2nd Conference on
 Ambit Fields and Related Topics

Aarhus, August 14-16, 2017

Asymptotic distributions of some scale estimators in nonlinear models with long memory errors having infinite variance

Donatas Surgailis (Vilnius University)
Joint work with Hira L. Koul (Michigan State U.)

Plan:

Plan:

1. Motivation: scale-invariant estimation in regression models

Plan:

1. Motivation: scale-invariant estimation in regression models
2. Two robust estimators of scale parameter

Plan:

1. Motivation: scale-invariant estimation in regression models
2. Two robust estimators of scale parameter
3. Errors: linear process with long memory and infinite variance

Plan:

1. Motivation: scale-invariant estimation in regression models
2. Two robust estimators of scale parameter
3. Errors: linear process with long memory and infinite variance
4. Asymptotic distributions of scale estimators

Plan:

1. Motivation: scale-invariant estimation in regression models
2. Two robust estimators of scale parameter
3. Errors: linear process with long memory and infinite variance
4. Asymptotic distributions of scale estimators
5. The empirical process of linear long memory sequence.

Plan:

1. Motivation: scale-invariant estimation in regression models
2. Two robust estimators of scale parameter
3. Errors: linear process with long memory and infinite variance
4. Asymptotic distributions of scale estimators
5. The empirical process of linear long memory sequence. The first and second order Uniform Reduction Principles (URP)

Plan:

1. Motivation: scale-invariant estimation in regression models
2. Two robust estimators of scale parameter
3. Errors: linear process with long memory and infinite variance
4. Asymptotic distributions of scale estimators
5. The empirical process of linear long memory sequence. The first and second order Uniform Reduction Principles (URP)
6. Sketch of the proof of Thms 4 and 5

Plan:

1. Motivation: scale-invariant estimation in regression models
2. Two robust estimators of scale parameter
3. Errors: linear process with long memory and infinite variance
4. Asymptotic distributions of scale estimators
5. The empirical process of linear long memory sequence. The first and second order Uniform Reduction Principles (URP)
6. Sketch of the proof of Thms 4 and 5 (URP II)
7. Motivation: scale-invariant estimation in regression models

1. Motivation: scale-invariant estimation in regression models

Parametric nonlinear regression model:

$$
X_{n i}=g\left(\boldsymbol{\beta}_{0}, z_{n i}\right)+\varepsilon_{i}, \quad 1 \leq i \leq n
$$

1. Motivation: scale-invariant estimation in regression models

Parametric nonlinear regression model:

$$
\begin{equation*}
X_{n i}=g\left(\boldsymbol{\beta}_{0}, z_{n i}\right)+\varepsilon_{i}, \quad 1 \leq i \leq n \tag{1}
\end{equation*}
$$

where:

1. Motivation: scale-invariant estimation in regression models

Parametric nonlinear regression model:

$$
\begin{equation*}
X_{n i}=g\left(\boldsymbol{\beta}_{0}, z_{n i}\right)+\varepsilon_{i}, \quad 1 \leq i \leq n \tag{1}
\end{equation*}
$$

where:

- $\left\{z_{n i}, i=1, \cdots, n\right\}$: array of known constants (regressors); $z_{n i} \in \mathbb{R}^{q}$

1. Motivation: scale-invariant estimation in regression models

Parametric nonlinear regression model:

$$
\begin{equation*}
X_{n i}=g\left(\boldsymbol{\beta}_{0}, z_{n i}\right)+\varepsilon_{i}, \quad 1 \leq i \leq n \tag{1}
\end{equation*}
$$

where:

- $\left\{z_{n i}, i=1, \cdots, n\right\}$: array of known constants (regressors); $z_{n i} \in \mathbb{R}^{q}$
- $\left\{X_{n i}, i=1, \cdots, n\right\}$: observed responses

1. Motivation: scale-invariant estimation in regression models

Parametric nonlinear regression model:

$$
\begin{equation*}
X_{n i}=g\left(\boldsymbol{\beta}_{0}, z_{n i}\right)+\varepsilon_{i}, \quad 1 \leq i \leq n \tag{1}
\end{equation*}
$$

where:

- $\left\{z_{n i}, i=1, \cdots, n\right\}$: array of known constants (regressors); $z_{n i} \in \mathbb{R}^{q}$
- $\left\{X_{n i}, i=1, \cdots, n\right\}$: observed responses
- $\left\{\varepsilon_{i}, i=1, \cdots, n\right\}$: observation errors

