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Abstract

Poissonian infinitely divisible processes typically do not have
deterministic admissible translations. However they possess
rich classes of admissible random translations, called also
perturbations, where some of those can be made nearly
deterministic. We will discuss constructions of perturbations,
transfer of regularity and other relations between infinitely
divisible random fields and families of their perturbations.

p. 2 of 25



Outline

1. Introduction
2. Dynkin’s isomorphism
3. Perturbation identities for infinitely divisible process

p. 3 of 25



1. Introduction

Notation:

X ,Y r.v. in Rn. Relations between the laws L(X ) and L(Y ) can
be written as isomorphism identity:

Ef (X ) = E[f (Y ) η] ∀f : Rn 7→ R+

for some η ≥ 0 with Eη = 1.

E.g. X d= Y ⇐⇒ η = 1
L(X )� L(Y ) ⇐⇒ η ≥ 0
L(X ) ∼ L(Y ) ⇐⇒ η ∈ (0,∞) ⇐⇒ X|P

d= Y|η·P

Similar notation can be used for stochastic processes
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Example:

Let (Bt)t∈[0,1] be a standard Brownian motion. The
Cameron-Martin Formula says that for every absolutely continuous
ϕ : [0, 1] 7→ R with ϕ′ ∈ L2

EF ((Bt + ϕ(t))t∈[0,1]) = E[F ((Bt)t∈[0,1]) η] (1)

for all F : R[0,1] 7→ R, where

η = exp{
∫ 1

0
ϕ′(t)dBt −

1
2

∫ 1

0
|ϕ′(t)|2 dt}.
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Cameron-Martin Formula:

Given a centered Gaussian process G = (Gt)t∈T over an arbitrary
set T and a random variable ξ in L2

G , the L2-closure of the
subspace spanned by G , we have for any measurable functional
F : RT 7→ R

E [F ((Gt + ϕ(t))t∈T )] = E
[
F ((Gt)t∈T ) eξ−

1
2Eξ

2]
where ϕ(t) = E(ξGt).
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It is known that (1) does not extend to the Poissonian case.

Counterexample:
If Y = (Yt)t∈[0,1] is a Poisson process with unit rate, then there is
no function ψ : [0, 1]→ R, ψ 6≡ 0, such that

E
[
F
(

(Yt + ψ(t))t∈[0,1]
)]

= E
[
F
(

(Yt)t∈[0,1]
)
η
]

for all measurable functionals F : R[0,1] 7→ R and some random
variable η ≥ 0 with Eη = 1.
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There may be no admissible deterministic translations a for
Poissonian infinitely divisible process.
Therefore, we will be searching for random ones, called also
perturbations.

Example v-s counterexample:
Let Y = (Yt)t∈[0,1] is a Poisson process with unit rate. Let ζ be a
r.v. in [0, 1] with density h and independent of Y . Then

EF
(

(Yt + 1[ζ,1](t))t∈[0,1]
)

= E
[
F
(

(Yt)t∈[0,1]
)
η
]
,

where η =
∫ 1

0 h(t)dYt .

p. 8 of 25



What kind of functionals F can be of interest? A few examples:

F ((Yt)t∈T ) = f (Yt1 , . . . ,Ytn ) cylindrical functional;

F ((Yt)t∈T ) = supt∈T Yt extremum;

F ((Yt)t∈T ) =
∫

T |Yt |p µ(dt) path integral;

F
(

(Yt)t∈[0,u]
)

=
∫ u

0 δy (Yt) dt local time;

F
(

(Yt)t∈[a,b]
)

= ‖Y ‖BVp norm in the space of bounded
p-variation functions, p ≥ 1;
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2. Dynkin’s isomorphism

2.A. Abstract form of Dynkin’s isomorphism (N. Eisenbaum 2008)

Lemma (N. Eisenbaum)
Let Y = (Yt)t∈T be a nonnegative process with θ(t) = EYt <∞
for every t ∈ T. Then Y is an infinitely divisible process if and
only if for every s ∈ T having θ(s) > 0, there exists a stochastic
process Z s = (Z s

t )t∈T independent of Y such that for any
measurable functional F : RT 7→ R

E
[
F ((Yt + Z s

t )t∈T )
]

