SDDE

CARMA

MSDDE

FICARMA

A continuous-time framework for ARMA processes

Victor Rohde Joint with Andreas Basse-O'Connor, Mikkel Slot Nielsen, and Jan Pedersen

Department of Mathematics, Aarhus University

15 August 2017

We wish to consider a modeling framework for continuous-time stationary stochastic processes that has an ARMA-like structure.

We wish to consider a modeling framework for continuous-time stationary stochastic processes that has an ARMA-like structure. Let (L_t) be a Lévy process. Then this leads us to study stationary solutions to

$$Y_t - Y_s = \int_{\mathbb{R}} Y_u \phi_{s,t}(du) + \int_{\mathbb{R}} \theta_{s,t}(u) \, dL_u$$

where $\theta_{s,t} = \theta(t - \cdot) - \theta(s - \cdot)$ for a sufficiently regular function θ concentrated on $[0, \infty)$ and $\phi_{s,t} = \phi(t - \cdot) - \phi(s - \cdot)$ for a sufficiently regular signed measure ϕ concentrated on $[0, \infty)$.

Introduction	SDDE	CARMA	MSDDE	FICARMA
		Introduction		

$$Y_t - Y_s = \int_{\mathbb{R}} Y_u \phi_{s,t}(du) + \int_{\mathbb{R}} \theta_{s,t}(u) \, dL_u$$

For example

• if $\phi(du) = \mathbb{1}_{[0,\infty)}(u)du$, $\phi_{s,t}(du) = \mathbb{1}_{(s,t]}(u)du$ and the equation becomes of Ornstein-Uhlenbeck type.

$$Y_t - Y_s = \int_{\mathbb{R}} Y_u \phi_{s,t}(du) + \int_{\mathbb{R}} \theta_{s,t}(u) \, dL_u$$

For example

- if $\phi(du) = \mathbb{1}_{[0,\infty)}(u)du$, $\phi_{s,t}(du) = \mathbb{1}_{(s,t]}(u)du$ and the equation becomes of Ornstein-Uhlenbeck type.
- if θ(u) = 1_{[0,∞)}(u), θ_{s,t} = 1_{(s,t]}(u) and we get an increment in the Lévy process as noise.

$$Y_t - Y_s = \int_{\mathbb{R}} Y_u \phi_{s,t}(du) + \int_{\mathbb{R}} \theta_{s,t}(u) \, dL_u$$

For example

Includes a descention.

- if $\phi(du) = \mathbb{1}_{[0,\infty)}(u)du$, $\phi_{s,t}(du) = \mathbb{1}_{(s,t]}(u)du$ and the equation becomes of Ornstein-Uhlenbeck type.
- if θ(u) = 1_{[0,∞)}(u), θ_{s,t} = 1_{(s,t]}(u) and we get an increment in the Lévy process as noise.
- if $\theta(u) = u^{lpha}_+$, $lpha \in (-1/2, 1/2)$,

$$\theta_{s,t}(u) = (t-u)^{\alpha}_+ - (s-u)^{\alpha}_+$$

and we get a fractional Lévy process as noise.

If $\phi(du) = \eta((-\infty, u])du$ for a finite signed measure η , the equation may be rewritten as

$$Y_t - Y_s = \int_s^t \int_{[0,\infty)} Y_{u-v} \eta(dv) \, du + \int_{\mathbb{R}} \theta_{s,t}(u) \, dL_u.$$

This is known as a stochastic delay differential equation (SDDE).

If $\phi(du) = \eta((-\infty, u])du$ for a finite signed measure η , the equation may be rewritten as

$$Y_t - Y_s = \int_s^t \int_{[0,\infty)} Y_{u-v} \eta(dv) \, du + \int_{\mathbb{R}} \theta_{s,t}(u) \, dL_u.$$

This is known as a stochastic delay differential equation (SDDE). Now $\eta = \delta_0$ corresponds to the Ornstein-Uhlenbeck type equation.

