Large Deviations for the Rough Bergomi Model

Mikko Pakkanen^{1,2}

¹Department of Mathematics, Imperial College London, UK ²CREATES, Aarhus University, Denmark

Second Conference on Ambit Fields and Related Topics Aarhus, 14 August 2017

In collaboration with Antoine Jacquier and Henry Stone

Imperial College London

Implied volatility modelling

Intermezzo: an introduction to large deviations

LDP for the rough Bergomi model

Review of Black-Scholes option pricing

The Black-Scholes model

In the Black–Scholes (1973) model, under the unique pricing measure **Q**, the price of the underlying follows

 $dS_t = \sigma S_t dB_t$,

where $\sigma > 0$ is the volatility parameter and *B* is a standard Brownian motion under **Q**.

Review of Black-Scholes option pricing

The Black-Scholes model

In the Black–Scholes (1973) model, under the unique pricing measure **Q**, the price of the underlying follows

 $dS_t = \sigma S_t dB_t$,

where $\sigma > 0$ is the volatility parameter and *B* is a standard Brownian motion under **Q**.

Consider a call option struck at $K = S_0 e^k > 0$ (that is, at log strike $k \in \mathbb{R}$) at time 0, paying

$$(S_T - K)^+ = (S_T - S_0 e^k)^+$$

units of cash at expiry T > 0.

Review of Black-Scholes option pricing (cont'd)

The Black-Scholes pricing formula

The unique arbitrage-free price of this call option under interest rate $r \ge 0$ is

$$C_{BS}(k,T;\sigma) = \mathbf{E}^{\mathbf{Q}}[e^{-rT}(S_T - S_0 e^k)^+] = S_0(\Phi(d_1) - \Phi(d_2)e^{k-rT}),$$

where

$$d_1 := \frac{1}{\sigma\sqrt{T}} \left(\left(r + \frac{\sigma^2}{2}\right)T - k \right),$$

$$d_2 := d_1 - \sigma\sqrt{T},$$

and Φ is the standard normal CDF.

Implied volatility

Black-Scholes implied volatility

The function $\sigma \mapsto C_{BS}(k, T; \sigma)$ is increasing.

So given a market quote $\widehat{C}(k,T)$, we can find $\hat{\sigma}$ such that

 $C_{BS}(k,T;\hat{\sigma}) = \widehat{C}(k,T).$

The solution $\hat{\sigma} = \hat{\sigma}(k, T)$ is the (Black–Scholes) implied volatility of the quote $\hat{C}(k, T)$.

Implied volatility

Black-Scholes implied volatility

The function $\sigma \mapsto C_{BS}(k,T;\sigma)$ is increasing.

So given a market quote $\widehat{C}(k, T)$, we can find $\hat{\sigma}$ such that

$$C_{BS}(k,T;\hat{\sigma}) = \widehat{C}(k,T).$$

The solution $\hat{\sigma} = \hat{\sigma}(k, T)$ is the (Black–Scholes) implied volatility of the quote $\hat{C}(k, T)$.

In practice, option traders prefer to quote prices in implied volatilities.

Implied volatility

Black-Scholes implied volatility

The function $\sigma \mapsto C_{BS}(k,T;\sigma)$ is increasing.

So given a market quote $\widehat{C}(k,T)$, we can find $\hat{\sigma}$ such that

 $C_{BS}(k,T;\hat{\sigma}) = \widehat{C}(k,T).$

The solution $\hat{\sigma} = \hat{\sigma}(k, T)$ is the (Black–Scholes) implied volatility of the quote $\hat{C}(k, T)$.

In practice, option traders prefer to quote prices in implied volatilities.

But it does not mean they believe in the Black-Scholes model!

Implied volatility smile

Indeed, the Black–Scholes model is inconsistent with typical market prices of options.

Implied volatility smile

Indeed, the Black–Scholes model is inconsistent with typical market prices of options.