= E
[
F ((Y )t∈T ) · θ(s)−1Ys

]
.
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Finite dimensional version (characterization of infinite divisibility)

Lemma
Let Y = (Y1, . . . ,Yn) be a vector of nonnegative random variables
with θi = E(Yi ) ∈ (0,∞). The following are equivalent:

(i) Y is infinitely divisible;

(ii) For every k ≤ n there exists a vector of nonnegative random
variables Z k = (Z k

1 , . . . ,Z k
n ) independent of Y such that for

any bounded measurable functional F : Rn 7→ R

(Y + Z k)|P
d= Y |θ−1

k Yk ·P
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Proposition (R)

Let Y = (Yt)t∈T be a nonnegative infinitely divisible process with
θ(t) = EYt <∞ for every t ∈ T. Suppose that for every s ∈ T
having θ(s) > 0, there exists a stochastic process Z s = (Z s

t )t∈T
independent of Y such that for any measurable functional
F : RT 7→ R

E
[
F ((Yt + Z s

t )t∈T )
]

= E
[
F ((Y )t∈T ) · θ(s)−1Ys

]
.

If Y is separable in probability with a separant T0 = (sk)k≥1, then
the Lévy measure ν of Y is of the form ν =

∑
k≥1 νk , where νk are

concentrated on disjoint sets
Ak = {y ∈ RT

+ : y(si ) = 0∀i < k, y(sk) > 0} and are given by

νk(dy) := θ(sk) 1Ak (y) y(sk)−1 L(Z sk )(dy) ,

The drift of Y is given by c = (θ(t)P(Z t
t = 0))t∈T .
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2.B. Dynkin’s isomorphism

A positive real-valued stochastic process Y = (Yx )x∈E over a set
E is called a α-permanental process with kernel
(u(x , y) : x , y ∈ E ) if for every x1, . . . , xn ∈ E and s1, . . . , sn ≥ 0

E exp
{
−

n∑
j=1

sjYxj

}
= |I + US|−α (2)

where U = (u(xi , xj) : 1 ≤ i , j ≤ n) and S = diag(s1, . . . , sn) are
n × n-matrices, and α > 0.
Hence, Yx ’s are gamma distributed with shape parameter α and
mean αu(x , x) and jointly they have a multivariate multivariate
gamma distribution, as defined by (2).
A prototype of a permanental process is a squared Gaussian
processes, where u(x , y) is the Gaussian covariance multiplied by 2
and α = 1/2.
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To formulate the Dynkin Isomorphism Theorem we need more
ingredients. X = (Xt)t≥0 be a transient Markov process with a
state space E and 0-potential density (u(x , y) : x , y ∈ E ) with
respect to some reference measure. Eisenbaum and Kaspi (2009)
showed that for every α > 0 a permanental process (2) with such
kernel u(x , y) exists and is infinitely divisible.

Assume that X admits the local time (Lx
t : x ∈ E , t ≥ 0), which is

normalized to satisfy Ex (Ly
∞) = u(x , y). Fix s ∈ E with

u(s, s) > 0, and let P̃s be the probability under which the process
X starts at s and is killed at its last visit to s.
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Then, for any measurable functional F : RE 7→ R,

EẼs [F ((Yx + Lx
∞)x∈E )] = E

[
F ((Yx )x∈E ) Ys

αu(s, s)

]
.

This identity is known as the Dynkin Isomorphism Theorem. It
relates the gamma field to the occupation field.

The identity also enables to transfer path properties of (Yx ), which
is easier to handle, to (Lx

∞).
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3. Perturbation identities for infinitely divisible process

What is a general picture for infinitely divisible processes?

