STATISTICAL INFERENCE FROM PANEL RANDOM-COEFFICIENT AR(1) DATA

VYTAUTĖ PILIPAUSKAITĖ
(Vilnius University, Lithuania \& University of Nantes, France)
Joint with REMIGIJUS LEIPUS (Vilnius),
ANNE PHILIPPE (Nantes) \& DONATAS SURGAILIS (Vilnius)

2nd Conference on Ambit Fields and Related Topics Aarhus, 14-16th August, 2017

OUTLINE

1. INTRODUCTION
2. ASYMPTOTICS OF THE EMPIRICAL C.D.F.
3. GOODNESS-OF-FIT TESTING
4. SIMULATIONS
5. OTHER RESULTS

1. INTRODUCTION

RANDOM-COEFFICIENT AR(1) PROCESS [RCAR(1)]

$$
\begin{equation*}
X(t)=a X(t-1)+\zeta(t), \quad t \in \mathbb{Z}, \tag{1}
\end{equation*}
$$

where

- i.i.d. innovations $\{\zeta(t), t \in \mathbb{Z}\}, \mathrm{E} \zeta(t)=0, \mathrm{E} \zeta^{2}(t)=1$,
- random coefficient $a \in[0,1)$ with $\mathrm{E}\left(1-a^{2}\right)^{-1}<\infty$, independent of $\{\zeta(t), t \in \mathbb{Z}\}$.

1. INTRODUCTION

RANDOM-COEFFICIENT AR(1) PROCESS [RCAR(1)]

$$
\begin{equation*}
X(t)=a X(t-1)+\zeta(t), \quad t \in \mathbb{Z} \tag{1}
\end{equation*}
$$

where

- i.i.d. innovations $\{\zeta(t), t \in \mathbb{Z}\}, \mathrm{E} \zeta(t)=0, \mathrm{E} \zeta^{2}(t)=1$,
- random coefficient $a \in[0,1)$ with $\mathrm{E}\left(1-a^{2}\right)^{-1}<\infty$, independent of $\{\zeta(t), t \in \mathbb{Z}\}$.

Stationary solution of (1) is given by

$$
X(t)=\sum_{s \leq t} a^{t-s} \zeta(s), \quad t \in \mathbb{Z}
$$

with

$$
\mathrm{E} X(t)=0, \quad \mathrm{E} X(0) X(t)=\mathrm{E}\left(\frac{a^{|t|}}{1-a^{2}}\right)<\infty
$$

Motivation: explanation of long memory in macroeconomic time series (Robinson 1978, Granger 1980, Zaffaroni 2004, Puplinskaitè, Surgailis 2010).

AGGREGATION of independent copies X_{1}, \ldots, X_{N} of RCAR(1):

$$
N^{-1 / 2} \sum_{i=1}^{N} X_{i}(t) \rightarrow_{\mathrm{fdd}} \mathcal{X}(t), \quad N \rightarrow \infty
$$

where $\mathcal{X}:=\{\mathcal{X}(t), t \in \mathbb{Z}\}$ ($=$ the limit aggregated process) is Gaussian with zero mean and

$$
r(t):=\mathrm{E} \mathcal{X}(0) \mathcal{X}(t)=\mathrm{E} X(0) X(t)=\mathrm{E}\left(\frac{a^{|t|}}{1-a^{2}}\right)
$$

Motivation: explanation of long memory in macroeconomic time series (Robinson 1978, Granger 1980, Zaffaroni 2004, Puplinskaite, Surgailis 2010).

AGGREGATION of independent copies X_{1}, \ldots, X_{N} of $\operatorname{RCAR}(1)$:

$$
N^{-1 / 2} \sum_{i=1}^{N} X_{i}(t) \rightarrow_{\mathrm{fdd}} \mathcal{X}(t), \quad N \rightarrow \infty
$$

where $\mathcal{X}:=\{\mathcal{X}(t), t \in \mathbb{Z}\}$ ($=$ the limit aggregated process) is Gaussian with zero mean and

$$
r(t):=\mathrm{E} \mathcal{X}(0) \mathcal{X}(t)=\mathrm{E} X(0) X(t)=\mathrm{E}\left(\frac{a^{|t|}}{1-a^{2}}\right)
$$

Assume the AR coefficient a has a density satisfying

$$
\begin{equation*}
g(x) \sim g_{1}(1-x)^{\beta-1}, \quad x \rightarrow 1, \quad \text { for some } \beta \in(1,2), g_{1}>0 . \tag{2}
\end{equation*}
$$

Motivation: explanation of long memory in macroeconomic time series (Robinson 1978, Granger 1980, Zaffaroni 2004, Puplinskaitè, Surgailis 2010).

AGGREGATION of independent copies X_{1}, \ldots, X_{N} of RCAR(1):

$$
N^{-1 / 2} \sum_{i=1}^{N} X_{i}(t) \rightarrow_{\mathrm{fdd}} \mathcal{X}(t), \quad N \rightarrow \infty
$$

where $\mathcal{X}:=\{\mathcal{X}(t), t \in \mathbb{Z}\}$ ($=$ the limit aggregated process) is Gaussian with zero mean and

$$
r(t):=\mathrm{E} \mathcal{X}(0) \mathcal{X}(t)=\mathrm{E} X(0) X(t)=\mathrm{E}\left(\frac{a^{|t|}}{1-a^{2}}\right)
$$

Assume the AR coefficient a has a density satisfying

$$
\begin{equation*}
g(x) \sim g_{1}(1-x)^{\beta-1}, \quad x \rightarrow 1, \quad \text { for some } \beta \in(1,2), g_{1}>0 \tag{2}
\end{equation*}
$$

Then \mathcal{X} has LONG MEMORY:

$$
r(t) \sim \text { const } t^{1-\beta}, \quad t \rightarrow \infty, \Longrightarrow \sum_{t=-\infty}^{\infty}|r(t)|=\infty
$$

Pilipauskaité, Surgailis 2014:
Let X_{1}, \ldots, X_{N} be independent copies of $\operatorname{RCAR}(1)$ under (2) and

$$
S_{N, n}(\tau):=\sum_{i=1}^{N} \sum_{t=1}^{[n \tau]} X_{i}(t), \quad \tau \geq 0
$$

Pilipauskaitè, Surgailis 2014:
Let X_{1}, \ldots, X_{N} be independent copies of $\operatorname{RCAR}(1)$ under (2) and

$$
S_{N, n}(\tau):=\sum_{i=1}^{N} \sum_{t=1}^{[n \tau]} X_{i}(t), \quad \tau \geq 0
$$

- Let $\beta \in(1,2)$. As $N, n \rightarrow \infty$ so that $N / n^{\beta} \rightarrow \mu \in[0, \infty]$,

$$
\begin{array}{clll}
N^{-1 / 2} n^{-H} S_{N, n}(\tau) & \rightarrow_{\mathrm{fdd}} & \sigma_{\infty} B_{H}(\tau) & \text { if } \mu=\infty \\
N^{-1 / \beta} n^{-1 / 2} S_{N, n}(\tau) & \rightarrow_{\mathrm{fdd}} & W^{1 / 2} B(\tau), & \text { if } \mu=0 \\
N^{-1 / \beta} n^{-1 / 2} S_{N, n}(\tau) & \rightarrow_{\mathrm{fdd}} & \mu^{1 / 2} Z(\tau / \mu), & \text { if } \mu \in(0, \infty)
\end{array}
$$

where B_{H} is a standard fractional Brownian motion, $H \in\left(\frac{1}{2}, 1\right)$, B is a standard Brownian motion, $W={ }_{\mathrm{d}} \mathcal{S}_{\beta / 2}\left(\sigma_{0}, 1,0\right)$, Z has a Poisson stochastic integral representation.