Instead of a flat line, the graph of $k \mapsto \hat{\sigma}(k, T)$ is U-shaped, depicting a smile.

Reproducing the smile and skew

The implied volatility smile can be reproduced by making σ stochastic — leading to stochastic volatility models.

Reproducing the smile and skew

The implied volatility smile can be reproduced by making σ stochastic — leading to stochastic volatility models.

At-the-money skew

However, conventional stochastic volatility models, like the Heston (1993) model, are unable to reproduce the term structure of the at-the-money (ATM) skew

$$\psi(T) = \left|\frac{\partial}{\partial k}\hat{\sigma}(k,T)\right|_{k=0},$$

which in equity markets typically behaves near expiry as

$$\psi(T) \sim \operatorname{const} \cdot T^{\alpha}, \quad T \to 0,$$

for some α slightly above $-\frac{1}{2}$.

Rough Bergomi model

The explosive ATM skew is captured by the recent rough volatility models, such as the rough Bergomi model (Bayer, Friz, and Gatheral, 2016).

Rough Bergomi model

The explosive ATM skew is captured by the recent rough volatility models, such as the rough Bergomi model (Bayer, Friz, and Gatheral, 2016).

Rough Bergomi model

In the rough Bergomi model, under a pricing measure **Q**,

 $dS_t = \sqrt{v_t}S_t dB_t$

where

$$V_t := V_0 \exp\left(Z_t - \frac{\eta^2}{2}t^{2\alpha+1}\right), \quad Z_t := \eta \sqrt{2\alpha+1} \int_0^t (t-s)^\alpha dW_s$$

 $S_0, v_0, \eta > 0, \alpha \in (-\frac{1}{2}, 0)$, and *B* and *W* are standard Brownian motions with $\langle B, W \rangle_t = \rho t$ for some $\rho \in (-1, 1)$.

The instantaneous variance process v is driven by the (rough) Riemann-Liouville process

$$\int_0^t (t-s)^\alpha dW_s, \quad t\ge 0,$$

whose sample paths are locally $\alpha + \frac{1}{2} - \varepsilon$ -Hölder continuous.

The instantaneous variance process v is driven by the (rough) Riemann-Liouville process

$$\int_0^t (t-s)^\alpha dW_s, \quad t\ge 0,$$

whose sample paths are locally $\alpha + \frac{1}{2} - \varepsilon$ -Hölder continuous.

The model can easily fit multiple implied volatility smiles.

The instantaneous variance process v is driven by the (rough) Riemann-Liouville process

$$\int_0^t (t-s)^\alpha dW_s, \quad t \ge 0,$$

whose sample paths are locally $\alpha + \frac{1}{2} - \varepsilon$ -Hölder continuous.

The model can easily fit multiple implied volatility smiles.

The caveat is that, currently, there is no analytical approach to pricing (or evaluating implied volatilities) under this model.

The instantaneous variance process v is driven by the (rough) Riemann-Liouville process

$$\int_0^t (t-s)^\alpha dW_s, \quad t\ge 0,$$

whose sample paths are locally $\alpha + \frac{1}{2} - \varepsilon$ -Hölder continuous.

The model can easily fit multiple implied volatility smiles.

The caveat is that, currently, there is no analytical approach to pricing (or evaluating implied volatilities) under this model.

Even call and put options need to be priced by Monte Carlo — although efficient methods are available (Bennedsen, Lunde, and P., 2017⁺; McCrickerd and P., 2017).

Example: Rough Bergomi smiles

Example: Rough Bergomi calibration

Implied volatility modelling

Intermezzo: an introduction to large deviations

LDP for the rough Bergomi model

Let Y_1, \ldots, Y_n be iid random variables such that $|Y_1| \le 1$ and $\mathbf{E}(Y_1) = 0$. Moreover, let M_n be the sample mean of Y_1, \ldots, Y_n .

