Olav Kallenberg

Aarhus, 8/14–16, 2017

On the basic estimation problem for symmetric random graphs and networks

Olav Kallenberg

Aarhus, 8/14-16, 2017

Olav Kallenberg

Aarhus, 8/14–16, 2017

- 1. Graphs and graphons
- 2. Exchangeable representations
- 3. Basic estimation problem

Olav Kallenberg

Aarhus, 8/14–16, 2017

1. Graphs and Graphons

Olav Kallenberg

Aarhus, 8/14–16, 2017 A **directed graph** *G* consists of a countable set *S* of nodes, and an array of pairwise interactions $x_{ij}: i \rightarrow j$, where we allow $x_{ij} \neq x_{ji}$. In a general **network** we may have two sets of nodes, *S* and *T*, along with some pairwise interactions x_{ij} , $(i,j) \in S \times T$. To reduce to the previous case, we may replace *S* by $S \cup T$.

We often assume $x_{ij} \in \{0, 1\}$ for all (i, j), where 1 means existence of a (directed) link from *i* to *j*. The array $x = (x_{ij})$ is then called the **adjacency matrix**. A **colored graph** is one where the x_{ij} take more general values (=colors).

Olav Kallenberg

Aarhus, 8/14–16, 2017 In a **random graph**, the interactions x_{ij} are random variables, now denoted by ξ_{ij} . The simplest case is when the ξ_{ij} are **independent with distributions** μ_{ij} . Or, we may take the pairs (ξ_{ij}, ξ_{ji}) to be independent with distributions μ_{ij} , which includes the case of symmetric interactions $\xi_{ii} = \xi_{ii}$.

For on/off interactions, it is enough to specify the probabilities $p_{ij} = P\{\xi_{ij} = 1\}$, but in general we need to specify the entire distributions μ_{ij} . The array $M = (\mu_{ij})$, called the **graphon** of X, clearly determines the distribution of the whole array $X = (\xi_{ij})$.

Olav Kallenberg

Aarhus, 8/14–16, 2017 Now randomize with respect to the graphon $M = (\mu_{ij})$. Thus, even M is considered as random, and we choose the ξ_{ij} to be **conditionally independent**, given M, with **random distributions** μ_{ij} , so that

$$\mathcal{L}(\xi_{ij}|M) = \mu_{ij}, \quad i, j \in S.$$

In other words, we first choose the graphon M at random, and then, given M, we choose an array X with graphon M. Though the distribution $\mathcal{L}(M)$ clearly determines $\mathcal{L}(X)$, **the converse** is false in general. (Thus, estimation of $\mathcal{L}(M)$ makes no sense!)

Olav Kallenberg

Aarhus, 8/14–16, 2017

2. Exchangeable Representations

Symmetric graphs and arrays

On the basic estimation problem for symmetric random graphs and networks

Olav Kallenberg

Aarhus, 8/14–16, 2017 An random graph or array $X = (\xi_{ij})$ is said to be **jointly** exchangeable if its distribution is invariant under permutations $\pi = (\pi_i)$ of the index set S, in the sense that

$$X \circ \pi^{\otimes 2} = (\xi_{\pi_i,\pi_i}; i, j \in S) \stackrel{d}{=} X.$$

We may also consider **separately exchangeable** arrays X, where invariance is assumed under possibly different permutations π' and π'' in the two indices:

$$X\circ (\pi'\otimes\pi'')=(\xi_{\pi'_i,\pi''_j};\ i,j\in S)\stackrel{d}{=}X.$$

Aldous–Hoover representations

On the basic estimation problem for symmetric random graphs and networks

Olav Kallenberg

Aarhus, 8/14–16, 2017 • An infinite array $X = (\xi_{ij})$ is jointly exchangeable iff

$$\xi_{ij} = f(\alpha, \beta_i, \beta_j, \gamma_{ij}), \quad i, j \in S,$$

for some measurable function f on $[0, 1]^4$ and some i.i.d. U(0, 1) variables α , β_i , and $\gamma_{ij} = \gamma_{ji}$.

An infinite array X is **separately exchangeable** iff

$$\xi_{ij} = f(lpha, eta'_i, eta''_j, \gamma_{ij}), \quad i,j \in \mathcal{S},$$

for some *f* as before and some i.i.d. U(0,1) variables α , β'_i , β''_j , γ_{ij} .

Reduction to ergodic case

On the basic estimation problem for symmetric random graphs and networks

Olav Kallenberg

Aarhus, 8/14–16, 2017 If we consider only a single graph or network (sample of size 1), we may reduce to the **ergodic** case where α is a constant:

• $X = (\xi_{ij})$ is ergodic jointly exchangeable iff

$$\xi_{ij} = f(\beta_i, \beta_j, \gamma_{ij}), \quad i, j \in S,$$

• X is ergodic separately exchangeable iff

$$\xi_{ij} = f(\beta'_i, \beta''_j, \gamma_{ij}), \quad i, j \in S,$$

for some function f on $[0, 1]^3$ and some i.i.d. U(0, 1) random variables β_i , γ_{ij} or β'_i , β''_i , γ_{ij} .