If $\phi(du) = \eta((-\infty, u])du$ for a finite signed measure η , the equation may be rewritten as

$$Y_t - Y_s = \int_s^t \int_{[0,\infty)} Y_{u-v} \eta(dv) \, du + \int_{\mathbb{R}} \theta_{s,t}(u) \, dL_u.$$

This is known as a stochastic delay differential equation (SDDE). Now $\eta = \delta_0$ corresponds to the Ornstein-Uhlenbeck type equation. In the literature there have been focus on

• measures η concentrated on a compact set.

If $\phi(du) = \eta((-\infty, u])du$ for a finite signed measure η , the equation may be rewritten as

$$Y_t - Y_s = \int_s^t \int_{[0,\infty)} Y_{u-v} \eta(dv) \, du + \int_{\mathbb{R}} \theta_{s,t}(u) \, dL_u.$$

This is known as a stochastic delay differential equation (SDDE). Now $\eta = \delta_0$ corresponds to the Ornstein-Uhlenbeck type equation. In the literature there have been focus on

- measures η concentrated on a compact set.
- the Lévy driven case.

SDDE

We show existence and uniqueness of solutions to SDDEs when

- η does not necessarily have compact support which makes it possible to relate SDDEs and CARMA processes (more on this later).
- θ is such that the moving average integral exists which gives the possibility to introduce long-range dependence into the model.
- L₁ has first moment which is a more restrictive assumption than otherwise needed in the literature.

SDDE

We show existence and uniqueness of solutions to SDDEs when

- η does not necessarily have compact support which makes it possible to relate SDDEs and CARMA processes (more on this later).
- θ is such that the moving average integral exists which gives the possibility to introduce long-range dependence into the model.
- L₁ has first moment which is a more restrictive assumption than otherwise needed in the literature.

The solution is given by

$$Y_t = \int_{\mathbb{R}} \theta * g(t-u) dL_u, \quad \mathcal{F}[g](y) = 1/(-iy - \mathcal{F}[\eta](y))$$

(under the standard assumption that $iy + \mathcal{F}[\eta](y) \neq 0$ for all $y \in \mathbb{R}$ and the mild assumption that η has second moment).

A CARMA(p, q) process (Y_t) is stationary and satisfies the formal equation

$$P(D)Y_t = Q(D)DL_t, \quad t \in \mathbb{R},$$

where P, respectively Q are polynomials of order $p \in \mathbb{N}$, respectively $q \in \mathbb{N}_0$ with p > q. Here D denotes differentiation wrt. t.

A CARMA(p, q) process (Y_t) is stationary and satisfies the formal equation

$$P(D)Y_t = Q(D)DL_t, \quad t \in \mathbb{R},$$

where P, respectively Q are polynomials of order $p \in \mathbb{N}$, respectively $q \in \mathbb{N}_0$ with p > q. Here D denotes differentiation wrt. t. These processes have been studied extensively in the literature and applied to model many different phenomenons e.g. stochastic volatility, wind speed, and electricity prices.

A CARMA(p, q) process (Y_t) is stationary and satisfies the formal equation

$$P(D)Y_t = Q(D)DL_t, \quad t \in \mathbb{R},$$

where P, respectively Q are polynomials of order $p \in \mathbb{N}$, respectively $q \in \mathbb{N}_0$ with p > q. Here D denotes differentiation wrt. t. These processes have been studied extensively in the literature and applied to model many different phenomenons e.g. stochastic volatility, wind speed, and electricity prices.

• CARMA(1,0) is an Ornstein-Uhlenbeck process.

A CARMA(p, q) process (Y_t) is stationary and satisfies the formal equation

$$P(D)Y_t = Q(D)DL_t, \quad t \in \mathbb{R},$$

where P, respectively Q are polynomials of order $p \in \mathbb{N}$, respectively $q \in \mathbb{N}_0$ with p > q. Here D denotes differentiation wrt. t. These processes have been studied extensively in the literature and applied to model many different phenomenons e.g. stochastic volatility, wind speed, and electricity prices.

