Asymptotic behaviour of Gaussian minima

Gennady Samorodnitsky
jointly with Arijit Chakrabarty

- $\mathbf{X}:=\left(X_{t}: t \in \mathbb{R}\right)$ centered continuous Gaussian process.
- $\mathbf{X}:=\left(X_{t}: t \in \mathbb{R}\right)$ centered continuous Gaussian process.
- $[a, b]$ a compact interval, $u>0$ a high level.
- $\mathbf{X}:=\left(X_{t}: t \in \mathbb{R}\right)$ centered continuous Gaussian process.
- $[a, b]$ a compact interval, $u>0$ a high level.
- The scenario: the entire sample path of \mathbf{X} on $[a, b]$ is above u.
- $\mathbf{X}:=\left(X_{t}: t \in \mathbb{R}\right)$ centered continuous Gaussian process.
- $[a, b]$ a compact interval, $u>0$ a high level.
- The scenario: the entire sample path of \mathbf{X} on $[a, b]$ is above u.
- How do Gaussian minima behave when they are high?

The 4 questions

The 4 questions

Question 1. What is the precise asymptotic behaviour of

$$
P\left(\min _{a \leq t \leq b} X_{t}>u\right) \quad \text { as } u \rightarrow \infty ?
$$

The 4 questions

Question 1. What is the precise asymptotic behaviour of

$$
P\left(\min _{a \leq t \leq b} X_{t}>u\right) \quad \text { as } u \rightarrow \infty ?
$$

Question 2. Given the event

$$
B_{u}:=\left\{\min _{a \leq t \leq b} X_{t}>u\right\}
$$

how does the conditional distribution of $\left(X_{t}: t \in[a, b]\right)$ behave as $u \rightarrow \infty$?

Question 3. Conditionally on B_{u}, what is the overshoot

$$
\min _{a \leq t \leq b} X_{t}-u \text { as } u \rightarrow \infty ?
$$

Question 3. Conditionally on B_{u}, what is the overshoot

$$
\min _{a \leq t \leq b} X_{t}-u \text { as } u \rightarrow \infty ?
$$

Question 4. What is the asymptotic conditional distribution, given B_{u}, of the location of the minimum

$$
\arg \min _{a \leq t \leq b} X_{t} \text { as } u \rightarrow \infty ?
$$

Large Deviation Results

Large Deviation Results

- R : the covariance function of \mathbf{X}.

Large Deviation Results

- R : the covariance function of \mathbf{X}.
- Solve the optimization problem:

$$
\sigma_{*}^{2}(a, b)=\min _{\nu \in M_{1}[a, b]} \int_{a}^{b} \int_{a}^{b} R(s, t) \nu(d s) \nu(d t)
$$

the minimum is taken over all probability measures on $[a, b]$.

Large Deviation Results

- R : the covariance function of \mathbf{X}.
- Solve the optimization problem:

$$
\sigma_{*}^{2}(a, b)=\min _{\nu \in M_{1}[a, b]} \int_{a}^{b} \int_{a}^{b} R(s, t) \nu(d s) \nu(d t)
$$

the minimum is taken over all probability measures on $[a, b]$.

$$
\lim _{u \rightarrow \infty} \frac{1}{u^{2}} \log P\left(\min _{a \leq t \leq b} X_{t}>u\right)=-\frac{1}{2 \sigma_{*}^{2}(a, b)}
$$

- Assume $\sigma_{*}^{2}(a, b)>0$.
- Assume $\sigma_{*}^{2}(a, b)>0$.
- Let $\nu_{*} \in M_{1}[a, b]$ be optimal.
- Assume $\sigma_{*}^{2}(a, b)>0$.
- Let $\nu_{*} \in M_{1}[a, b]$ be optimal.
- The conditional, given B_{u}, law on $C[a, b]$ of $u^{-1} \mathbf{X}$ converges to the Dirac measure at
- Assume $\sigma_{*}^{2}(a, b)>0$.
- Let $\nu_{*} \in M_{1}[a, b]$ be optimal.
- The conditional, given B_{u}, law on $C[a, b]$ of $u^{-1} \mathbf{X}$ converges to the Dirac measure at

$$
x(t)=\frac{1}{\sigma_{*}^{2}(a, b)} \int_{a}^{b} R(t, s) \nu_{*}(d s), a \leq t \leq b
$$