Let Y_1, \ldots, Y_n be iid random variables such that $|Y_1| \le 1$ and $\mathbf{E}(Y_1) = 0$. Moreover, let M_n be the sample mean of Y_1, \ldots, Y_n .

By the weak law of large numbers,

$$M_n \xrightarrow{\mathbf{P}} \mathbf{O}, \quad n \to \infty.$$

Let Y_1, \ldots, Y_n be iid random variables such that $|Y_1| \le 1$ and $\mathbf{E}(Y_1) = 0$. Moreover, let M_n be the sample mean of Y_1, \ldots, Y_n .

By the weak law of large numbers,

$$M_n \xrightarrow{\mathbf{P}} \mathbf{O}, \quad n \to \infty.$$

Hoeffding's inequality says that, in fact, for all $n \in \mathbb{N}$ and y > 0,

$$\mathbf{P}[M_n \ge y] \le \exp(-ny^2/2).$$

The probability of $\{M_n \ge y\}$ decays exponentially fast.

Let Y_1, \ldots, Y_n be iid random variables such that $|Y_1| \le 1$ and $\mathbf{E}(Y_1) = 0$. Moreover, let M_n be the sample mean of Y_1, \ldots, Y_n .

By the weak law of large numbers,

$$M_n \xrightarrow{\mathbf{P}} \mathbf{O}, \quad n \to \infty.$$

Hoeffding's inequality says that, in fact, for all $n \in \mathbb{N}$ and y > 0,

 $\mathbf{P}[M_n \ge y] \le \exp(-ny^2/2).$

The probability of $\{M_n \ge y\}$ decays exponentially fast.

Large deviations theory aims to give sharp exponential estimates of such probabilities.

Definition

A sequence $(X_n)_{n=1}^{\infty}$ of random elements in a Polish space X satisfies the large deviations principle (LDP) as $n \to \infty$ with speed $a_n \to \infty$ and rate function $I : X \to [0, \infty]$ if

Definition

A sequence $(X_n)_{n=1}^{\infty}$ of random elements in a Polish space X satisfies the large deviations principle (LDP) as $n \to \infty$ with speed $a_n \to \infty$ and rate function $I : X \to [0, \infty]$ if

1. $\liminf_{n\to\infty} \frac{1}{a_n} \log \mathbf{P}[X_n \in A] \ge -\inf_{x\in A} I(x)$ for open $A \subset X$,

Definition

A sequence $(X_n)_{n=1}^{\infty}$ of random elements in a Polish space X satisfies the large deviations principle (LDP) as $n \to \infty$ with speed $a_n \to \infty$ and rate function $I : X \to [0, \infty]$ if

- 1. $\liminf_{n\to\infty} \frac{1}{a_n} \log \mathbf{P}[X_n \in A] \ge -\inf_{x\in A} I(x)$ for open $A \subset X$,
- 2. $\limsup_{n\to\infty} \frac{1}{a_n} \log \mathbf{P}[X_n \in B] \le -\inf_{x\in B} I(x)$ for closed $B \subset X$.

Definition

A sequence $(X_n)_{n=1}^{\infty}$ of random elements in a Polish space X satisfies the large deviations principle (LDP) as $n \to \infty$ with speed $a_n \to \infty$ and rate function $I : X \to [0, \infty]$ if

- 1. $\liminf_{n\to\infty} \frac{1}{a_n} \log \mathbf{P}[X_n \in A] \ge -\inf_{x\in A} I(x)$ for open $A \subset X$,
- 2. $\limsup_{n\to\infty} \frac{1}{a_n} \log \mathbf{P}[X_n \in B] \le -\inf_{x\in B} I(x)$ for closed $B \subset X$.

Remark

We can also consider a family $(X_{\varepsilon})_{\varepsilon>0}$ of random elements and define the LDP as $\varepsilon \to 0$ analogously.

