left(\beta_{i}, \beta_{j}\right), \quad i, j \in S \\
& \mu_{i j}=\Phi\left(\beta_{i}^{\prime}, \beta_{j}^{\prime \prime}\right), \quad i, j \in S
\end{aligned}
$$

respectively, where

$$
\Phi(x, y)=\mathcal{L}\{f(x, y, \vartheta)\}, \quad x, y \in[0,1]
$$

for a $U(0,1)$ random variable ϑ. In this case, the distributions of $X=\left(\xi_{i j}\right)$ and $M=\left(\mu_{i j}\right)$ do determine each other uniquely, and it makes sense to estimate $\mathcal{L}(M)$.

On the basic

estimation problem for
symmetric
random graphs and networks

Olav
Kallenberg
Aarhus, 8/14-16, 2017

The representations of symmetric arrays are not unique: For a simple, jointly exchangeable array, we may replace f by

$$
g(x, y)=f(T(x), T(y)), \quad x, y \in[0,1]
$$

for any measure-preserving function T. For a simple, separately exchangeable array, we may replace f by

$$
g(x, y)=f\left(T_{1}(x), T_{2}(y)\right), \quad x, y \in[0,1]
$$

for some measure-preserving functions T_{1} and T_{2}.
The general equivalence criteria involve additional randomization variables. (This is because measure-preserving functions, unlike permutations, are not invertible in general.)

3. Basic Estimation Problem

Estimation problem for exchangeable graphs

$$
\begin{aligned}
& \begin{array}{c}
\text { On the basic } \\
\text { estimation } \\
\text { problem for } \\
\text { symmetric } \\
\text { random } \\
\text { graphs and } \\
\text { networks }
\end{array} \\
& \begin{array}{c}
\text { Olav } \\
\text { Kallenberg }
\end{array} \\
& \begin{array}{l}
\text { Aarhus, } \\
8 / 14-16,2017
\end{array} \\
& \\
& \\
& \text { astimationgle observation of the exchangeable } \\
& \text { array } X=\left(\xi_{i j}\right) .
\end{aligned}
$$

Theorem 1: For any separately or jointly exchangeable array X, there exist some simple exchangeable arrays X_{1}, X_{2}, \ldots, such that as $n \rightarrow \infty$

$$
\mathcal{L}_{m}\left(X_{n}\right) \rightarrow \mathcal{L}_{m}(X), \quad m \in \mathrm{~N}
$$

where \mathcal{L}_{m} denotes the distribution of the $m \times m$ subarray.
Conclusion: Based on observations of finite subarrays, we can't see the difference between simple and more general arrays, and we can just as well assume that X is simple to begin with, which seems to simplify the problem. But then $M=X$, and there is nothing to estimate!

Estimation by grid processes

On the basic

estimation problem for
symmetric
random
graphs and
networks
Olav
Kallenberg

Aarhus,

Consider a real, infinite array $X=\left(\xi_{i j}\right)$ with $n \times n$ sub-arrays X_{n}. For each $n \in \mathrm{~N}$, divide $[0,1]$ into sub-intervals $I_{n j}$ of length n^{-1}, and introduce the grid process

$$
\varphi_{n}(x, y)=\xi_{i j}, \quad(x, y) \in I_{n i} \times I_{n j}, i, j \leq n
$$

Theorem 2: If $X=\left(\xi_{i j}\right)$ is simple, ergodic, jointly or separately exchangeable with representation

$$
\xi_{i j}=f\left(\beta_{i}, \beta_{j}\right) \quad \text { or } \quad \xi_{i j}=f\left(\beta_{i}^{\prime}, \beta_{j}^{\prime \prime}\right),
$$

then

$$
\inf _{f^{\prime} \sim f}\left\|\varphi_{n}-f^{\prime}\right\| \xrightarrow{P} 0
$$

To achieve uniqueness, we may sometimes diagonalize.
Theorem 3: Let $X=\left(\xi_{i j}\right)$ be simple, ergodic, and L^{2}-valued.
■ When X is symmetric, jointly exchangeable,

$$
f=\sum_{k} \alpha_{k}\left(\varphi_{k} \otimes \varphi_{k}\right)
$$

- When X is separately exchangeable,

$$
f=\sum_{k} \alpha_{k}\left(\varphi_{k} \otimes \psi_{k}\right)
$$

Here the eigenvalues α_{k} are unique, and so are the eigenfunctions φ_{k} and ψ_{k}, up to suitable rotations.

No invariant diagonalization seems to exist in the general jointly exchangeable case.

Suggested estimation of graphon representation

On the basic
estimation
problem for
symmetric
random
graphs and
networks
Olav
Kallenberg
Aarhus,

Consider a real-valued, ergodic, jointly exchangeable array $X=\left(\xi_{i j}\right)$. For any $r \in \mathrm{R}$, form the 0-1 array

$$
X_{i j}(r)=1\left\{X_{i j} \geq r\right\}, \quad i, j \in S
$$

Given an observation of the $m \times m$ subarray X^{m},

- form the grid processes based on $X(r)$,
- diagonalize and keep only the leading terms,
- estimate by functions that are monotone in r.

On the basic
estimation
problem for
symmetric
random
graphs and
networks
Olav
Kallenberg

Aarhus
8/14-16, 2017

The suggested procedure leads to the following statistical problems:

- Assuming suitable smoothness of the underlying graphon, choose an optimal truncation level, depending on the size m of the subarray.
■ Prove that the resulting estimators are consistent and converge to the representation function of the graphon.
Note that this is essentially a problem of optimal filtering.

References

On the basic
estimation
problem for
symmetric
random
graphs and
networks
Olav
Kallenberg
Aarhus,

- Aldous, D.J. (1981). Representations for partially exchangeable arrays of random variables. JMA 11, 581-598.
- Hoover, D.N. (1979). Relations on probability spaces and arrays of random variables. Preprint, Princeton University.
- Kallenberg, O. (1989). On the representation theorem for exchangeable arrays. JMA 30, 137-154.
- - (1999). Multivariate sampling and the estimation problem for exchangeable arrays. JTP 12, 859-883.
■ - (2005). Probabilistic Symmetries and Invariance Principles. Springer.

