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X := (Xt : t ∈ R) centered continuous Gaussian process.

[a, b] a compact interval, u > 0 a high level.

The scenario: the entire sample path of X on [a, b] is above u.

How do Gaussian minima behave when they are high?
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The 4 questions
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Question 3. Conditionally on Bu, what is the overshoot

min
a≤t≤b

Xt − u as u →∞ ?

Question 4. What is the asymptotic conditional distribution,
given Bu, of the location of the minimum

arg min
a≤t≤b

Xt as u →∞?
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Large Deviation Results

R: the covariance function of X.

Solve the optimization problem:

σ2∗(a, b) = min
ν∈M1[a,b]

∫ b

a

∫ b

a
R(s, t)ν(ds)ν(dt) ,

the minimum is taken over all probability measures on [a, b].

lim
u→∞

1

u2
logP
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.
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Assume σ2∗(a, b) > 0.

Let ν∗ ∈ M1[a, b] be optimal.

The conditional, given Bu, law on C [a, b] of u−1X converges
to the Dirac measure at

x(t) =
1

σ2∗(a, b)

∫ b

a
R(t, s) ν∗(ds), a ≤ t ≤ b .
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More precise results

Assume X is stationary, spectral measure FX , such that

A1. For all t ∈ R, ∫ ∞
−∞

etxFX (dx) <∞ .

A2. The support of FX has at least one accumulation point.

The canonical example: the Gaussian spectral density

FX (dx) = e−x
2/2 dx , x ∈ R .
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Lemma Under the assumptions A1 and A2: the optimization
problem

min
ν∈M1[0,b]

∫ b

0

∫ b

0
R(t − s)ν(ds)ν(dt)

1 has a unique minimizer ν∗;

2 ν∗ has a support S of a finite cardinality;

3 the optimal value σ2∗(b) > 0.



Let S = {t1, . . . , tk}.

Let Σ be the covariance matrix of
(
Xt1 , . . . ,Xtk

)
.

Let θ = (θ1, . . . , θk) = Σ−11.

Then θj > 0, j = 1, . . . , k,

P
(

min
j=1,...,k

Xtj > u
)
∼(2π)−k/2(det Σ)−1/2(θ1 . . . θk)−1

u−ke−u
2/2σ2

∗(b), u →∞ .
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An important function

µ(t) = E
(
Xt

∣∣Xs = 1, s ∈ S
)
, 0 ≤ t ≤ b .

Then µ is infinitely differentiable, ≥ 1 on [0, b].

µ ≡ 1 on S , so points of S are local minima.

The key assumption: µ′′ > 0 on S ∩ (0, b).
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Theorem 2

Suppose the key assumption holds. Then in C [0, b],

P

(
(Xt − uµ(t) : a ≤ t ≤ b) ∈ ·

∣∣∣∣ min
t∈[a,b]

Xt > u

)
⇒ QW (·) ,

where QW is the law of a tilted Gaussian process on [a, b].



Theorem 3

Suppose the key assumption holds.

Then, as u →∞, the conditional distribution of

u
(

min
t∈[a,b]

Xt − u
)

given min
t∈[0,b]

Xt > u

converges weakly to the exponential distribution with mean σ2∗(b).
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T∗ := arg min
s∈[0,b]

Xs (the leftmost one in case of ties).

Then, as u →∞,

P
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How often does the key assumption hold?

It is a nondegeneracy assumption.

Example The Gaussian covariance function R(t) = e−t
2/2.

If 0 < b ≤ 2.2079..., S = {0, b}.

The key assumption holds.
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Suppose 2.2079... < b ≤ 3.9283....

Then S = {0, b/2, b}.
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