More precise results

More precise results

- Assume \mathbf{X} is stationary, spectral measure F_{X}, such that

More precise results

- Assume \mathbf{X} is stationary, spectral measure F_{X}, such that

A1. For all $t \in \mathbb{R}$,

$$
\int_{-\infty}^{\infty} e^{t x} F_{X}(d x)<\infty
$$

More precise results

- Assume \mathbf{X} is stationary, spectral measure F_{X}, such that

A1. For all $t \in \mathbb{R}$,

$$
\int_{-\infty}^{\infty} e^{t x} F_{X}(d x)<\infty
$$

A2. The support of F_{X} has at least one accumulation point.

More precise results

- Assume \mathbf{X} is stationary, spectral measure F_{X}, such that

A1. For all $t \in \mathbb{R}$,

$$
\int_{-\infty}^{\infty} e^{t x} F_{X}(d x)<\infty
$$

A2. The support of F_{X} has at least one accumulation point.

- The canonical example: the Gaussian spectral density

$$
F_{X}(d x)=e^{-x^{2} / 2} d x, x \in \mathbb{R}
$$

Lemma Under the assumptions A1 and A2:

Lemma Under the assumptions A 1 and A 2 : the optimization problem

$$
\min _{\nu \in M_{1}[0, b]} \int_{0}^{b} \int_{0}^{b} R(t-s) \nu(d s) \nu(d t)
$$

Lemma Under the assumptions A 1 and A 2 : the optimization problem

$$
\min _{\nu \in M_{1}[0, b]} \int_{0}^{b} \int_{0}^{b} R(t-s) \nu(d s) \nu(d t)
$$

1 has a unique minimizer ν_{*};

Lemma Under the assumptions A 1 and A 2 : the optimization problem

$$
\min _{\nu \in M_{1}[0, b]} \int_{0}^{b} \int_{0}^{b} R(t-s) \nu(d s) \nu(d t)
$$

1 has a unique minimizer ν_{*};
$2 \nu_{*}$ has a support S of a finite cardinality;

Lemma Under the assumptions A 1 and A 2 : the optimization problem

$$
\min _{\nu \in M_{1}[0, b]} \int_{0}^{b} \int_{0}^{b} R(t-s) \nu(d s) \nu(d t)
$$

1 has a unique minimizer ν_{*};
$2 \nu_{*}$ has a support S of a finite cardinality;
3 the optimal value $\sigma_{*}^{2}(b)>0$.

- Let $S=\left\{t_{1}, \ldots, t_{k}\right\}$.
- Let $S=\left\{t_{1}, \ldots, t_{k}\right\}$.
- Let Σ be the covariance matrix of $\left(X_{t_{1}}, \ldots, X_{t_{k}}\right)$.
- Let $S=\left\{t_{1}, \ldots, t_{k}\right\}$.
- Let Σ be the covariance matrix of $\left(X_{t_{1}}, \ldots, X_{t_{k}}\right)$.
- Let $\theta=\left(\theta_{1}, \ldots, \theta_{k}\right)=\Sigma^{-1} \mathbf{1}$.
- Let $S=\left\{t_{1}, \ldots, t_{k}\right\}$.
- Let Σ be the covariance matrix of $\left(X_{t_{1}}, \ldots, X_{t_{k}}\right)$.
- Let $\theta=\left(\theta_{1}, \ldots, \theta_{k}\right)=\Sigma^{-1} \mathbf{1}$.
- Then $\theta_{j}>0, j=1, \ldots, k$,
- Let $S=\left\{t_{1}, \ldots, t_{k}\right\}$.
- Let Σ be the covariance matrix of $\left(X_{t_{1}}, \ldots, X_{t_{k}}\right)$.
- Let $\theta=\left(\theta_{1}, \ldots, \theta_{k}\right)=\Sigma^{-1} \mathbf{1}$.
- Then $\theta_{j}>0, j=1, \ldots, k$,

$$
\begin{aligned}
P\left(\min _{j=1, \ldots, k} X_{t_{j}}>u\right) \sim & (2 \pi)^{-k / 2}(\operatorname{det} \Sigma)^{-1 / 2}\left(\theta_{1} \ldots \theta_{k}\right)^{-1} \\
& u^{-k} e^{-u^{2} / 2 \sigma_{*}^{2}(b)}, u \rightarrow \infty
\end{aligned}
$$

An important function

An important function

$$
\mu(t)=E\left(X_{t} \mid X_{s}=1, s \in S\right), 0 \leq t \leq b .
$$

An important function

$$
\mu(t)=E\left(X_{t} \mid X_{s}=1, s \in S\right), 0 \leq t \leq b .
$$

- Then μ is infinitely differentiable, ≥ 1 on $[0, b]$.