Pilipauskaitè, Surgailis 2014:
Let X_{1}, \ldots, X_{N} be independent copies of $\operatorname{RCAR}(1)$ under (2) and

$$
S_{N, n}(\tau):=\sum_{i=1}^{N} \sum_{t=1}^{[n \tau]} X_{i}(t), \quad \tau \geq 0
$$

- Let $\beta \in(1,2)$. As $N, n \rightarrow \infty$ so that $N / n^{\beta} \rightarrow \mu \in[0, \infty]$,

$$
\begin{array}{clll}
N^{-1 / 2} n^{-H} S_{N, n}(\tau) & \rightarrow_{\mathrm{fdd}} & \sigma_{\infty} B_{H}(\tau) & \text { if } \mu=\infty \\
N^{-1 / \beta} n^{-1 / 2} S_{N, n}(\tau) & \rightarrow_{\mathrm{fdd}} & W^{1 / 2} B(\tau), & \text { if } \mu=0 \\
N^{-1 / \beta} n^{-1 / 2} S_{N, n}(\tau) & \rightarrow_{\mathrm{fdd}} & \mu^{1 / 2} Z(\tau / \mu), & \text { if } \mu \in(0, \infty)
\end{array}
$$

where B_{H} is a standard fractional Brownian motion, $H \in\left(\frac{1}{2}, 1\right)$,
B is a standard Brownian motion, $W={ }_{\mathrm{d}} \mathcal{S}_{\beta / 2}\left(\sigma_{0}, 1,0\right)$,
Z has a Poisson stochastic integral representation.

- Let $\beta>2$. As $N, n \rightarrow \infty$ in arbitrary way,

$$
N^{-1 / 2} n^{-1 / 2} S_{N, n}(\tau) \rightarrow_{\mathrm{fdd}} \sigma B(\tau)
$$

Pilipauskaitè, Surgailis 2014:
Let X_{1}, \ldots, X_{N} be independent copies of $\operatorname{RCAR}(1)$ under (2) and

$$
S_{N, n}(\tau):=\sum_{i=1}^{N} \sum_{t=1}^{[n \tau]} X_{i}(t), \quad \tau \geq 0
$$

- Let $\beta \in(1,2)$. As $N, n \rightarrow \infty$ so that $N / n^{\beta} \rightarrow \mu \in[0, \infty]$,

$$
\begin{array}{clll}
N^{-1 / 2} n^{-H} S_{N, n}(\tau) & \rightarrow_{\mathrm{fdd}} & \sigma_{\infty} B_{H}(\tau) & \text { if } \mu=\infty \\
N^{-1 / \beta} n^{-1 / 2} S_{N, n}(\tau) & \rightarrow_{\mathrm{fdd}} & W^{1 / 2} B(\tau), & \text { if } \mu=0 \\
N^{-1 / \beta} n^{-1 / 2} S_{N, n}(\tau) & \rightarrow_{\mathrm{fdd}} & \mu^{1 / 2} Z(\tau / \mu), & \text { if } \mu \in(0, \infty)
\end{array}
$$

where B_{H} is a standard fractional Brownian motion, $H \in\left(\frac{1}{2}, 1\right)$,
B is a standard Brownian motion, $W={ }_{\mathrm{d}} \mathcal{S}_{\beta / 2}\left(\sigma_{0}, 1,0\right)$,
Z has a Poisson stochastic integral representation.

- Let $\beta>2$. As $N, n \rightarrow \infty$ in arbitrary way,

$$
N^{-1 / 2} n^{-1 / 2} S_{N, n}(\tau) \rightarrow_{\mathrm{fdd}} \sigma B(\tau)
$$

- Related results for network traffic models:

Mikosch et al. 2002, Gaigalas, Kaj 2003, Kaj, Taqqu 2008, Dombry, Kaj 2011.

PROBLEM

ESTIMATION of the c.d.f. of the AR coefficient

$$
G(x)=\mathrm{P}(a \leq x), \quad x \in[-1,1],
$$

- from the (limit) aggregated sample:

Horváth, Leipus 2009, Chong 2006, Leipus et al. 2006, Celov et al. 2010;

- from PANEL RCAR(1) DATA $\left\{X_{i}(1), \ldots, X_{i}(n)\right\}, i=1, \ldots, N$;

PROBLEM

ESTIMATION of the c.d.f. of the AR coefficient

$$
G(x)=\mathrm{P}(a \leq x), \quad x \in[-1,1],
$$

- from the (limit) aggregated sample:

Horváth, Leipus 2009, Chong 2006, Leipus et al. 2006, Celov et al. 2010;

- from PANEL RCAR(1) DATA $\left\{X_{i}(1), \ldots, X_{i}(n)\right\}, i=1, \ldots, N$;
- parametric: Robinson 1978, Beran et al. 2010;
- NONPARAMETRIC: by the empirical c.d.f.

$$
\hat{G}_{N}(x):=\frac{1}{N} \sum_{i=1}^{N} \mathbf{1}\left(\hat{a}_{i} \leq x\right), \quad x \in[-1,1]
$$

PROBLEM

ESTIMATION of the c.d.f. of the AR coefficient

$$
G(x)=\mathrm{P}(a \leq x), \quad x \in[-1,1]
$$

- from the (limit) aggregated sample:

Horváth, Leipus 2009, Chong 2006, Leipus et al. 2006, Celov et al. 2010;

- from PANEL RCAR(1) DATA $\left\{X_{i}(1), \ldots, X_{i}(n)\right\}, i=1, \ldots, N$;
- parametric: Robinson 1978, Beran et al. 2010;
- NONPARAMETRIC: by the empirical c.d.f.

$$
\hat{G}_{N}(x):=\frac{1}{N} \sum_{i=1}^{N} \mathbf{1}\left(\hat{a}_{i} \leq x\right), \quad x \in[-1,1]
$$

of sample lag 1 autocorrelations (=the estimates of unobservable a_{i})

$$
\hat{a}_{i}:=\frac{\sum_{t=1}^{n-1}\left(X_{i}(t)-\bar{X}_{i}\right)\left(X_{i}(t+1)-\bar{X}_{i}\right)}{\sum_{t=1}^{n}\left(X_{i}(t)-\bar{X}_{i}\right)^{2}}, \quad \text { where } \bar{X}_{i}:=\frac{1}{n} \sum_{t=1}^{n} X_{i}(t)
$$