1. Motivation: scale-invariant estimation in regression models

Parametric nonlinear regression model:

$$
\begin{equation*}
X_{n i}=g\left(\boldsymbol{\beta}_{0}, z_{n i}\right)+\varepsilon_{i}, \quad 1 \leq i \leq n \tag{1}
\end{equation*}
$$

where:

- $\left\{z_{n i}, i=1, \cdots, n\right\}$: array of known constants (regressors); $z_{n i} \in \mathbb{R}^{q}$
- $\left\{X_{n i}, i=1, \cdots, n\right\}$: observed responses
- $\left\{\varepsilon_{i}, i=1, \cdots, n\right\}$: observation errors
- $g=g(\boldsymbol{\beta}, z)$: a known real-valued function on $\Omega \times \mathbb{R}^{q}, \Omega \subset \mathbb{R}^{p}$ fixed subset

1. Motivation: scale-invariant estimation in regression models

Parametric nonlinear regression model:

$$
\begin{equation*}
X_{n i}=g\left(\boldsymbol{\beta}_{0}, z_{n i}\right)+\varepsilon_{i}, \quad 1 \leq i \leq n \tag{1}
\end{equation*}
$$

where:

- $\left\{z_{n i}, i=1, \cdots, n\right\}$: array of known constants (regressors); $z_{n i} \in \mathbb{R}^{q}$
- $\left\{X_{n i}, i=1, \cdots, n\right\}$: observed responses
- $\left\{\varepsilon_{i}, i=1, \cdots, n\right\}$: observation errors
- $g=g(\boldsymbol{\beta}, z)$: a known real-valued function on $\Omega \times \mathbb{R}^{q}, \Omega \subset \mathbb{R}^{p}$ fixed subset
- Goal: determine the unknown true parameter $\boldsymbol{\beta}_{0} \in \Omega$ from observations $\left\{X_{n i}, z_{n i}, i=1, \cdots, n\right\}$

1. Motivation: scale-invariant estimation in regression models

Parametric nonlinear regression model:

$$
\begin{equation*}
X_{n i}=g\left(\boldsymbol{\beta}_{0}, z_{n i}\right)+\varepsilon_{i}, \quad 1 \leq i \leq n \tag{1}
\end{equation*}
$$

where:

- $\left\{z_{n i}, i=1, \cdots, n\right\}$: array of known constants (regressors); $z_{n i} \in \mathbb{R}^{q}$
- $\left\{X_{n i}, i=1, \cdots, n\right\}$: observed responses
- $\left\{\varepsilon_{i}, i=1, \cdots, n\right\}$: observation errors
- $g=g(\boldsymbol{\beta}, z)$: a known real-valued function on $\Omega \times \mathbb{R}^{q}, \Omega \subset \mathbb{R}^{p}$ fixed subset
- Goal: determine the unknown true parameter $\boldsymbol{\beta}_{0} \in \Omega$ from observations $\left\{X_{n i}, z_{n i}, i=1, \cdots, n\right\}$
- An extremely important and general statistical model

Example: linear regression:

$$
X_{n i}=\beta_{10} z_{n i 1}+\cdots+\beta_{p 0} z_{n i p}+\varepsilon_{i}
$$

Example: linear regression:

$$
\begin{aligned}
X_{n i} & =\beta_{10} z_{n i 1}+\cdots+\beta_{p 0} z_{n i p}+\varepsilon_{i} \\
& =\boldsymbol{\beta}_{0}^{\prime} z_{n i}+\varepsilon_{i}
\end{aligned}
$$

Example: linear regression:

$$
\begin{aligned}
X_{n i} & =\beta_{10} z_{n i 1}+\cdots+\beta_{p 0} z_{n i p}+\varepsilon_{i} \\
& =\boldsymbol{\beta}_{0}^{\prime} z_{n i}+\varepsilon_{i}
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{\beta}_{0}=\left(\beta_{10}, \cdots, \beta_{p 0}\right) \in \mathbb{R}^{p}, z_{n i}=\left(z_{n i 1}, \cdots, z_{n i p}\right) \in \mathbb{R}^{p}, q= \\
& p, g(\boldsymbol{\beta}, z)=\boldsymbol{\beta}^{\prime} z
\end{aligned}
$$