An important function

$$
\mu(t)=E\left(X_{t} \mid X_{s}=1, s \in S\right), 0 \leq t \leq b .
$$

- Then μ is infinitely differentiable, ≥ 1 on $[0, b]$.
- $\mu \equiv 1$ on S, so points of S are local minima.

An important function

$$
\mu(t)=E\left(X_{t} \mid X_{s}=1, s \in S\right), 0 \leq t \leq b .
$$

- Then μ is infinitely differentiable, ≥ 1 on $[0, b]$.
- $\mu \equiv 1$ on S, so points of S are local minima.
- The key assumption: $\mu^{\prime \prime}>0$ on $S \cap(0, b)$.

Theorem 1

Let the cardinality of S be k. Then

$$
P\left(\min _{0 \leq t \leq b} X_{t}>u\right) \sim c u^{-k} e^{-u^{2} / 2 \sigma_{*}^{2}(b)}, u \rightarrow \infty
$$

for $c \in[0, \infty)$.

Theorem 1

Let the cardinality of S be k. Then

$$
P\left(\min _{0 \leq t \leq b} X_{t}>u\right) \sim c u^{-k} e^{-u^{2} / 2 \sigma_{*}^{2}(b)}, u \rightarrow \infty
$$

for $c \in[0, \infty)$.
Furthermore, $c>0$ if and only if the key assumption holds.

Theorem 2

Suppose the key assumption holds. Then in $C[0, b]$,

$$
P\left(\left(X_{t}-u \mu(t): a \leq t \leq b\right) \in \cdot \mid \min _{t \in[a, b]} X_{t}>u\right) \Rightarrow Q_{W}(\cdot)
$$

where Q_{W} is the law of a tilted Gaussian process on $[a, b]$.

Theorem 3

Suppose the key assumption holds.
Then, as $u \rightarrow \infty$, the conditional distribution of

$$
u\left(\min _{t \in[a, b]} X_{t}-u\right) \quad \text { given } \min _{t \in[0, b]} X_{t}>u
$$

converges weakly to the exponential distribution with mean $\sigma_{*}^{2}(b)$.

Theorem 4

Suppose the key assumption holds. Let

$$
T_{*}:=\arg \min _{s \in[0, b]} X_{s} \text { (the leftmost one in case of ties). }
$$

Theorem 4

Suppose the key assumption holds. Let

$$
T_{*}:=\arg \min _{s \in[0, b]} X_{s} \text { (the leftmost one in case of ties). }
$$

Then, as $u \rightarrow \infty$,

$$
P\left(T_{*} \in \cdot \mid \min _{s \in[0, b]} X_{s}>u\right) \Rightarrow \nu_{*}
$$

How often does the key assumption hold?

- It is a nondegeneracy assumption.

How often does the key assumption hold?

- It is a nondegeneracy assumption.
- Example The Gaussian covariance function $R(t)=e^{-t^{2} / 2}$.

How often does the key assumption hold?

- It is a nondegeneracy assumption.
- Example The Gaussian covariance function $R(t)=e^{-t^{2} / 2}$.
- If $0<b \leq 2.2079 \ldots, S=\{0, b\}$.

How often does the key assumption hold?

- It is a nondegeneracy assumption.
- Example The Gaussian covariance function $R(t)=e^{-t^{2} / 2}$.
- If $0<b \leq 2.2079 \ldots, S=\{0, b\}$.
- The key assumption holds.
- Suppose 2.2079... $<b \leq 3.9283 \ldots$
- Suppose 2.2079... $<b \leq 3.9283 \ldots$
- Then $S=\{0, b / 2, b\}$.