2. ASYMPTOTICS OF THE EMPIRICAL C.D.F.

PANEL RCAR(1) DATA MODEL
$\left\{X_{i}(t), t \in \mathbb{Z}\right\}, i=1,2, \ldots$: stationary solutions of

$$
\begin{aligned}
X_{i}(t) & =a_{i} X_{i}(t-1)+\zeta_{i}(t), \quad t \in \mathbb{Z}, \\
\zeta_{i}(t) & =b_{i} \eta(t)+c_{i} \xi_{i}(t), \quad t \in \mathbb{Z},
\end{aligned}
$$

2. ASYMPTOTICS OF THE EMPIRICAL C.D.F.

PANEL RCAR(1) DATA MODEL

$\left\{X_{i}(t), t \in \mathbb{Z}\right\}, i=1,2, \ldots$: stationary solutions of

$$
\begin{aligned}
X_{i}(t) & =a_{i} X_{i}(t-1)+\zeta_{i}(t), \quad t \in \mathbb{Z}, \\
\zeta_{i}(t) & =b_{i} \eta(t)+c_{i} \xi_{i}(t), \quad t \in \mathbb{Z},
\end{aligned}
$$

under the following assumptions for some $p>1$ and $\varrho \in(0,1]$:
A1 $\{\eta(t)\}$ i.i.d., $\mathrm{E} \eta(t)=0, \mathrm{E}|\eta(t)|^{2 p}<\infty$;
A2 $\left\{\xi_{i}(t)\right\}, i=1,2, \ldots$, i.i.d., $\mathrm{E} \xi_{i}(t)=0, \mathrm{E}\left|\xi_{i}(t)\right|^{2 p}<\infty$;

2. ASYMPTOTICS OF THE EMPIRICAL C.D.F.

PANEL RCAR(1) DATA MODEL

$\left\{X_{i}(t), t \in \mathbb{Z}\right\}, i=1,2, \ldots$: stationary solutions of

$$
\begin{aligned}
X_{i}(t) & =a_{i} X_{i}(t-1)+\zeta_{i}(t), \quad t \in \mathbb{Z}, \\
\zeta_{i}(t) & =b_{i} \eta(t)+c_{i} \xi_{i}(t), \quad t \in \mathbb{Z},
\end{aligned}
$$

under the following assumptions for some $p>1$ and $\varrho \in(0,1]$:
A1 $\{\eta(t)\}$ i.i.d., $\mathrm{E} \eta(t)=0, \mathrm{E}|\eta(t)|^{2 p}<\infty$;
A2 $\left\{\xi_{i}(t)\right\}, i=1,2, \ldots$, i.i.d., $\mathrm{E} \xi_{i}(t)=0$, $\mathrm{E}\left|\xi_{i}(t)\right|^{2 p}<\infty$;
A3 $\left(b_{i}, c_{i}\right)^{\top}, i=1,2, \ldots$, i.i.d. random vectors with b_{i}, c_{i} : possibly dependent, $\mathrm{P}\left(b_{i}^{2}+c_{i}^{2}>0\right)=1, \mathrm{E}\left(b_{i}^{2}+c_{i}^{2}\right)<\infty$;
A4 $a_{i} \in(-1,1), i=1,2, \ldots$, i.i.d. with a c.d.f. G satisfying $\mathrm{E}\left(1-a_{i}^{2}\right)^{-1}<\infty$;

2. ASYMPTOTICS OF THE EMPIRICAL C.D.F.

PANEL RCAR(1) DATA MODEL

$\left\{X_{i}(t), t \in \mathbb{Z}\right\}, i=1,2, \ldots$: stationary solutions of

$$
\begin{aligned}
X_{i}(t) & =a_{i} X_{i}(t-1)+\zeta_{i}(t), \quad t \in \mathbb{Z}, \\
\zeta_{i}(t) & =b_{i} \eta(t)+c_{i} \xi_{i}(t), \quad t \in \mathbb{Z},
\end{aligned}
$$

under the following assumptions for some $p>1$ and $\varrho \in(0,1]$:
A1 $\{\eta(t)\}$ i.i.d., $\mathrm{E} \eta(t)=0, \mathrm{E}|\eta(t)|^{2 p}<\infty$;
A2 $\left\{\xi_{i}(t)\right\}, i=1,2, \ldots$, i.i.d., $\mathrm{E} \xi_{i}(t)=0$, $\mathrm{E}\left|\xi_{i}(t)\right|^{2 p}<\infty$;
A3 $\left(b_{i}, c_{i}\right)^{\top}, i=1,2, \ldots$, i.i.d. random vectors with b_{i}, c_{i} : possibly dependent, $\mathrm{P}\left(b_{i}^{2}+c_{i}^{2}>0\right)=1, \mathrm{E}\left(b_{i}^{2}+c_{i}^{2}\right)<\infty$;

A4 $a_{i} \in(-1,1), i=1,2, \ldots$, i.i.d. with a c.d.f. G satisfying $\mathrm{E}\left(1-a_{i}^{2}\right)^{-1}<\infty ;$
A5 $\{\eta(t)\},\left\{\xi_{i}(t)\right\},\left(b_{i}, c_{i}\right)^{\top}, a_{i}$ are independent for every $i=1,2, \ldots$

2. ASYMPTOTICS OF THE EMPIRICAL C.D.F.

PANEL RCAR(1) DATA MODEL

$\left\{X_{i}(t), t \in \mathbb{Z}\right\}, i=1,2, \ldots$: stationary solutions of

$$
\begin{aligned}
X_{i}(t) & =a_{i} X_{i}(t-1)+\zeta_{i}(t), \quad t \in \mathbb{Z}, \\
\zeta_{i}(t) & =b_{i} \eta(t)+c_{i} \xi_{i}(t), \quad t \in \mathbb{Z},
\end{aligned}
$$

under the following assumptions for some $p>1$ and $\varrho \in(0,1]$:
A1 $\{\eta(t)\}$ i.i.d., $\mathrm{E} \eta(t)=0, \mathrm{E}|\eta(t)|^{2 p}<\infty$;
A2 $\left\{\xi_{i}(t)\right\}, i=1,2, \ldots$, i.i.d., $\mathrm{E} \xi_{i}(t)=0$, $\mathrm{E}\left|\xi_{i}(t)\right|^{2 p}<\infty$;
A3 $\left(b_{i}, c_{i}\right)^{\top}, i=1,2, \ldots$, i.i.d. random vectors with b_{i}, c_{i} : possibly dependent, $\mathrm{P}\left(b_{i}^{2}+c_{i}^{2}>0\right)=1, \mathrm{E}\left(b_{i}^{2}+c_{i}^{2}\right)<\infty$;

A4 $a_{i} \in(-1,1), i=1,2, \ldots$, i.i.d. with a c.d.f. G satisfying $\mathrm{E}\left(1-a_{i}^{2}\right)^{-1}<\infty ;$
A5 $\{\eta(t)\},\left\{\xi_{i}(t)\right\},\left(b_{i}, c_{i}\right)^{\top}, a_{i}$ are independent for every $i=1,2, \ldots$
A6 G is ϱ-Hölder continuous: $\exists L>0$ such that $|G(x)-G(y)| \leq L|x-y|^{\varrho}, \forall x, y \in[-1,1] ;$

Fix $i=1,2, \ldots$ The sample lag 1 autocorrelation of $\left\{X_{i}(1), \ldots, X_{i}(n)\right\}$
$\hat{a}_{i}=\frac{\sum_{t=1}^{n-1}\left(X_{i}(t)-\bar{X}_{i}\right)\left(X_{i}(t+1)-\bar{X}_{i}\right)}{\sum_{t=1}^{n}\left(X_{i}(t)-\bar{X}_{i}\right)^{2}}, \quad$ where $\bar{X}_{i}=\frac{1}{n} \sum_{t=1}^{n} X_{i}(t)$,
is invariant to shift and scale transformations of $X_{i} ;\left|\hat{a}_{i}\right| \leq 1$ a.s.