Example: linear regression:

$$
\begin{aligned}
X_{n i} & =\beta_{10} z_{n i 1}+\cdots+\beta_{p 0} z_{n i p}+\varepsilon_{i} \\
& =\boldsymbol{\beta}_{0}^{\prime} z_{n i}+\varepsilon_{i}
\end{aligned}
$$

$\boldsymbol{\beta}_{0}=\left(\beta_{10}, \cdots, \beta_{p 0}\right) \in \mathbb{R}^{p}, z_{n i}=\left(z_{n i 1}, \cdots, z_{n i p}\right) \in \mathbb{R}^{p}, q=$ $p, g(\boldsymbol{\beta}, z)=\boldsymbol{\beta}^{\prime} z$
Example: unknown mean:

$$
X_{n i} \equiv X_{i}
$$

Example: linear regression:

$$
\begin{aligned}
X_{n i} & =\beta_{10} z_{n i 1}+\cdots+\beta_{p 0} z_{n i p}+\varepsilon_{i} \\
& =\boldsymbol{\beta}_{0}^{\prime} z_{n i}+\varepsilon_{i}
\end{aligned}
$$

$\boldsymbol{\beta}_{0}=\left(\beta_{10}, \cdots, \beta_{p 0}\right) \in \mathbb{R}^{p}, z_{n i}=\left(z_{n i 1}, \cdots, z_{n i p}\right) \in \mathbb{R}^{p}, q=$ $p, g(\boldsymbol{\beta}, z)=\boldsymbol{\beta}^{\prime} z$
Example: unknown mean:

$$
X_{n i} \equiv X_{i}=\beta_{0}+\varepsilon_{i}, \quad i=1, \cdots, n
$$

Example: linear regression:

$$
\begin{aligned}
X_{n i} & =\beta_{10} z_{n i 1}+\cdots+\beta_{p 0} z_{n i p}+\varepsilon_{i} \\
& =\boldsymbol{\beta}_{0}^{\prime} z_{n i}+\varepsilon_{i}
\end{aligned}
$$

$\boldsymbol{\beta}_{0}=\left(\beta_{10}, \cdots, \beta_{p 0}\right) \in \mathbb{R}^{p}, z_{n i}=\left(z_{n i 1}, \cdots, z_{n i p}\right) \in \mathbb{R}^{p}, q=$ $p, g(\boldsymbol{\beta}, z)=\boldsymbol{\beta}^{\prime} z$
Example: unknown mean:

$$
\begin{aligned}
& X_{n i} \equiv X_{i}=\beta_{0}+\varepsilon_{i}, \quad i=1, \cdots, n \\
& z_{n i} \equiv 1, p=q=1, E \varepsilon_{i}=0
\end{aligned}
$$

Example: linear regression:

$$
\begin{aligned}
X_{n i} & =\beta_{10} z_{n i 1}+\cdots+\beta_{p 0} z_{n i p}+\varepsilon_{i} \\
& =\boldsymbol{\beta}_{0}^{\prime} z_{n i}+\varepsilon_{i}
\end{aligned}
$$

$\boldsymbol{\beta}_{0}=\left(\beta_{10}, \cdots, \beta_{p 0}\right) \in \mathbb{R}^{p}, z_{n i}=\left(z_{n i 1}, \cdots, z_{n i p}\right) \in \mathbb{R}^{p}, q=$ $p, g(\boldsymbol{\beta}, z)=\boldsymbol{\beta}^{\prime} z$
Example: unknown mean:

$$
\begin{aligned}
& X_{n i} \equiv X_{i}=\beta_{0}+\varepsilon_{i}, \quad i=1, \cdots, n \\
& z_{n i} \equiv 1, p=q=1, E \varepsilon_{i}=0
\end{aligned}
$$

Standard assumption on regression function, see Koul (2002), Giraitis et al. (2012):

Standard assumption on regression function, see Koul (2002), Giraitis et al. (2012):

Let $a_{n} \rightarrow \infty$ be a given sequence.

