Asymptotic behaviour of Gaussian minima

Gennady Samorodnitsky jointly with Arijit Chakrabarty

• $X := (X_t : t \in \mathbb{R})$ centered continuous Gaussian process.

- $X := (X_t : t \in \mathbb{R})$ centered continuous Gaussian process.
- [a, b] a compact interval, u > 0 a high level.

- $X := (X_t : t \in \mathbb{R})$ centered continuous Gaussian process.
- [a, b] a compact interval, u > 0 a high level.
- The scenario: the entire sample path of X on [a, b] is above u.

- $X := (X_t : t \in \mathbb{R})$ centered continuous Gaussian process.
- [a, b] a compact interval, u > 0 a high level.
- The scenario: the entire sample path of **X** on [a, b] is above u.
- How do Gaussian minima behave when they are high?

The 4 questions

Question 1. What is the precise asymptotic behaviour of

$$P\left(\min_{a\leq t\leq b}X_t>u
ight)$$
 as $u
ightarrow\infty$?

The 4 questions

Question 1. What is the precise asymptotic behaviour of

$$P\left(\min_{a\leq t\leq b}X_t>u
ight)$$
 as $u
ightarrow\infty$?

Question 2. Given the event

$$B_u := \left\{ \min_{a \le t \le b} X_t > u \right\} \,,$$

how does the conditional distribution of $(X_t : t \in [a, b])$ behave as $u \to \infty$?

Question 3. Conditionally on B_u , what is the overshoot

$$\min_{a \leq t \leq b} X_t - u \text{ as } u \to \infty ?$$

Question 3. Conditionally on B_u , what is the overshoot

$$\min_{a \le t \le b} X_t - u \text{ as } u \to \infty ?$$

Question 4. What is the asymptotic conditional distribution, given B_u , of the location of the minimum

$$\arg\min_{a\leq t\leq b}X_t$$
 as $u\to\infty$?

• R: the covariance function of **X**.

- R: the covariance function of **X**.
- Solve the optimization problem:

$$\sigma_*^2(a,b) = \min_{\nu \in M_1[a,b]} \int_a^b \int_a^b R(s,t)\nu(ds)\nu(dt),$$

the minimum is taken over all probability measures on [a, b].

- R: the covariance function of **X**.
- Solve the optimization problem:

$$\sigma_*^2(a,b) = \min_{\nu \in M_1[a,b]} \int_a^b \int_a^b R(s,t)\nu(ds)\nu(dt),$$

the minimum is taken over all probability measures on [a, b].

$$\lim_{u\to\infty}\frac{1}{u^2}\log P\left(\min_{a\leq t\leq b}X_t>u\right)=-\frac{1}{2\sigma_*^2(a,b)}.$$

• Assume $\sigma_*^2(a, b) > 0$.

- Assume $\sigma_*^2(a, b) > 0$.
- Let $\nu_* \in M_1[a, b]$ be optimal.

- Assume $\sigma_*^2(a, b) > 0$.
- Let $\nu_* \in M_1[a, b]$ be optimal.
- The conditional, given B_u , law on C[a, b] of $u^{-1}\mathbf{X}$ converges to the Dirac measure at

- Assume $\sigma_*^2(a, b) > 0$.
- Let $\nu_* \in M_1[a, b]$ be optimal.
- The conditional, given B_u , law on C[a, b] of $u^{-1}\mathbf{X}$ converges to the Dirac measure at

$$x(t)=rac{1}{\sigma_*^2(a,b)}\int_a^b R(t,s)\,
u_*(ds),\ a\leq t\leq b\,.$$

• Assume **X** is stationary, spectral measure F_X , such that

• Assume **X** is stationary, spectral measure F_X , such that

A1. For all $t \in \mathbb{R}$,

$$\int_{-\infty}^{\infty} e^{tx} F_X(dx) < \infty \, .$$

• Assume **X** is stationary, spectral measure F_X , such that

A1. For all $t \in \mathbb{R}$,

$$\int_{-\infty}^{\infty} e^{tx} F_X(dx) < \infty \, .$$

A2. The support of F_X has at least one accumulation point.

• Assume **X** is stationary, spectral measure F_X , such that

A1. For all $t \in \mathbb{R}$,

$$\int_{-\infty}^{\infty} e^{tx} F_X(dx) < \infty \, .$$

A2. The support of F_X has at least one accumulation point.

• The canonical example: the Gaussian spectral density

$$F_X(dx)=e^{-x^2/2}\,dx,\ x\in\mathbb{R}\,.$$

Lemma Under the assumptions A1 and A2:

$$\min_{\nu\in M_1[0,b]}\int_0^b\int_0^b R(t-s)\nu(ds)\nu(dt)$$

$$\min_{\nu\in\mathcal{M}_1[0,b]}\int_0^b\int_0^b R(t-s)\nu(ds)\nu(dt)$$

1 has a unique minimizer ν_* ;

$$\min_{\nu\in M_1[0,b]}\int_0^b\int_0^b R(t-s)\nu(ds)\nu(dt)$$

- 1 has a unique minimizer ν_* ;
- **2** ν_* has a support *S* of a finite cardinality;

$$\min_{\nu\in M_1[0,b]}\int_0^b\int_0^b R(t-s)\nu(ds)\nu(dt)$$

- 1 has a unique minimizer ν_* ;
- **2** ν_* has a support *S* of a finite cardinality;
- **3** the optimal value $\sigma_*^2(b) > 0$.