- CARMA(1,0) is an Ornstein-Uhlenbeck process.
- CARMA(2,1) is the stationary solution to

$$D^2 Y_t + a_1 D Y_t + a_2 Y_t = b_0 D L_t + D^2 L_t.$$

To get a heuristic argument for a solution, take the Fourier transform on both sides to get

$$P(-iy)\mathcal{F}[Y](y) = Q(-iy)\mathcal{F}[DL](y), \tag{1}$$

To get a heuristic argument for a solution, take the Fourier transform on both sides to get

$$P(-iy)\mathcal{F}[Y](y) = Q(-iy)\mathcal{F}[DL](y), \qquad (1)$$

and therefore, whenever P(iy)
eq 0 for all $y \in \mathbb{R}$,

$$\mathcal{F}[Y](y) = \frac{Q(-iy)}{P(-iy)} \mathcal{F}[DL](y) = \mathcal{F}[g * DL](y)$$

where $g \in L^2$ is a function with Fourier transform $Q(-i \cdot)/P(-i \cdot)$ and $g \neq DL(t) = \int_{\mathbb{R}} g(t-u) dL_u$. This agrees with the solution given in the literature.

To get a heuristic argument for a solution, take the Fourier transform on both sides to get

$$P(-iy)\mathcal{F}[Y](y) = Q(-iy)\mathcal{F}[DL](y), \qquad (1)$$

and therefore, whenever $P(iy) \neq 0$ for all $y \in \mathbb{R}$,

$$\mathcal{F}[Y](y) = \frac{Q(-iy)}{P(-iy)} \mathcal{F}[DL](y) = \mathcal{F}[g * DL](y)$$

where $g \in L^2$ is a function with Fourier transform $Q(-i \cdot)/P(-i \cdot)$ and $g \neq DL(t) = \int_{\mathbb{R}} g(t-u) dL_u$. This agrees with the solution given in the literature. If $P(z) \neq 0$ whenever $\operatorname{Re}(z) \geq 0$, g(t) = 0for t < 0.

To get a heuristic argument for a solution, take the Fourier transform on both sides to get

$$P(-iy)\mathcal{F}[Y](y) = Q(-iy)\mathcal{F}[DL](y), \qquad (1)$$

and therefore, whenever $P(iy) \neq 0$ for all $y \in \mathbb{R}$,

$$\mathcal{F}[Y](y) = \frac{Q(-iy)}{P(-iy)} \mathcal{F}[DL](y) = \mathcal{F}[g * DL](y)$$

where $g \in L^2$ is a function with Fourier transform $Q(-i \cdot)/P(-i \cdot)$ and $g \neq DL(t) = \int_{\mathbb{R}} g(t-u) dL_u$. This agrees with the solution given in the literature. If $P(z) \neq 0$ whenever $\text{Re}(z) \geq 0$, g(t) = 0for t < 0.

We say that a CARMA process (Y_t) is invertible if $Q(z) \neq 0$ when $\operatorname{Re}(z) \geq 0$. Whenever this is the case,

$$\sum_{k=0}^{p-q-1} c_{k+1} d(D^k Y_t) = \int_{[0,\infty)} Y_{t-\nu} \eta(d\nu) dt + dL_t$$

where $\eta(dv) = -c_0\delta_0(dv) - f(v)dv$.

We say that a CARMA process (Y_t) is invertible if $Q(z) \neq 0$ when $\operatorname{Re}(z) \geq 0$. Whenever this is the case,

$$\sum_{k=0}^{p-q-1} c_{k+1} d(D^k Y_t) = \int_{[0,\infty)} Y_{t-\nu} \eta(d\nu) dt + dL_t$$

where $\eta(dv) = -c_0\delta_0(dv) - f(v)dv$. This is a higher order SDDE. If q = p - 1 it reduces to the regular SDDE

$$dY_t = \int_{[0,\infty)} Y_{t-\nu} \, \eta(d\nu) \, dt + dL_t$$

We say that a CARMA process (Y_t) is invertible if $Q(z) \neq 0$ when $\operatorname{Re}(z) \geq 0$. Whenever this is the case,

$$\sum_{k=0}^{p-q-1} c_{k+1} d(D^k Y_t) = \int_{[0,\infty)} Y_{t-\nu} \eta(d\nu) dt + dL_t$$

where $\eta(dv) = -c_0\delta_0(dv) - f(v)dv$. This is a higher order SDDE. If q = p - 1 it reduces to the regular SDDE

$$dY_t = \int_{[0,\infty)} Y_{t-\nu} \, \eta(d\nu) \, dt + dL_t$$

The representation gives

• a straightforward way to recover the noise when the process (Y_t) is observed.