Example: Cramér's theorem

Let Y_1, \ldots, Y_n be iid rvs in $\mathbb{X} = \mathbb{R}$ and M_n their sample mean. Write $\psi(\theta) := \log \mathbf{E}[\exp(\theta Y_1)] \in (0, \infty]$ for $\theta \in \mathbb{R}$.

Example: Cramér's theorem

Let Y_1, \ldots, Y_n be iid rvs in $\mathbb{X} = \mathbb{R}$ and M_n their sample mean. Write $\psi(\theta) := \log \mathbf{E}[\exp(\theta Y_1)] \in (0, \infty]$ for $\theta \in \mathbb{R}$.

Theorem (Cramér, 1938; Varadhan, 1966)

The sequence $(M_n)_{n=1}^\infty$ satisfies the LDP as $n\to\infty$ with speed n and rate function

$$I(x) = \sup_{\theta \in \mathbb{R}} (\theta x - \psi(\theta)), \quad x \in \mathbb{R},$$

the Fenchel–Legendre transform of ψ .

Example: Cramér's theorem

Let Y_1, \ldots, Y_n be iid rvs in $\mathbb{X} = \mathbb{R}$ and M_n their sample mean. Write $\psi(\theta) := \log \mathbf{E}[\exp(\theta Y_1)] \in (0, \infty]$ for $\theta \in \mathbb{R}$.

Theorem (Cramér, 1938; Varadhan, 1966)

The sequence $(M_n)_{n=1}^\infty$ satisfies the LDP as $n\to\infty$ with speed n and rate function

$$I(x) = \sup_{\theta \in \mathbb{R}} (\theta x - \psi(\theta)), \quad x \in \mathbb{R},$$

the Fenchel–Legendre transform of ψ .

In particular, if $\mathbf{E}[|Y_1|] < \infty$ and $\mathbf{E}[Y_1] = 0$, then

$$\lim_{n\to\infty}\frac{1}{n}\log\mathbf{P}[M_n\geq y]\leq -l(y),\quad y>0.$$

Example: Schilder's theorem

Let $\varepsilon > 0$. Define a random element X^{ε} of X = C([0, 1]) by

$$X_t^{\varepsilon} := \varepsilon W_t, \quad t \in [0, 1],$$

where W is a standard Brownian motion. Then $X^{\varepsilon} \xrightarrow{\mathbf{P}} 0$ in $(C([0, 1]), \|\cdot\|_{\infty})$ as $\varepsilon \to 0$.

Example: Schilder's theorem

Let $\varepsilon > 0$. Define a random element X^{ε} of X = C([0, 1]) by

$$X_t^{\varepsilon} := \varepsilon W_t, \quad t \in [0, 1],$$

where W is a standard Brownian motion. Then $X^{\varepsilon} \xrightarrow{\mathbf{P}} 0$ in $(C([0, 1]), \|\cdot\|_{\infty})$ as $\varepsilon \to 0$.

Theorem (Schilder, 1966)

The family $(X^{\varepsilon})_{\varepsilon>0}$ satisfies the LDP as $\varepsilon \to 0$ with speed ε^{-1} and rate function

 $I(x) = \begin{cases} \frac{1}{2} \int_0^1 x'(t)^2 dt & \text{if } x \in C([0, 1]) \text{ is absolutely continuous,} \\ \infty & \text{otherwise.} \end{cases}$

Example: Schilder's theorem

Let $\varepsilon > 0$. Define a random element X^{ε} of X = C([0, 1]) by

$$X_t^{\varepsilon} := \varepsilon W_t, \quad t \in [0, 1],$$

where W is a standard Brownian motion. Then $X^{\varepsilon} \xrightarrow{\mathbf{P}} 0$ in $(C([0, 1]), \|\cdot\|_{\infty})$ as $\varepsilon \to 0$.