Fix $i=1,2, \ldots$ The sample lag 1 autocorrelation of $\left\{X_{i}(1), \ldots, X_{i}(n)\right\}$
$\hat{a}_{i}=\frac{\sum_{t=1}^{n-1}\left(X_{i}(t)-\bar{X}_{i}\right)\left(X_{i}(t+1)-\bar{X}_{i}\right)}{\sum_{t=1}^{n}\left(X_{i}(t)-\bar{X}_{i}\right)^{2}}, \quad$ where $\bar{X}_{i}=\frac{1}{n} \sum_{t=1}^{n} X_{i}(t)$,
is invariant to shift and scale transformations of $X_{i} ;\left|\hat{a}_{i}\right| \leq 1$ a.s.

THEOREM

Assume the panel $\operatorname{RCAR}(1)$ data model under A1-A6. If $N, n \rightarrow \infty$ so that $N n^{-\frac{2 \rho}{e+p}\left(\frac{p}{2} \wedge(p-1)\right)} \rightarrow 0$, then

$$
\sqrt{N}\left(\hat{G}_{N}(x)-G(x)\right) \rightarrow_{D[-1,1]} W(x),
$$

where $\{W(x), x \in[-1,1]\}$ is a Gaussian process with zero mean and $\mathrm{E} W(x) W(y)=G(x \wedge y)-G(x) G(y)$; and $\rightarrow_{D[-1,1]}$ denotes the weak convergence in $D[-1,1]$ with the uniform metric.

Fix $i=1,2, \ldots$ The sample lag 1 autocorrelation of $\left\{X_{i}(1), \ldots, X_{i}(n)\right\}$
$\hat{a}_{i}=\frac{\sum_{t=1}^{n-1}\left(X_{i}(t)-\bar{X}_{i}\right)\left(X_{i}(t+1)-\bar{X}_{i}\right)}{\sum_{t=1}^{n}\left(X_{i}(t)-\bar{X}_{i}\right)^{2}}, \quad$ where $\bar{X}_{i}=\frac{1}{n} \sum_{t=1}^{n} X_{i}(t)$,
is invariant to shift and scale transformations of $X_{i} ;\left|\hat{a}_{i}\right| \leq 1$ a.s.

THEOREM

Assume the panel $\operatorname{RCAR}(1)$ data model under A1-A6. If $N, n \rightarrow \infty$ so that $N n^{-\frac{2 \rho}{e+p}\left(\frac{p}{2} \wedge(p-1)\right)} \rightarrow 0$, then

$$
\sqrt{N}\left(\hat{G}_{N}(x)-G(x)\right) \rightarrow_{D[-1,1]} W(x),
$$

where $\{W(x), x \in[-1,1]\}$ is a Gaussian process with zero mean and $\mathrm{E} W(x) W(y)=G(x \wedge y)-G(x) G(y)$; and $\rightarrow_{D[-1,1]}$ denotes the weak convergence in $D[-1,1]$ with the uniform metric.

- Thm. applies to long panels: if $\varrho=1$, then for very large p, we assume $N / n^{p /(1+p)} \rightarrow 0$, where $p /(1+p) \approx 1$.

IDEA OF THE PROOF. It suffices to show that

$$
\sup _{x \in[-1,1]}\left|\hat{D}_{N}(x)\right| \rightarrow_{\mathrm{P}} 0
$$

where

$$
\hat{D}_{N}(x):=N^{-1 / 2} \sum_{i=1}^{N}\left(\mathbf{1}\left(\hat{a}_{i} \leq x\right)-\mathbf{1}\left(a_{i} \leq x\right)\right)
$$

IDEA OF THE PROOF. It suffices to show that

$$
\sup _{x \in[-1,1]}\left|\hat{D}_{N}(x)\right| \rightarrow_{\mathrm{P}} 0
$$

where

$$
\hat{D}_{N}(x):=N^{-1 / 2} \sum_{i=1}^{N}\left(\mathbf{1}\left(\hat{a}_{i} \leq x\right)-\mathbf{1}\left(a_{i} \leq x\right)\right)
$$

For $\varepsilon>0$, we have

$$
\left|\hat{D}_{N}(x)\right| \leq N^{-1 / 2} \sum_{i=1}^{N}\left(\mathbf{1}\left(x-\varepsilon<a_{i} \leq x+\varepsilon\right)+\mathbf{1}\left(\left|\hat{a}_{i}-a_{i}\right|>\varepsilon\right)\right)
$$

IDEA OF THE PROOF. It suffices to show that

$$
\sup _{x \in[-1,1]}\left|\hat{D}_{N}(x)\right| \rightarrow_{\mathrm{P}} 0
$$

where

$$
\hat{D}_{N}(x):=N^{-1 / 2} \sum_{i=1}^{N}\left(\mathbf{1}\left(\hat{a}_{i} \leq x\right)-\mathbf{1}\left(a_{i} \leq x\right)\right)
$$

For $\varepsilon>0$, we have

$$
\left|\hat{D}_{N}(x)\right| \leq N^{-1 / 2} \sum_{i=1}^{N}\left(\mathbf{1}\left(x-\varepsilon<a_{i} \leq x+\varepsilon\right)+\mathbf{1}\left(\left|\hat{a}_{i}-a_{i}\right|>\varepsilon\right)\right)
$$

Use ϱ-Hölder continuity of G with $\varepsilon^{\varrho+p} \sim n^{-\frac{p}{2} \wedge(p-1)}=o(1)$ and

PROPOSITION 1

Fix $i=1,2, \ldots$. Under A1-A5, for any $\varepsilon \in(0,1)$ and $n=1,2, \ldots$, it holds

$$
\mathrm{P}\left(\left|\hat{a}_{i}-a_{i}\right|>\varepsilon\right) \leq C\left(n^{-\frac{p}{2} \wedge(p-1)} \varepsilon^{-p}+n^{-1}\right)
$$

with $C>0$ independent of n, ε.

3. GOODNESS-OF-FIT TESTING

SIMPLE GoF

$$
H_{0}: G=G_{0}, \quad H_{1}: G=G_{0},
$$

with G_{0} completely specified.

3. GOODNESS-OF-FIT TESTING

SIMPLE GoF

$$
H_{0}: G=G_{0}, \quad H_{1}: G=G_{0},
$$

with G_{0} completely specified.

- The Kolmogorov-Smirnov test rejects H_{0} at level $\omega \in(0,1)$ if

$$
\sqrt{N} \sup _{x}\left|\hat{G}_{N}(x)-G_{0}(x)\right|>c(\omega),
$$

where $c(\omega)$ is the upper ω-quantile of the Kolmogorov distribution.

- It has asymptotic size ω and is consistent provided the assumptions of Thm. hold.