Exchangeable graphon representation

On the basic estimation problem for symmetric random graphs and networks

Kallenberg

Aarhus, 8/14–16, 2017 The latter arrays are conditional graphon models with **simple symmetric** arrays of conditional distributions

$$\mu_{ij} = \Phi(\beta_i, \beta_j), \quad i, j \in S,$$

$$\mu_{ij} = \Phi(\beta'_i, \beta''_j), \quad i, j \in S,$$

respectively, where

$$\Phi(x,y) = \mathcal{L}\{f(x,y,\vartheta)\}, \quad x,y \in [0,1],$$

for a U(0,1) random variable ϑ . In this case, the distributions of $X = (\xi_{ij})$ and $M = (\mu_{ij})$ do **determine each other uniquely**, and it makes sense to estimate $\mathcal{L}(M)$.

Kallenberg

Aarhus, 8/14–16, 2017 The representations of symmetric arrays are not unique: For a **simple, jointly exchangeable** array, we may replace f by

$$g(x, y) = f(T(x), T(y)), x, y \in [0, 1],$$

for any measure-preserving function T. For a **simple**, **separately exchangeable** array, we may replace f by

$$g(x,y) = f(T_1(x), T_2(y)), \quad x, y \in [0,1],$$

for some measure-preserving functions T_1 and T_2 .

The general equivalence criteria involve additional **randomization variables**. (This is because measure-preserving functions, unlike permutations, are not invertible in general.)

Olav Kallenberg

Aarhus, 8/14–16, 2017

3. Basic Estimation Problem

Olav Kallenberg

Aarhus, 8/14–16, 2017 Estimate a version of the representation function Φ of the graphon $M = (\mu_{ij})$ from a single observation of the exchangeable array $X = (\xi_{ij})$.

Olav Kallenberg

Aarhus, 8/14–16, 2017 **Theorem 1:** For any separately or jointly exchangeable array X, there exist some simple exchangeable arrays X_1, X_2, \ldots , such that as $n \to \infty$

$$\mathcal{L}_m(X_n) \to \mathcal{L}_m(X), \quad m \in \mathbb{N},$$

where \mathcal{L}_m denotes the distribution of the $m \times m$ subarray.

Conclusion: Based on observations of finite subarrays, we can't see the difference between simple and more general arrays, and we can just as well assume that X is simple to begin with, which seems to simplify the problem. But then M = X, and there is nothing to estimate!

Estimation by grid processes

On the basic estimation problem for symmetric random graphs and networks

Olav Kallenberg

Aarhus, 8/14–16, 2017 Consider a real, infinite array $X = (\xi_{ij})$ with $n \times n$ sub-arrays X_n . For each $n \in \mathbb{N}$, divide [0, 1] into sub-intervals I_{nj} of length n^{-1} , and introduce the **grid process**

$$\varphi_n(x,y) = \xi_{ij}, \quad (x,y) \in I_{ni} \times I_{nj}, \ i,j \leq n.$$

Theorem 2: If $X = (\xi_{ij})$ is simple, ergodic, jointly or separately exchangeable with representation

$$\xi_{ij} = f(\beta_i, \beta_j)$$
 or $\xi_{ij} = f(\beta'_i, \beta''_j)$,

then

$$\inf_{f'\sim f} \|\varphi_n - f'\| \stackrel{P}{\to} 0.$$

Invariant diagonalization

On the basic estimation problem for symmetric random graphs and networks

Olav Kallenberg

Aarhus, 8/14–16, 2017 To achieve uniqueness, we may sometimes diagonalize.

Theorem 3: Let $X = (\xi_{ij})$ be simple, ergodic, and L^2 -valued. When X is symmetric, jointly exchangeable,

$$f=\sum_{k}\alpha_{k}(\varphi_{k}\otimes\varphi_{k}).$$

When X is separately exchangeable,

$$f=\sum_{k}\alpha_{k}(\varphi_{k}\otimes\psi_{k}).$$

Here the eigenvalues α_k are **unique**, and so are the eigenfunctions φ_k and ψ_k , up to suitable rotations.

No invariant diagonalization seems to exist in the general jointly exchangeable case.

Olav Kallenberg

Aarhus, 8/14–16, 2017 Consider a real-valued, ergodic, jointly exchangeable array $X = (\xi_{ij})$. For any $r \in \mathbb{R}$, form the 0-1 array

$$X_{ij}(r)=1\{X_{ij}\geq r\},\quad i,j\in S.$$

Given an observation of the $m \times m$ subarray X^m ,

- form the grid processes based on X(r),
- diagonalize and keep only the leading terms,
- estimate by functions that are monotone in r.

Olav Kallenberg

Aarhus, 8/14–16, 2017 The suggested procedure leads to the following **statistical problems**:

Assuming suitable smoothness of the underlying graphon, choose an **optimal truncation level**, depending on the size *m* of the subarray.

 Prove that the resulting estimators are consistent and converge to the representation function of the graphon.
 Note that this is essentially a problem of optimal filtering.

References

On the basic estimation problem for symmetric random graphs and networks

Olav Kallenberg

Aarhus, 8/14–16, 2017

- Aldous, D.J. (1981). Representations for partially exchangeable arrays of random variables. JMA 11, 581–598.
- Hoover, D.N. (1979). Relations on probability spaces and arrays of random variables. Preprint, Princeton University.

 Kallenberg, O. (1989). On the representation theorem for exchangeable arrays. JMA 30, 137–154.

_ _ _

- (1999). Multivariate sampling and the estimation problem for exchangeable arrays. JTP 12, 859–883.
- — (2005). Probabilistic Symmetries and Invariance Principles. Springer.