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How do Gaussian minima behave when they are high?
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Question 2. Given the event
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how does the conditional distribution of (X; : t € [a, b]) behave
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Question 4. What is the asymptotic conditional distribution,
given By, of the location of the minimum

arg min X; as u— oo?
a<t<b
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b
/ R(t,5) v.(ds), a<t<b.
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More precise results

Assume X is stationary, spectral measure Fx, such that

For all t € R,

/ e™ Fx(dx) < 0.

The support of Fx has at least one accumulation point.

The canonical example: the Gaussian spectral density

Fx(dx) = e /2dx, x €R.
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Lemma Under the assumptions Al and A2: the optimization
problem

min /Ob/ob R(t — s)v(ds)v(dt)

veMy[0,b]

1 has a unique minimizer vy;
2 v, has a support S of a finite cardinality;

3 the optimal value 02(b) > 0.
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Let S = {tl,...,tk}.
Let 2 be the covariance matrix of (th, . ,th).
Let 6 = (91, .. .,(9;() =y11.
Then 0, >0, =1,...,k,
P( min Xy > u) ~(2m) */?(det X)"/2(01...0)) "

J=1,...k

L2752
u ke /20u(b) o



An important function



An important function

u(t) = E(Xe|Xs =1,s€5), 0<t<b.



An important function

u(t) = E(Xe|Xs =1,s€5), 0<t<b.

@ Then p is infinitely differentiable, > 1 on [0, b].



An important function

u(t)=E(Xe|Xs=1,s€5), 0<t<b.

@ Then p is infinitely differentiable, > 1 on [0, b].

@ u=1o0n S, so points of S are local minima.



An important function

u(t)=E(Xe|Xs=1,s€5), 0<t<b.

@ Then p is infinitely differentiable, > 1 on [0, b].
@ u=1o0n S, so points of S are local minima.

e The key assumption: z” > 0on SN(0,b).
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Let the cardinality of S be k. Then

k2 /252
ke u /20'*(b),

P(min Xt>u)~cu u— o0

0<t<b

for c € [0, 00).

Furthermore, ¢ > 0 if and only if the key assumption holds.



Theorem 2

Suppose the key assumption holds. Then in C[0, b],

P<(Xt—uu(t):a<t<b)€'
te[a,b]

min X > u) = Qw(:),

where Qy is the law of a tilted Gaussian process on [a, b].



Theorem 3

Suppose the key assumption holds.

Then, as u — oo, the conditional distribution of

u( min X; — u) given min X; > u
t€la,b] te[0,b]

converges weakly to the exponential distribution with mean o2(b).



Theorem 4

Suppose the key assumption holds. Let

T, :=arg n?in]Xs (the leftmost one in case of ties).
s€l0,b



Theorem 4

Suppose the key assumption holds. Let
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Then, as u — oo,

P(T*e-

min Xs > u | = v,.
s€[0,b]
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If 0 < b<22079..., S ={0, b}.

The key assumption holds.

e t°/2,



o Suppose 2.2079... < b < 3.9283....



o Suppose 2.2079... < b < 3.9283....

e Then S ={0,b/2, b}.



mu

1.01 1.02 1.03 1.04 1.05

1.00

b

3

mu

1.04

1.03

1.02

1.01

1.00

b=3.9283

o

P