Theorem (Schilder, 1966)

The family $(X^{\varepsilon})_{\varepsilon>0}$ satisfies the LDP as $\varepsilon \to 0$ with speed ε^{-1} and rate function

 $I(x) = \begin{cases} \frac{1}{2} \int_{0}^{1} x'(t)^{2} dt & \text{if } x \in C([0, 1]) \text{ is absolutely continuous,} \\ \infty & \text{otherwise.} \end{cases}$

This is an example of a functional LDP.

Implied volatility modelling

Intermezzo: an introduction to large deviations

LDP for the rough Bergomi model

• In the absence of analytical methods for the evaluation of implied volatility, it is fruitful to study it asymptotically.

- In the absence of analytical methods for the evaluation of implied volatility, it is fruitful to study it asymptotically.
- Here, we focus on the behaviour of $\hat{\sigma}(k, T)$ under the rough Bergomi model near expiry, as $T \rightarrow 0$.

- In the absence of analytical methods for the evaluation of implied volatility, it is fruitful to study it asymptotically.
- Here, we focus on the behaviour of $\hat{\sigma}(k, T)$ under the rough Bergomi model near expiry, as $T \rightarrow 0$.
- Jacquier and Forde (2009): If the log price $X_t = \log(S_t/S_0)$ satisfies the LDP as $t \to 0$, then the behaviour of $\hat{\sigma}(k, T)$ as $T \to 0$ can be determined using the LDP rate function.

- In the absence of analytical methods for the evaluation of implied volatility, it is fruitful to study it asymptotically.
- Here, we focus on the behaviour of $\hat{\sigma}(k, T)$ under the rough Bergomi model near expiry, as $T \rightarrow 0$.
- Jacquier and Forde (2009): If the log price $X_t = \log(S_t/S_0)$ satisfies the LDP as $t \to 0$, then the behaviour of $\hat{\sigma}(k, T)$ as $T \to 0$ can be determined using the LDP rate function.
- Unfortunately the exact distribution of X_t is difficult to determine in the rough Bergomi model — so deriving the above LDP is not straightforward.

- In the absence of analytical methods for the evaluation of implied volatility, it is fruitful to study it asymptotically.
- Here, we focus on the behaviour of $\hat{\sigma}(k, T)$ under the rough Bergomi model near expiry, as $T \rightarrow 0$.
- Jacquier and Forde (2009): If the log price $X_t = \log(S_t/S_0)$ satisfies the LDP as $t \to 0$, then the behaviour of $\hat{\sigma}(k, T)$ as $T \to 0$ can be determined using the LDP rate function.
- Unfortunately the exact distribution of X_t is difficult to determine in the rough Bergomi model — so deriving the above LDP is not straightforward.
- Which is why we make a detour and derive first a functional LDP (à la Schilder) for a rescaled version of *X*.

- In the absence of analytical methods for the evaluation of implied volatility, it is fruitful to study it asymptotically.
- Here, we focus on the behaviour of $\hat{\sigma}(k, T)$ under the rough Bergomi model near expiry, as $T \rightarrow 0$.
- Jacquier and Forde (2009): If the log price $X_t = \log(S_t/S_0)$ satisfies the LDP as $t \to 0$, then the behaviour of $\hat{\sigma}(k, T)$ as $T \to 0$ can be determined using the LDP rate function.
- Unfortunately the exact distribution of X_t is difficult to determine in the rough Bergomi model — so deriving the above LDP is not straightforward.
- Which is why we make a detour and derive first a functional LDP (à la Schilder) for a rescaled version of *X*.
- Related results have been recently obtained by Bayer, Friz, Gulisashvili, Horvath, and Stemper (2017).