Theorem (R)

Let X = (Xt)t∈T be an infinitely divisible process having a σ-finite
Lévy measure ν. Let Z = (Zt)t∈T be a process independent of X
such that L(Z )� ν. Then L(X + Z )� L(X ). Hence, there
exists a measurable functional g : RT 7→ R+ such that for any
measurable functional F : RT 7→ R

EF
(
(Xt + Zt)t∈T

)
= E

[
F
(
(Xt)t∈T

)
· g(X )

]
. (3)
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Remark
Dynkin’s isomorphism is in the framework of this theorem. It can
be verified that the law of (Lx

∞)x∈E under Ps is absolutely
continuous with respect to the Lévy measure of the permanental
process (Yx )x∈E . Using the next theorem one computes that
g(Y ) = Ys/EYs .
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Theorem (R)

Let X = (Xt)t∈T be an infinitely divisible process of the form
X = G + Y , where G = (Gt)t∈T is a centered Gaussian process
independent of a Poissonian process Y = (Yt)t∈T having a σ-finite
Lévy measure ν and given by its spectral representation

Yt =
∫
RT

x(t)[N(dx)− 1{|x(t)|≤1}ν(dx)] + b(t), t ∈ T ,

where N is a Poisson random measure with intensity ν.
Let Z = (Zt)t∈T be an arbitrary process independent of N and G
such that L(Z )� ν on BT . Put q := dL(Z)

dν and

N(q) =
∫
RT

q(x)N(dx) .

Then for any measurable functional F : RT 7→ R

EF
(
(Xt + Zt)t∈T

)
= E

[
F
(
(Xt)t∈T

)
· N(q)

]
(4)
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Theorem (continue)

Conversely, for any F as above,

E
[
F
(
(Xt)t∈T

)
1{N(q)>0}

]
= E

[
F
(
(Xt + Zt)t∈T

)
(N(q) + q(Z ))−1

]
where q(Z ) = q ((Zt)t∈T ).

Therefore, the distributions L(X + Z ) and L(X ) are equivalent
provided ν{x : q(x) > 0} =∞.
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Remark
There are two basic directions of applying (3)-(4). The first one is
to start with a process Z = (Zt)t∈T of interest, associate with it
(possibly) easier to handle infinitely divisible process X = (Xt)t∈T
as above, and transfer certain properties of X to Z via tranfer of
regularity property for Lévy measures.
This will work with such properties as path continuity,
boundedness, etc. Using Dynkin’s Isomorphism Theorem, Marcus
and Rosen derived many results for local times of Markov
processes, including Lévy processes.
Another direction of applications of (3)-(4) is much harder, to
derive information about X by utilizing Z.
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Theorem (Transfer of regularity)

Let X = (Xt)t∈T be an infinitely divisible process with a σ-finite
Lévy measure ν. Assume that paths of X lie in a set U that is a
standard Borel space for the σ-algebra U = BT ∩ U and U an
algebraic subgroup of RT under addition. Then ν is concentrated
on U in the sense that ν∗(RT \ U) = 0. Therefore, both L(X ) and
its Lévy measure ν are carried by U.
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Example (Lévy processes)

Let X = (Xt)t≥0 be a Lévy process such that EeiuXt = etK(u),
where

K (u) =
∫
R

(eiux − 1− iux1{|x |≤1}) ρ(dx) + icu .

Let q : R+ × R 7→ R+ be such that
∫
R+×R q(r , v) drρ(dv) = 1.

Then for any measurable functional F : R[0,∞) 7→ R

E
∫
R+×R

F
((

Xt + 1{r≤t}v
)

t≥0

)
q(r , v) drρ(dv)

= E[F
(

(Xt)t≥0

)
· g(X )] ,

where

g(X ) =
∑

{r>0: ∆Xr 6=0}
q(r ,∆Xr ); ∆Xr = Xr − Xr− .
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Example (Lévy processes, continue)
Conversely,

E[F
(

(Xt)t≥0
)
1{g(X)>0}]

=
∫

R+×R

E
[
F
((

Xt + 1{r≤t}v
)

t≥0

)
· (g(X ) + q(r , v))−1] q(r , v)

drρ(dv) .

Moreover, g(X ) > 0 a.s. if
∫
R+×R 1{q(r , v) > 0} drρ(dv) =∞.
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Remark
The above example extends directly to identities for Lévy sheets

Xt = M([0, t1]× [0, td ]), t = (t1, . . . , td ) ∈ Rd
+

where M is a homogeneous independently scattered random
measure on Rd

+ without the Gaussian part. Then

E
∫
Rd

+×R
F
((

Xt + 1{r≤t}v
)

t∈Rd
+

)
q(r, v) drρ(dv)

= E[F
(

(Xt)t∈Rd
+

)
· g(X )] .
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Thank you!
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