COMPOSITE GoF

$$
H_{0}: G \in \mathcal{G}:=\left\{G_{\theta}, \quad \theta \in(1, \infty)^{2}\right\}, \quad H_{1}: G \notin \mathcal{G},
$$

with \mathcal{G} being the family of the beta c.d.f.s parametrized by $\theta=(\alpha, \beta)^{\top}$:

$$
G_{\theta}(x)=\frac{1}{\mathrm{~B}(\alpha, \beta)} \int_{0}^{x} t^{\alpha-1}(1-t)^{\beta-1} \mathrm{~d} t, \quad x \in[0,1],
$$

where $\mathrm{B}(\alpha, \beta)=\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)}$ is the beta function.

COMPOSITE GoF

$$
H_{0}: G \in \mathcal{G}:=\left\{G_{\theta}, \theta \in(1, \infty)^{2}\right\}, \quad H_{1}: G \notin \mathcal{G},
$$

with \mathcal{G} being the family of the beta c.d.f.s parametrized by $\theta=(\alpha, \beta)^{\top}$:

$$
G_{\theta}(x)=\frac{1}{\mathrm{~B}(\alpha, \beta)} \int_{0}^{x} t^{\alpha-1}(1-t)^{\beta-1} \mathrm{~d} t, \quad x \in[0,1],
$$

where $\mathrm{B}(\alpha, \beta)=\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)}$ is the beta function.

- The Kolmogorov-Smirnov statistic with estimated parameters $\hat{\theta}_{N}=\left(\hat{\alpha}_{N}, \hat{\beta}_{N}\right)^{\top}$ (by method of moments):

$$
\sqrt{N} \sup _{x}\left|\hat{G}_{N}(x)-G_{\hat{\theta}_{N}}(x)\right| .
$$

Fix $m \in \mathbb{N}$. Let $\mu=\left(\mu^{(1)}, \ldots, \mu^{(m)}\right)^{\top}$ and $\hat{\mu}_{N}=\left(\hat{\mu}_{N}^{(1)}, \ldots, \hat{\mu}_{N}^{(m)}\right)^{\top}$, where

$$
\mu^{(u)}:=\mathrm{E} a^{u}, \quad \hat{\mu}_{N}^{(u)}:=\frac{1}{N} \sum_{i=1}^{N} \hat{a}_{i}^{u}, \quad u=1, \ldots, m
$$

Fix $m \in \mathbb{N}$. Let $\mu=\left(\mu^{(1)}, \ldots, \mu^{(m)}\right)^{\top}$ and $\hat{\mu}_{N}=\left(\hat{\mu}_{N}^{(1)}, \ldots, \hat{\mu}_{N}^{(m)}\right)^{\top}$, where

$$
\mu^{(u)}:=\mathrm{E} a^{u}, \quad \hat{\mu}_{N}^{(u)}:=\frac{1}{N} \sum_{i=1}^{N} \hat{a}_{i}^{u}, \quad u=1, \ldots, m
$$

PROPOSITION

Assume the panel $\operatorname{RCAR}(1)$ data model under A1-A5. If $N, n \rightarrow \infty$ so that $N n^{-\frac{2}{1+p}\left(\frac{p}{2} \wedge(p-1)\right)} \rightarrow 0$, then

$$
\sqrt{N}\left(\hat{\mu}_{N}-\mu\right) \rightarrow_{\mathrm{d}} \mathcal{N}(0, \Sigma)
$$

where $\Sigma:=\left(\operatorname{cov}\left(a^{u}, a^{v}\right)\right)_{1 \leq u, v \leq m}$.

Fix $m \in \mathbb{N}$. Let $\mu=\left(\mu^{(1)}, \ldots, \mu^{(m)}\right)^{\top}$ and $\hat{\mu}_{N}=\left(\hat{\mu}_{N}^{(1)}, \ldots, \hat{\mu}_{N}^{(m)}\right)^{\top}$, where

$$
\mu^{(u)}:=\mathrm{E} a^{u}, \quad \hat{\mu}_{N}^{(u)}:=\frac{1}{N} \sum_{i=1}^{N} \hat{a}_{i}^{u}, \quad u=1, \ldots, m .
$$

PROPOSITION

Assume the panel $\operatorname{RCAR}(1)$ data model under A1-A5. If $N, n \rightarrow \infty$ so that $N n^{-\frac{2}{1+p}\left(\frac{p}{2} \wedge(p-1)\right)} \rightarrow 0$, then

$$
\sqrt{N}\left(\hat{\mu}_{N}-\mu\right) \rightarrow_{\mathrm{d}} \mathcal{N}(0, \Sigma)
$$

where $\Sigma:=\left(\operatorname{cov}\left(a^{u}, a^{v}\right)\right)_{1 \leq u, v \leq m}$.

- Robinson 1978: AN of a different estimator of μ for fixed n as $N \rightarrow \infty$ if $\left\{\zeta_{i}(t) \equiv \xi_{i}(t)\right\}$ and $\mathrm{E}\left(1-a_{i}^{2}\right)^{-2}<\infty$ (short memory).

The method-of-moments estimator $\hat{\theta}_{N}=\left(\hat{\alpha}_{N}, \hat{\beta}_{N}\right)^{\top}$ of beta parameter θ :

$$
\hat{\alpha}_{N}=\frac{\hat{\mu}_{N}^{(1)}\left(\hat{\mu}_{N}^{(1)}-\hat{\mu}_{N}^{(2)}\right)}{\hat{\mu}_{N}^{(2)}-\left(\hat{\mu}_{N}^{(1)}\right)^{2}}, \quad \hat{\beta}_{N}=\frac{\left(1-\hat{\mu}_{N}^{(1)}\right)\left(\hat{\mu}_{N}^{(1)}-\hat{\mu}_{N}^{(2)}\right)}{\hat{\mu}_{N}^{(2)}-\left(\hat{\mu}_{N}^{(1)}\right)^{2}} .
$$

The method-of-moments estimator $\hat{\theta}_{N}=\left(\hat{\alpha}_{N}, \hat{\beta}_{N}\right)^{\top}$ of beta parameter θ :

$$
\hat{\alpha}_{N}=\frac{\hat{\mu}_{N}^{(1)}\left(\hat{\mu}_{N}^{(1)}-\hat{\mu}_{N}^{(2)}\right)}{\hat{\mu}_{N}^{(2)}-\left(\hat{\mu}_{N}^{(1)}\right)^{2}}, \quad \hat{\beta}_{N}=\frac{\left(1-\hat{\mu}_{N}^{(1)}\right)\left(\hat{\mu}_{N}^{(1)}-\hat{\mu}_{N}^{(2)}\right)}{\hat{\mu}_{N}^{(2)}-\left(\hat{\mu}_{N}^{(1)}\right)^{2}} .
$$

COROLLARY

Assume the panel $\operatorname{RCAR}(1)$ data model under A1-A6 with $G=G_{\theta}$, $\theta \in(1, \infty)^{2}$. If $N, n \rightarrow \infty$ so that $N n^{-\frac{2}{1+p}\left(\frac{p}{2} \wedge(p-1)\right)} \rightarrow 0$, then

$$
\sqrt{N}\left(\hat{\theta}_{N}-\theta\right) \rightarrow_{\mathrm{d}} \mathcal{N}\left(0, \Lambda_{\theta}\right)
$$

where $\Lambda_{\theta}:=\Delta^{-1} \Sigma\left(\Delta^{-1}\right)^{\top}, \Delta:=\partial \mu / \partial \theta, \Sigma$ as in Prop.