• Let
$$S = \{t_1, \ldots, t_k\}$$
.

- Let $S = \{t_1, ..., t_k\}$.
- Let Σ be the covariance matrix of $(X_{t_1}, \ldots, X_{t_k})$.

- Let $S = \{t_1, ..., t_k\}$.
- Let Σ be the covariance matrix of $(X_{t_1}, \ldots, X_{t_k})$.

• Let
$$\theta = (\theta_1, \ldots, \theta_k) = \Sigma^{-1} \mathbf{1}$$
.

- Let $S = \{t_1, ..., t_k\}$.
- Let Σ be the covariance matrix of $(X_{t_1}, \ldots, X_{t_k})$.

• Let
$$\theta = (\theta_1, \ldots, \theta_k) = \Sigma^{-1} \mathbf{1}$$
.

• Then
$$heta_j > 0, \, j = 1, \dots, k$$
,

- Let $S = \{t_1, ..., t_k\}$.
- Let Σ be the covariance matrix of $(X_{t_1}, \ldots, X_{t_k})$.

• Let
$$\theta = (\theta_1, \ldots, \theta_k) = \Sigma^{-1} \mathbf{1}$$
.

• Then
$$heta_j > 0, \, j = 1, \dots, k$$
,

$$P(\min_{j=1,...,k} X_{t_j} > u) \sim (2\pi)^{-k/2} (\det \Sigma)^{-1/2} (\theta_1 \dots \theta_k)^{-1}$$
$$u^{-k} e^{-u^2/2\sigma_*^2(b)}, \ u \to \infty.$$

$$\mu(t) = E(X_t | X_s = 1, s \in S), \ 0 \le t \le b.$$

$$\mu(t) = E(X_t | X_s = 1, s \in S), \ 0 \le t \le b.$$

• Then μ is infinitely differentiable, ≥ 1 on [0, b].

$$\mu(t) = E(X_t | X_s = 1, s \in S), \ 0 \le t \le b.$$

- Then μ is infinitely differentiable, ≥ 1 on [0, b].
- $\mu \equiv 1$ on *S*, so points of *S* are local minima.

$$\mu(t) = E(X_t | X_s = 1, s \in S), \ 0 \le t \le b.$$

- Then μ is infinitely differentiable, ≥ 1 on [0, b].
- $\mu \equiv 1$ on *S*, so points of *S* are local minima.
- The key assumption: $\mu'' > 0$ on $S \cap (0, b)$.

Let the cardinality of S be k. Then

$$P(\min_{0\leq t\leq b}X_t>u)\sim cu^{-k}e^{-u^2/2\sigma_*^2(b)},\ u\to\infty$$

for $c \in [0,\infty)$.

Let the cardinality of S be k. Then

$$P(\min_{0\leq t\leq b}X_t>u)\sim cu^{-k}e^{-u^2/2\sigma_*^2(b)},\ u\to\infty$$

for $c \in [0,\infty)$.

Furthermore, c > 0 if and only if the key assumption holds.

Suppose the key assumption holds. Then in C[0, b],

$$P\left((X_t - u\mu(t) : a \le t \le b) \in \cdot \left|\min_{t \in [a,b]} X_t > u\right) \Rightarrow Q_W(\cdot),$$

where Q_W is the law of a tilted Gaussian process on [a, b].

Suppose the key assumption holds.

Then, as $u \to \infty$, the conditional distribution of

$$u(\min_{t\in[a,b]}X_t-u)$$
 given $\min_{t\in[0,b]}X_t>u$

converges weakly to the exponential distribution with mean $\sigma_*^2(b)$.

Suppose the key assumption holds. Let

$$T_* := \arg\min_{s \in [0,b]} X_s$$
 (the leftmost one in case of ties).

Suppose the key assumption holds. Let

$$T_* := \arg\min_{s \in [0,b]} X_s$$
 (the leftmost one in case of ties).

Then, as $u \to \infty$,

$$P\left(T_*\in\cdot\left|\min_{s\in[0,b]}X_s>u\right)\Rightarrow\nu_*.$$

• It is a nondegeneracy assumption.

- It is a nondegeneracy assumption.
- **Example** The Gaussian covariance function $R(t) = e^{-t^2/2}$.

- It is a nondegeneracy assumption.
- **Example** The Gaussian covariance function $R(t) = e^{-t^2/2}$.

• If
$$0 < b \le 2.2079..., S = \{0, b\}.$$

- It is a nondegeneracy assumption.
- **Example** The Gaussian covariance function $R(t) = e^{-t^2/2}$.

• If
$$0 < b \le 2.2079..., S = \{0, b\}.$$

• The key assumption holds.

• Suppose 2.2079... $< b \le 3.9283...$

• Suppose 2.2079... $< b \le 3.9283...$

• Then
$$S = \{0, b/2, b\}$$
.