Rescaled rough Bergomi model

Rescaling

We define the rescaled version of the rough Bergomi log price $X_t = \log(S_t/S_0)$ by

$$\begin{split} X_t^{\boldsymbol{\varepsilon}} &:= \int_0^t \sqrt{v_s^{\boldsymbol{\varepsilon}}} dB_s^{\boldsymbol{\varepsilon}} - \frac{1}{2} \int_0^t v_s^{\boldsymbol{\varepsilon}} ds, \qquad B_t^{\boldsymbol{\varepsilon}} &:= \boldsymbol{\varepsilon}^{\beta/2} B_t, \\ v_t^{\boldsymbol{\varepsilon}} &:= \boldsymbol{\varepsilon}^{1+\beta} v_0 \exp\left(Z_t^{\boldsymbol{\varepsilon}} - \frac{\eta^2}{2} (\boldsymbol{\varepsilon} t)^{\beta}\right), \qquad Z_t^{\boldsymbol{\varepsilon}} &:= \boldsymbol{\varepsilon}^{\beta/2} Z_t, \end{split}$$

for any $t \in [0, 1]$ and $\varepsilon > 0$, where $\beta = 2\alpha + 1 \in (0, 1)$.

Rescaled rough Bergomi model

Rescaling

We define the rescaled version of the rough Bergomi log price $X_t = \log(S_t/S_0)$ by

$$\begin{split} X_t^{\boldsymbol{\varepsilon}} &:= \int_0^t \sqrt{v_s^{\boldsymbol{\varepsilon}}} dB_s^{\boldsymbol{\varepsilon}} - \frac{1}{2} \int_0^t v_s^{\boldsymbol{\varepsilon}} ds, \qquad B_t^{\boldsymbol{\varepsilon}} &:= \boldsymbol{\varepsilon}^{\beta/2} B_t, \\ v_t^{\boldsymbol{\varepsilon}} &:= \boldsymbol{\varepsilon}^{1+\beta} v_0 \exp\left(Z_t^{\boldsymbol{\varepsilon}} - \frac{\eta^2}{2} (\boldsymbol{\varepsilon} t)^{\beta}\right), \qquad Z_t^{\boldsymbol{\varepsilon}} &:= \boldsymbol{\varepsilon}^{\beta/2} Z_t, \end{split}$$

for any $t \in [0, 1]$ and $\varepsilon > 0$, where $\beta = 2\alpha + 1 \in (0, 1)$.

The rescaled process satisfies $X_{\varepsilon} \stackrel{d}{=} X_{1}^{\varepsilon}$ for any $\varepsilon > 0$.

Functional LDP for the rough Bergomi model

Theorem (Jacquier, P., and Stone, 2017)

The family $(X^{\varepsilon})_{\varepsilon>0}$ satisfies the LDP as $\varepsilon \to 0$ with speed $\varepsilon^{-\beta}$ and rate function

$$I(x) = \begin{cases} \inf \left\{ \frac{1}{2} \int_0^1 f(t)^2 dt : f \in L^2([0,1]), \ x = I(f) \right\}, & x \in Ran(I), \\ \infty, & x \notin Ran(I), \end{cases}$$

where $I : L^2([0, 1]) \rightarrow C([0, 1])$ is some (quite complicated) non-linear integral operator.

Functional LDP for the rough Bergomi model

Theorem (Jacquier, P., and Stone, 2017)

The family $(X^{\varepsilon})_{\varepsilon>0}$ satisfies the LDP as $\varepsilon \to 0$ with speed $\varepsilon^{-\beta}$ and rate function

$$I(x) = \begin{cases} \inf \left\{ \frac{1}{2} \int_{0}^{1} f(t)^{2} dt : f \in L^{2}([0,1]), \ x = I(f) \right\}, & x \in Ran(I), \\ \infty, & x \notin Ran(I), \end{cases}$$

where $I : L^2([0, 1]) \rightarrow C([0, 1])$ is some (quite complicated) non-linear integral operator.

The proof is largely based on a generalised Schilder's theorem (Deuschel and Stroock, 1989), the contraction principle for LDPs, and the LDP for stochastic integrals by Garcia (2008).