The method-of-moments estimator $\hat{\theta}_{N}=\left(\hat{\alpha}_{N}, \hat{\beta}_{N}\right)^{\top}$ of beta parameter θ :

$$
\hat{\alpha}_{N}=\frac{\hat{\mu}_{N}^{(1)}\left(\hat{\mu}_{N}^{(1)}-\hat{\mu}_{N}^{(2)}\right)}{\hat{\mu}_{N}^{(2)}-\left(\hat{\mu}_{N}^{(1)}\right)^{2}}, \quad \hat{\beta}_{N}=\frac{\left(1-\hat{\mu}_{N}^{(1)}\right)\left(\hat{\mu}_{N}^{(1)}-\hat{\mu}_{N}^{(2)}\right)}{\hat{\mu}_{N}^{(2)}-\left(\hat{\mu}_{N}^{(1)}\right)^{2}}
$$

COROLLARY

Assume the panel $\operatorname{RCAR}(1)$ data model under A1-A6 with $G=G_{\theta}$, $\theta \in(1, \infty)^{2}$. If $N, n \rightarrow \infty$ so that $N n^{-\frac{2}{1+p}\left(\frac{p}{2} \wedge(p-1)\right)} \rightarrow 0$, then

$$
\sqrt{N}\left(\hat{\theta}_{N}-\theta\right) \rightarrow_{\mathrm{d}} \mathcal{N}\left(0, \Lambda_{\theta}\right)
$$

where $\Lambda_{\theta}:=\Delta^{-1} \Sigma\left(\Delta^{-1}\right)^{\top}, \Delta:=\partial \mu / \partial \theta, \Sigma$ as in Prop. Moreover,

$$
\sqrt{N}\left(\hat{G}_{N}(x)-G_{\hat{\theta}_{N}}(x)\right) \rightarrow_{D[0,1]} V_{\theta}(x)
$$

where $\left\{V_{\theta}(x), x \in[0,1]\right\}$ is a Gaussian process with zero mean and

$$
\begin{gathered}
\mathrm{E} V_{\theta}(x) V_{\theta}(y)=G_{\theta}(x \wedge y)-G_{\theta}(x) G_{\theta}(y)+\partial_{\theta} G_{\theta}(x)^{\top} \Lambda_{\theta} \partial_{\theta} G_{\theta}(y) \\
\quad-\int_{0}^{x} l_{\theta}(u)^{\top} \mathrm{d} G_{\theta}(u) \partial_{\theta} G_{\theta}(y)-\int_{0}^{y} l_{\theta}(u)^{\top} \mathrm{d} G_{\theta}(u) \partial_{\theta} G_{\theta}(x)
\end{gathered}
$$

with $\partial_{\theta} G_{\theta}(x):=\partial G_{\theta}(x) / \partial \theta, l_{\theta}(x):=\Delta^{-1}\left(x-\mu^{(1)}, x^{2}-\mu^{(2)}\right)^{\top}$.

COMPOSITE GoF

$$
H_{0}: G \in \mathcal{G}=\left\{G_{\theta}, \theta \in(1, \infty)^{2}\right\}, \quad H_{1}: G \notin \mathcal{G}
$$

with \mathcal{G} being the family of the beta c.d.f.s parametrized by $\theta=(\alpha, \beta)^{\top}$.
H_{0} is rejected at level $\varpi \in(0,1)$ if

$$
\sqrt{N} \sup _{x}\left|\hat{G}_{N}(x)-G_{\hat{\theta}_{N}}(x)\right|>c_{\hat{\theta}_{N}}(\omega)
$$

where

$$
\mathrm{P}\left(\sup _{x}\left|V_{\theta}(x)\right|>c_{\theta}(\omega)\right)=\omega
$$

COMPOSITE GoF

$$
H_{0}: G \in \mathcal{G}=\left\{G_{\theta}, \theta \in(1, \infty)^{2}\right\}, \quad H_{1}: G \notin \mathcal{G}
$$

with \mathcal{G} being the family of the beta c.d.f.s parametrized by $\theta=(\alpha, \beta)^{\top}$.
H_{0} is rejected at level $\varpi \in(0,1)$ if

$$
\sqrt{N} \sup _{x}\left|\hat{G}_{N}(x)-G_{\hat{\theta}_{N}}(x)\right|>c_{\hat{\theta}_{N}}(\omega)
$$

where

$$
\mathrm{P}\left(\sup _{x}\left|V_{\theta}(x)\right|>c_{\theta}(\omega)\right)=\omega
$$

- The test has asymptotic size ω and is consistent (since $\hat{\mu}_{N} \rightarrow_{\mathrm{P}} \mu$ implies $\hat{\theta}_{N} \rightarrow_{\mathrm{P}} \theta$ and $c_{\theta}(\omega)$ is continuous in θ) provided the assumptions of Cor. hold.
- Parametric bootstrap can also produce asymptotically correct critical values.

4. SIMULATIONS

Beran et al. 2010:

- Let X_{1}, \ldots, X_{N} be independent copies of $\operatorname{RCAR}(1)$ with $\zeta_{i}(t) \equiv \xi_{i}(t)={ }_{\mathrm{d}} \mathcal{N}(0,1)$ and

$$
\mathrm{P}\left(a_{i}^{2} \leq x\right)=G_{\theta}(x), \quad x \in[0,1], \quad \theta \in(1, \infty)^{2}
$$

4. SIMULATIONS

Beran et al. 2010:

- Let X_{1}, \ldots, X_{N} be independent copies of $\operatorname{RCAR}(1)$ with $\zeta_{i}(t) \equiv \xi_{i}(t)={ }_{\mathrm{d}} \mathcal{N}(0,1)$ and

$$
\mathrm{P}\left(a_{i}^{2} \leq x\right)=G_{\theta}(x), \quad x \in[0,1], \quad \theta \in(1, \infty)^{2}
$$

- $\tilde{\theta}_{N}$ is defined as a maximum likelihood estimator of θ with unobservable a_{i} replaced by

$$
\tilde{a}_{i}:=\min \left(\max \left(\hat{a}_{i}, \kappa\right), 1-\kappa\right), \quad i=1, \ldots, N
$$

where $\kappa>0$ is a truncation parameter.

4. SIMULATIONS

Beran et al. 2010:

- Let X_{1}, \ldots, X_{N} be independent copies of $\operatorname{RCAR}(1)$ with $\zeta_{i}(t) \equiv \xi_{i}(t)={ }_{\mathrm{d}} \mathcal{N}(0,1)$ and

$$
\mathrm{P}\left(a_{i}^{2} \leq x\right)=G_{\theta}(x), \quad x \in[0,1], \quad \theta \in(1, \infty)^{2}
$$

- $\tilde{\theta}_{N}$ is defined as a maximum likelihood estimator of θ with unobservable a_{i} replaced by

$$
\tilde{a}_{i}:=\min \left(\max \left(\hat{a}_{i}, \kappa\right), 1-\kappa\right), \quad i=1, \ldots, N
$$

where $\kappa>0$ is a truncation parameter.