Standard assumption on regression function, see Koul (2002), Giraitis et al. (2012):

Let $a_{n} \rightarrow \infty$ be a given sequence.
Assumption $\mathbf{G}\left(a_{n}\right)$ There exists $\dot{g}=\dot{g}(\boldsymbol{\beta}, z): \Omega \times \mathbb{R}^{q} \rightarrow \mathbb{R}^{p}$ s.t. for any $\beta \in \Omega$ and any $k>0$

$$
\sup _{1 \leq i \leq n,\|\boldsymbol{u}\| \leq k / a_{n}} a_{n}\left|g\left(\boldsymbol{\beta}+u, z_{n i}\right)-g(\boldsymbol{\beta})-\boldsymbol{u}^{\prime} \dot{g}\left(\boldsymbol{\beta}, z_{n i}\right)\right|=o(1)
$$

and

$$
\max _{1 \leq i \leq n}\left\|\dot{g}\left(\boldsymbol{\beta}_{0}, z_{n i}\right)\right\|=O(1)
$$

Standard assumption on regression function, see Koul (2002), Giraitis et al. (2012):

Let $a_{n} \rightarrow \infty$ be a given sequence.
Assumption $\mathbf{G}\left(a_{n}\right)$ There exists $\dot{g}=\dot{g}(\boldsymbol{\beta}, z): \Omega \times \mathbb{R}^{q} \rightarrow \mathbb{R}^{p}$ s.t. for any $\beta \in \Omega$ and any $k>0$

$$
\sup _{1 \leq i \leq n,\|\boldsymbol{u}\| \leq k / a_{n}} a_{n}\left|g\left(\boldsymbol{\beta}+u, z_{n i}\right)-g(\boldsymbol{\beta})-\boldsymbol{u}^{\prime} \dot{g}\left(\boldsymbol{\beta}, z_{n i}\right)\right|=o(1)
$$

and

$$
\max _{1 \leq i \leq n}\left\|\dot{g}\left(\boldsymbol{\beta}_{0}, z_{n i}\right)\right\|=O(1)
$$

- Assumption $\mathrm{G}\left(a_{n}\right)$ is trivially satisfied in linear regression

M-estimators. Let $\phi=\phi(x), x \in \mathbb{R}$: a monotone score function, $E \phi\left(\varepsilon_{i}\right)=0$:

$$
\widehat{\boldsymbol{\beta}}=\operatorname{argmin}_{\boldsymbol{\beta} \in \Omega}\|M(\boldsymbol{\beta})\|
$$

Standard assumption on regression function, see Koul (2002), Giraitis et al. (2012):

Let $a_{n} \rightarrow \infty$ be a given sequence.
Assumption $\mathbf{G}\left(a_{n}\right)$ There exists $\dot{g}=\dot{g}(\boldsymbol{\beta}, z): \Omega \times \mathbb{R}^{q} \rightarrow \mathbb{R}^{p}$ s.t. for any $\beta \in \Omega$ and any $k>0$

$$
\sup _{1 \leq i \leq n,\|\boldsymbol{u}\| \leq k / a_{n}} a_{n}\left|g\left(\boldsymbol{\beta}+u, z_{n i}\right)-g(\boldsymbol{\beta})-\boldsymbol{u}^{\prime} \dot{g}\left(\boldsymbol{\beta}, z_{n i}\right)\right|=o(1)
$$

and

$$
\max _{1 \leq i \leq n}\left\|\dot{g}\left(\boldsymbol{\beta}_{0}, z_{n i}\right)\right\|=O(1)
$$

- Assumption $\mathrm{G}\left(a_{n}\right)$ is trivially satisfied in linear regression

M-estimators. Let $\phi=\phi(x), x \in \mathbb{R}$: a monotone score function, $E \phi\left(\varepsilon_{i}\right)=0$:

$$
\widehat{\boldsymbol{\beta}}=\operatorname{argmin}_{\boldsymbol{\beta} \in \Omega}\|M(\boldsymbol{\beta})\|, \quad M(\boldsymbol{\beta}):=\sum_{i=1}^{n} \dot{g}\left(\boldsymbol{\beta}, z_{n i}\right) \phi\left(X_{n i}-g\left(\boldsymbol{\beta}, z_{n i}\right)\right)
$$

Standard assumption on regression function, see Koul (2002), Giraitis et al. (2012):