We say that a CARMA process (Y_t) is invertible if $Q(z) \neq 0$ when $\operatorname{Re}(z) \geq 0$. Whenever this is the case,

$$\sum_{k=0}^{p-q-1} c_{k+1} d(D^k Y_t) = \int_{[0,\infty)} Y_{t-\nu} \eta(d\nu) dt + dL_t$$

where $\eta(dv) = -c_0\delta_0(dv) - f(v)dv$. This is a higher order SDDE. If q = p - 1 it reduces to the regular SDDE

$$dY_t = \int_{[0,\infty)} Y_{t-\nu} \, \eta(d\nu) \, dt + dL_t$$

The representation gives

- a straightforward way to recover the noise when the process (Y_t) is observed.
- an intuitive dynamical representation of CARMA processes.

SDDE

CARMA

MSDDE

FICARMA

MSDDE

A multivariate SDDE is an equation on the form

$$dY_t = \int_{[0,\infty)} Y_{t-v} \eta(dv) dt + dZ_t, \quad t \in \mathbb{R},$$

where $(Y_t) \subseteq \mathbb{R}^{1 \times n}$, η is a finite signed measure with second moment that take values in the space of $n \times n$ matrices, and $(Z_t) \subseteq \mathbb{R}^{1 \times n}$ is a sufficiently regular stationary increment process.

SDDE

CARMA

MSDDE

FICARMA

MSDDE

A multivariate SDDE is an equation on the form

$$dY_t = \int_{[0,\infty)} Y_{t-\nu} \eta(d\nu) dt + dZ_t, \quad t \in \mathbb{R},$$

where $(Y_t) \subseteq \mathbb{R}^{1 \times n}$, η is a finite signed measure with second moment that take values in the space of $n \times n$ matrices, and $(Z_t) \subseteq \mathbb{R}^{1 \times n}$ is a sufficiently regular stationary increment process. We can find a solution whenever

$$\det(iyI + \mathcal{F}[\eta](y)) \neq 0$$
, for all $y \in \mathbb{R}$.

The solution is given by

$$Y_t = Z * g(t)$$
, where $\mathcal{F}[g](y) = (-iyI - \mathcal{F}[\eta](y))^{-1}$.

$$dY_t = \int_{[0,\infty)} Y_{t-v} \eta(dv) dt + dZ_t, \quad t \in \mathbb{R},$$

$$dY_t = \int_{[0,\infty)} Y_{t-v} \eta(dv) dt + dZ_t, \quad t \in \mathbb{R},$$

• multivariate Ornstein-Uhlenbeck processes by choosing $\eta = A\delta_0$ for $n \times n$ matrix A.

$$dY_t = \int_{[0,\infty)} Y_{t-v} \eta(dv) dt + dZ_t, \quad t \in \mathbb{R},$$

- multivariate Ornstein-Uhlenbeck processes by choosing $\eta = A\delta_0$ for $n \times n$ matrix A.
- higher order SDDEs, and therefore also invertible CARMA processes.

$$dY_t = \int_{[0,\infty)} Y_{t-v} \eta(dv) dt + dZ_t, \quad t \in \mathbb{R},$$

- multivariate Ornstein-Uhlenbeck processes by choosing $\eta = A\delta_0$ for $n \times n$ matrix A.
- higher order SDDEs, and therefore also invertible CARMA processes.
- invertible multivariate CARMA processes.

FICARMA

• In the CARMA setup, long-range dependence can be introduced as by Brockwell and Marquardt.