- If $\sqrt{N} \kappa^{-2} n^{-1} \rightarrow 0, \sqrt{N} \kappa^{\min (\alpha, \beta)} \rightarrow 0$ and $(\log \kappa)^{2} N^{-1 / 2} \rightarrow 0$ as $N, n \rightarrow \infty, \kappa \rightarrow 0$, then

$$
\sqrt{N}\left(\tilde{\theta}_{N}-\theta\right) \rightarrow_{\mathrm{d}} \mathcal{N}\left(0, A^{-1}(\theta)\right)
$$

Simulation procedure to compare:

$$
\begin{aligned}
T_{K S} & :=\sqrt{N} \sup _{x}\left|\hat{G}_{N}(x)-G_{\theta_{0}}(x)\right|, \\
T_{M L E} & :=N\left(\tilde{\theta}_{N}-\theta_{0}\right)^{\top} A\left(\theta_{0}\right)\left(\tilde{\theta}_{N}-\theta_{0}\right)
\end{aligned}
$$

in testing

$$
H_{0}: G=G_{\theta_{0}}\left(\theta=\theta_{0}\right), \quad H_{1}: G \neq G_{\theta_{0}}\left(\theta \neq \theta_{0}\right)
$$

for $\theta_{0}=(2,1.4)^{\top}$.

Simulation procedure to compare:

$$
\begin{aligned}
T_{K S} & :=\sqrt{N} \sup _{x}\left|\hat{G}_{N}(x)-G_{\theta_{0}}(x)\right|, \\
T_{M L E} & :=N\left(\tilde{\theta}_{N}-\theta_{0}\right)^{\top} A\left(\theta_{0}\right)\left(\tilde{\theta}_{N}-\theta_{0}\right)
\end{aligned}
$$

in testing

$$
H_{0}: G=G_{\theta_{0}}\left(\theta=\theta_{0}\right), \quad H_{1}: G \neq G_{\theta_{0}}\left(\theta \neq \theta_{0}\right)
$$

for $\theta_{0}=(2,1.4)^{\top}$.

- The same θ_{0}, N, n as in Beran et al. 2010.
- $\beta \in(1,2)$ implies the long memory in $\operatorname{RCAR}(1)$.
- p-value $:=1-F_{i}\left(T_{i}\right)$, where $F_{i}:=$ limit c.d.f. of T_{i} under H_{0}, $i=K S, M L E$.
- If the asymptotic size of the test is correct, then the asymptotic distribution of the p -value is uniform on $[0,1]$.

Figure: [left] Empirical c.d.f. of p-values of $T_{K S}$ and $T_{M L E}$ from 5000 replications of a panel with $N=250, n=817$ under $H_{0}: \theta=(2,1.4)^{\top}$. [right] Zoom-in on the region of interest: p-values smaller than 0.1 .

$\omega=5 \%$					
β	1.2	1.3	1.4	1.5	1.6
$T_{K S}$.532	.137	.049	.208	.576
$T_{M L E}$.500	.104	.077	.313	.735
$\omega=10 \%$					
β	1.2	1.3	1.4	1.5	1.6
$T_{K S}$.653	.223	.103	.315	.702
$T_{M L E}$.634	.184	.134	.421	.827

Table: Empirical probability to reject $H_{0}: \theta=(2,1.4)^{\top}$ at levels $\omega=5 \%, 10 \%$. 5000 replications of a panel with $N=250, n=817$ and $\theta=(2, \beta)^{\top}$.
The column for $\beta=1.4$ provides the empirical size.

Figure: Empirical c.d.f. of 5000 p-values of $T_{K S}$ for testing $H_{0}: \theta=(2,1.4)^{\top}$ from a panel comprising $N=250 \operatorname{RCAR}(1)$ series of length [left] $n=817$ under H_{0} and dependence structure $\left(b_{i}, c_{i}\right)^{\top}=\left(b, \sqrt{1-b^{2}}\right)^{\top}$; [right] $n=5500$ under $\theta=(2, \beta)^{\top}$ and $\left(b_{i}, c_{i}\right)^{\top}=(1,0)^{\top}$, i.e. all series are driven by common innovations.

CONCLUSIONS:

- We do not observe an important loss of the power for $T_{K S}$ compared to $T_{M L E}$.
- $T_{K S}$ does not require to choose any truncation parameter contrary to $T_{M L E}$.
- We can use $T_{K S}$ under weaker assumptions on (moments, dependence structure of) RCAR(1) innovations.

5. OTHER RESULTS

Assume

A6' G is continuously differentiable with derivative g.
Its KERNEL DENSITY ESTIMATOR is

$$
\hat{g}_{N}(x):=\frac{1}{N h} \sum_{i=1}^{N} K\left(\frac{x-\hat{a}_{i}}{h}\right), \quad x \in \mathbb{R},
$$

where the kernel $K:[-1,1] \rightarrow \mathbb{R}$ is Lipschitz, $K(x)=0, x \in \mathbb{R} \backslash[-1,1]$ and $h>0$ is a bandwidth.

5. OTHER RESULTS

Assume
A6' G is continuously differentiable with derivative g.
Its KERNEL DENSITY ESTIMATOR is

$$
\hat{g}_{N}(x):=\frac{1}{N h} \sum_{i=1}^{N} K\left(\frac{x-\hat{a}_{i}}{h}\right), \quad x \in \mathbb{R},
$$

where the kernel $K:[-1,1] \rightarrow \mathbb{R}$ is Lipschitz, $K(x)=0, x \in \mathbb{R} \backslash[-1,1]$ and $h>0$ is a bandwidth.

Under certain conditions on $N, n \rightarrow \infty, h \rightarrow 0$,

$$
\int_{-\infty}^{\infty} \mathrm{E}\left|\hat{g}_{N}(x)-g(x)\right|^{2} \mathrm{~d} x \rightarrow 0 \quad \text { and } \quad \frac{\hat{g}_{N}(x)-\mathrm{E} \hat{g}_{N}(x)}{\sqrt{\operatorname{Var}\left(\hat{g}_{N}(x)\right)}} \rightarrow \mathcal{N}(0,1) .
$$

Assume

A6" $\exists \epsilon>0$ such that G is continuously differentiable on $(1-\epsilon, 1)$ with derivative g satisfying

$$
g(x)=g_{1}(1-x)^{\beta-1}\left(1+O\left((1-x)^{\nu}\right)\right), \quad x \rightarrow 1
$$

for some $\beta>1$ and $g_{1}>0$.