Univariate LDP and implied volatility asymptotics Since $X_{\varepsilon} \stackrel{d}{=} X_{1}^{\varepsilon}$, we get by the contraction principle:

Corollary

The family $(X_{\varepsilon})_{\varepsilon>0}$ (in \mathbb{R}) satisfies the LDP as $\varepsilon \to 0$ with speed $\varepsilon^{-\beta}$ and rate function $I_1(x) = \inf\{I(f) : f(1) = x\}$.

Univariate LDP and implied volatility asymptotics Since $X_{\varepsilon} \stackrel{d}{=} X_{1}^{\varepsilon}$, we get by the contraction principle:

Corollary

The family $(X_{\varepsilon})_{\varepsilon>0}$ (in \mathbb{R}) satisfies the LDP as $\varepsilon \to 0$ with speed $\varepsilon^{-\beta}$ and rate function $I_1(x) = \inf\{I(f) : f(1) = x\}$.

The methodology of Jacquier and Forde (1999) implies then:

Corollary

Under the rough Bergomi model, for $x \neq 0$,

$$\lim_{T \to 0} T^{1+\beta} \hat{\sigma} (xT^{-\beta}, T)^2 = \begin{cases} \frac{x^2}{2 \inf_{y \ge x} I_1(y)}, & x > 0, \\ \frac{x^2}{2 \inf_{y \le x} I_1(y)}, & x < 0. \end{cases}$$

References

- C. Bayer, P. K. Friz, and J. Gatheral (2016): Pricing under rough volatility. *Quant. Finance* **16**(6), 887–904.
- C. Bayer, P. K. Friz, A. Gulisashvili, B. Horvath, and B. Stemper (2017): Short-time near-the-money skew in rough fractional volatility models. Preprint: http://arxiv.org/abs/1703.05132
- M. Bennedsen, A. Lunde, and M. S. Pakkanen (2017⁺): Hybrid scheme for Brownian semistationary processes. *Finance Stoch.*, to appear.
- F. Black and M. Scholes (1973): The pricing of options and corporate liabilities. *J. Polit. Econ.* **81**(3), 637–654.
- H. Cramér (1938): Sur un nouveau théorème-limite de la théorie des probabilités. Actual. Sci. Indust. **736**, 5–23.
- J. D. Deuschel and D. W. Stroock (1989): *Large Deviations*. Academic Press, Boston.

J. Garcia (2008): A large deviation principle for stochastic integrals. J. *Theoret. Probab.* **21**(2), 476–501.

References (cont'd)

- S. L. Heston (1993): A closed-form solution for options with stochastic volatility with applications to bond and currency options. *Rev. Financ. Stud.* 6(2), 327–343.
- A. Jacquier, M. S. Pakkanen, and H. Stone (2017): Pathwise large deviations for the rough Bergomi model. Preprint: http://arxiv.org/abs/1706.05291
- A. Jacquier and M. Forde (2009): Small-time asymptotics for implied volatility under the Heston model. *Int. J. Theor. Appl. Finance* **12**(6), 861–876.
- R. McCrickerd and M. S. Pakkanen (2017): Turbocharging Monte Carlo pricing for the rough Bergomi model. Preprint: http://arxiv.org/abs/1708.02563
- M. Schilder (1966): Some asymptotic formulae for Wiener integrals. *Trans. Amer. Math. Soc.* **125**(1), 63–85.
- S. R. S. Varadhan (1966): Asymptotic probabilities and differential equations. *Comm. Pure Appl. Math.* **19**(3), 261–286.

SIAM-LMS Conference on Mathematical Modelling in Finance 2017

London, 31 August–2 September 2017

- Keynote: Mark Davis (Imperial College London)
- 3 days with 16 invited speakers from Europe/US, showcasing cutting-edge research in Quantitative Finance
- Minisymposia on Machine Learning and Rough Volatility
- Panel discussion on the Future of Mathematical Modelling in Finance
- For more information or to register, visit:

https://sites.google.com/view/mmf2017

Imperial College London