FICARMA

- In the CARMA setup, long-range dependence can be introduced as by Brockwell and Marquardt.
- Let α ∈ (0, 1/2) and (I^αL_t) be a fractional Lévy process. Then a FICARMA process (Y_t) satisfy the formal equation

 $P(D)Y_t = Q(D)DI^{\alpha}L_t.$

CARMA

FICARMA

- In the CARMA setup, long-range dependence can be introduced as by Brockwell and Marquardt.
- Let α ∈ (0, 1/2) and (I^αL_t) be a fractional Lévy process. Then a FICARMA process (Y_t) satisfy the formal equation

 $P(D)Y_t = Q(D)DI^{\alpha}L_t.$

• Taking D^{α} on both sides of this equation gives

 $P(D)D^{\alpha}Y_t = Q(D)DL_t.$

CARMA

FICARMA

- In the CARMA setup, long-range dependence can be introduced as by Brockwell and Marquardt.
- Let α ∈ (0, 1/2) and (I^αL_t) be a fractional Lévy process. Then a FICARMA process (Y_t) satisfy the formal equation

 $P(D)Y_t = Q(D)DI^{\alpha}L_t.$

• Taking D^{lpha} on both sides of this equation gives

 $P(D)D^{\alpha}Y_t = Q(D)DL_t.$

In other words, $(D^{\alpha}Y_t)$ is a CARMA process.

CARMA

FICARMA

- In the CARMA setup, long-range dependence can be introduced as by Brockwell and Marquardt.
- Let α ∈ (0, 1/2) and (I^αL_t) be a fractional Lévy process. Then a FICARMA process (Y_t) satisfy the formal equation

 $P(D)Y_t = Q(D)DI^{\alpha}L_t.$

• Taking D^{lpha} on both sides of this equation gives

 $P(D)D^{\alpha}Y_t = Q(D)DL_t.$

In other words, $(D^{\alpha}Y_t)$ is a CARMA process. Estimation scheme:

CARMA

FICARMA

- In the CARMA setup, long-range dependence can be introduced as by Brockwell and Marquardt.
- Let α ∈ (0, 1/2) and (I^αL_t) be a fractional Lévy process. Then a FICARMA process (Y_t) satisfy the formal equation

 $P(D)Y_t = Q(D)DI^{\alpha}L_t.$

• Taking D^{lpha} on both sides of this equation gives

$$P(D)D^{\alpha}Y_t = Q(D)DL_t.$$

In other words, $(D^{\alpha}Y_t)$ is a CARMA process. Estimation scheme:

 Given an estimate of α, calculate (D^αY_t) and estimate the parameters in P and Q.

FICARMA

- In the CARMA setup, long-range dependence can be introduced as by Brockwell and Marquardt.
- Let α ∈ (0, 1/2) and (I^αL_t) be a fractional Lévy process. Then a FICARMA process (Y_t) satisfy the formal equation

 $P(D)Y_t = Q(D)DI^{\alpha}L_t.$

• Taking D^{lpha} on both sides of this equation gives

 $P(D)D^{\alpha}Y_t = Q(D)DL_t.$

In other words, $(D^{\alpha}Y_t)$ is a CARMA process. Estimation scheme:

- Given an estimate of α , calculate $(D^{\alpha}Y_t)$ and estimate the parameters in P and Q.
- Using the SDDE relation we may invert the CARMA relation and get the increments of $(I^{\alpha}L_t)$. Use this to estimate α and start over.

References

 Basse-O'Connor, A., M. S. Nielsen, J. Pedersen, and V. Rohde (2017).
 A continuous-time framework for ARMA processes. arXiv preprint arXiv:1704.08574.

Brockwell, P. J., R. A. Davis, and Y. Yang (2011).
 Estimation for non-negative Lévy-driven CARMA processes.
 J. Bus. Econom. Statist. 29(2), 250–259.

Brockwell, P. and T. Marquardt (2005). Lévy-driven and fractionally integrated ARMA processes with continuous time parameter. *Statist. Sinica* 15(2), 477–494.

References

 Basse-O'Connor, A., M. S. Nielsen, J. Pedersen, and V. Rohde (2017).
 A continuous-time framework for ARMA processes. arXiv preprint arXiv:1704.08574.

Brockwell, P. J., R. A. Davis, and Y. Yang (2011).
 Estimation for non-negative Lévy-driven CARMA processes.
 J. Bus. Econom. Statist. 29(2), 250–259.

Brockwell, P. and T. Marquardt (2005). Lévy-driven and fractionally integrated ARMA processes with continuous time parameter.
Statist, Sinise 15(2), 477, 404

Statist. Sinica 15(2), 477–494.

Thank you for your attention!