Assume

A6" $\exists \epsilon>0$ such that G is continuously differentiable on $(1-\epsilon, 1)$ with derivative g satisfying

$$
g(x)=g_{1}(1-x)^{\beta-1}\left(1+O\left((1-x)^{\nu}\right)\right), \quad x \rightarrow 1,
$$

for some $\beta>1$ and $g_{1}>0$.
Then $Y:=1 /(1-a)$ satisfies

$$
\mathrm{P}(Y>y)=\left(g_{1} / \beta\right) y^{-\beta}\left(1+O\left(y^{-\nu}\right)\right), \quad y \rightarrow \infty .
$$

Assume
A6" $\exists \epsilon>0$ such that G is continuously differentiable on $(1-\epsilon, 1)$ with derivative g satisfying

$$
g(x)=g_{1}(1-x)^{\beta-1}\left(1+O\left((1-x)^{\nu}\right)\right), \quad x \rightarrow 1,
$$

for some $\beta>1$ and $g_{1}>0$.
Then $Y:=1 /(1-a)$ satisfies

$$
\mathrm{P}(Y>y)=\left(g_{1} / \beta\right) y^{-\beta}\left(1+O\left(y^{-\nu}\right)\right), \quad y \rightarrow \infty .
$$

Goldie, Smith 1987:
Let Y, Y_{1}, \ldots, Y_{N} be i.i.d. r.v.s.
THE ESTIMATOR OF THE TAIL-INDEX β is given by

$$
\beta_{N}=\frac{\sum_{i=1}^{N} \mathbf{1}\left(Y_{i} \geq y\right)}{\sum_{i=1}^{N} \mathbf{1}\left(Y_{i} \geq y\right) \ln \left(Y_{i} / y\right)},
$$

where $y>0$ is a threshold.

Let

$$
\tilde{\beta}_{N}:=\frac{\sum_{i=1}^{N} \mathbf{1}\left(\hat{a}_{i}>1-\delta\right)}{\sum_{i=1}^{N} \mathbf{1}\left(\tilde{a}_{i}>1-\delta\right) \ln \left(\delta /\left(1-\tilde{a}_{i}\right)\right)},
$$

where $\delta>0$ is a threshold close to 0 and

$$
\tilde{a}_{i}:=\min \left(\hat{a}_{i}, 1-\delta^{2}\right), \quad i=1, \ldots, N .
$$

Let

$$
\tilde{\beta}_{N}:=\frac{\sum_{i=1}^{N} \mathbf{1}\left(\hat{a}_{i}>1-\delta\right)}{\sum_{i=1}^{N} \mathbf{1}\left(\tilde{a}_{i}>1-\delta\right) \ln \left(\delta /\left(1-\tilde{a}_{i}\right)\right)},
$$

where $\delta>0$ is a threshold close to 0 and

$$
\tilde{a}_{i}:=\min \left(\hat{a}_{i}, 1-\delta^{2}\right), \quad i=1, \ldots, N .
$$

THEOREM

Assume the panel RCAR(1) data model under A1-A6 and $N \rightarrow \infty$, so that $n \rightarrow \infty, \delta \rightarrow 0$ and $N \delta^{\beta+2(\beta \wedge \nu)} \rightarrow 0, N \delta^{\beta} /(\ln \delta)^{4} \rightarrow \infty$ and

$$
\begin{aligned}
& \sqrt{N \delta^{\beta}} \gamma \ln \delta \rightarrow 0 \\
& \text { if } 1<p \leq 2, \\
& \sqrt{N \delta^{\beta}}\left(\left(n \delta^{\beta}\right)^{-1} \vee \gamma\right) \ln \delta \rightarrow 0
\end{aligned} \quad \text { if } p>2, ~ \$
$$

where $\gamma:=\gamma_{N}=\left(n^{(p-1) \wedge(p / 2)} \delta^{p+\beta}\right)^{-1 /(p+1)}$. Then

$$
\sqrt{\hat{K}_{N}}\left(\tilde{\beta}_{N}-\beta\right) \rightarrow_{\mathrm{d}} \mathcal{N}\left(0, \beta^{2}\right)
$$

where $\hat{K}_{N}:=\sum_{i=1}^{N} \mathbf{1}\left(\hat{a}_{i}>1-\delta\right)$.

TEST FOR LONG MEMORY:

$$
H_{0}: \beta \geq 2, \quad H_{1}: \beta<2(\operatorname{RCAR}(1) \text { has long memory })
$$

H_{0} is rejected at level $\omega \in(0,1)$ if

$$
\tilde{T}_{N}:=\sqrt{\hat{K}_{N}}\left(\tilde{\beta}_{N}-2\right) / \tilde{\beta}_{N}<z(\omega),
$$

where $z(\omega)$ is the ω-quantile of standard normal distribution.
Under assumptions of Thm.,

- $\tilde{T}_{N} \rightarrow_{\mathrm{d}} \mathcal{N}(0,1)$ if $\beta=2$ and $\tilde{T}_{N} \rightarrow_{\mathrm{p}}-\infty$ if $\beta<2$.

TEST FOR LONG MEMORY:

$$
H_{0}: \beta \geq 2, \quad H_{1}: \beta<2(\operatorname{RCAR}(1) \text { has long memory })
$$

H_{0} is rejected at level $\omega \in(0,1)$ if

$$
\tilde{T}_{N}:=\sqrt{\hat{K}_{N}}\left(\tilde{\beta}_{N}-2\right) / \tilde{\beta}_{N}<z(\omega),
$$

where $z(\omega)$ is the ω-quantile of standard normal distribution.
Under assumptions of Thm.,

- $\tilde{T}_{N} \rightarrow_{\mathrm{d}} \mathcal{N}(0,1)$ if $\beta=2$ and $\tilde{T}_{N} \rightarrow_{\mathrm{p}}-\infty$ if $\beta<2$.

β	1.5	1.75	2	2.25	2.5	2.75
i.i.d.	0.476	0.189	0.055	0.031	0.025	0.022
$n=1000$	0.186	0.058	0.025	0.015	0.010	0.014
$n=5000$	0.368	0.137	0.050	0.031	0.024	0.015
$n=10000$	0.410	0.130	0.050	0.039	0.028	0.016

Table: Empirical probability to reject $H_{0}: \beta \geq 2$ at level $\omega=5 \%$.
The i.i.d. row stands for testing from unobservable AR coefficients.
Three last rows correspond to panel data comprising $N=1000$ independent RCAR(1) series of length n. The AR coefficient is beta distributed wih parameters $(2, \beta)$. Estimations are made from 1000 independent replications.

REFERENCES

[1] Beran, J., Schützner, M. and Ghosh, S. (2010). From short to long memory: Aggregation and estimation. Comput. Statist. Data Anal. 54, 2432-2442.
[2] Goldie, C.M., Smith, R.L. (1987) Slow variation with remainder: theory and applications. Quart. J. Math. Oxford 38, 45-71.
[3] Granger, C.W.J. (1980). Long memory relationships and the aggregation of dynamic models. J. Econometrics. 14, 227-238.
[4] Leipus, R., Philippe, A., Pilipauskaité, V. and Surgailis, D. (2017). Nonparametric estimation of the distribution of the autoregressive coefficient from panel random-coefficient AR(1) data. J. Multivar. Anal. 153, 121-135.
[5] Pilipauskaitė, V., Surgailis, D. (2014). Joint temporal and contemporaneous aggregation of random-coefficient $\operatorname{AR}(1)$ processes. Stochastic Process. Appl. 124, 1011-1035.
[6] Robinson, P.M. (1978). Statistical inference for a random coefficient autoregressive. Scand. J. Stat. 5, 163-168.

THANK YOU FOR YOUR ATTENTION