Let $a_{n} \rightarrow \infty$ be a given sequence.
Assumption $\mathbf{G}\left(a_{n}\right)$ There exists $\dot{g}=\dot{g}(\boldsymbol{\beta}, z): \Omega \times \mathbb{R}^{q} \rightarrow \mathbb{R}^{p}$ s.t. for any $\beta \in \Omega$ and any $k>0$

$$
\sup _{1 \leq i \leq n,\|\boldsymbol{u}\| \leq k / a_{n}} a_{n}\left|g\left(\boldsymbol{\beta}+u, z_{n i}\right)-g(\boldsymbol{\beta})-\boldsymbol{u}^{\prime} \dot{g}\left(\boldsymbol{\beta}, z_{n i}\right)\right|=o(1)
$$

and

$$
\max _{1 \leq i \leq n}\left\|\dot{g}\left(\boldsymbol{\beta}_{0}, z_{n i}\right)\right\|=O(1)
$$

- Assumption $\mathrm{G}\left(a_{n}\right)$ is trivially satisfied in linear regression

M-estimators. Let $\phi=\phi(x), x \in \mathbb{R}$: a monotone score function, $E \phi\left(\varepsilon_{i}\right)=0$:

$$
\widehat{\boldsymbol{\beta}}=\operatorname{argmin}_{\boldsymbol{\beta} \in \Omega}\|M(\boldsymbol{\beta})\|, \quad M(\boldsymbol{\beta}):=\sum_{i=1}^{n} \dot{g}\left(\boldsymbol{\beta}, z_{n i}\right) \phi\left(X_{n i}-g\left(\boldsymbol{\beta}, z_{n i}\right)\right)
$$

Standard assumption on regression function, see Koul (2002), Giraitis et al. (2012):

Let $a_{n} \rightarrow \infty$ be a given sequence.
Assumption $\mathbf{G}\left(a_{n}\right)$ There exists $\dot{g}=\dot{g}(\boldsymbol{\beta}, z): \Omega \times \mathbb{R}^{q} \rightarrow \mathbb{R}^{p}$ s.t. for any $\beta \in \Omega$ and any $k>0$

$$
\sup _{1 \leq i \leq n,\|\boldsymbol{u}\| \leq k / a_{n}} a_{n}\left|g\left(\boldsymbol{\beta}+u, z_{n i}\right)-g(\boldsymbol{\beta})-\boldsymbol{u}^{\prime} \dot{g}\left(\boldsymbol{\beta}, z_{n i}\right)\right|=o(1)
$$

and

$$
\max _{1 \leq i \leq n}\left\|\dot{g}\left(\boldsymbol{\beta}_{0}, z_{n i}\right)\right\|=O(1)
$$

- Assumption $\mathrm{G}\left(a_{n}\right)$ is trivially satisfied in linear regression

M-estimators. Let $\phi=\phi(x), x \in \mathbb{R}$: a monotone score function, $E \phi\left(\varepsilon_{i}\right)=0$:

$$
\widehat{\boldsymbol{\beta}}=\operatorname{argmin}_{\boldsymbol{\beta} \in \Omega}\|M(\boldsymbol{\beta})\|, \quad M(\boldsymbol{\beta}):=\sum_{i=1}^{n} \dot{g}\left(\boldsymbol{\beta}, z_{n i}\right) \phi\left(X_{n i}-g\left(\boldsymbol{\beta}, z_{n i}\right)\right)
$$

- LS estimator: $\phi(x)=x$,

$$
\widehat{\boldsymbol{\beta}}=\operatorname{argmin}_{\boldsymbol{\beta}}\left(\sum \dot{g}\left(\boldsymbol{\beta}, z_{n i}\right)\left(X_{n i}-g\left(\boldsymbol{\beta}, z_{n i}\right)\right)\right)^{2}
$$

Standard assumption on regression function, see Koul (2002), Giraitis et al. (2012):

Let $a_{n} \rightarrow \infty$ be a given sequence.
Assumption $\mathbf{G}\left(a_{n}\right)$ There exists $\dot{g}=\dot{g}(\boldsymbol{\beta}, z): \Omega \times \mathbb{R}^{q} \rightarrow \mathbb{R}^{p}$ s.t. for any $\beta \in \Omega$ and any $k>0$

$$
\sup _{1 \leq i \leq n,\|\boldsymbol{u}\| \leq k / a_{n}} a_{n}\left|g\left(\boldsymbol{\beta}+u, z_{n i}\right)-g(\boldsymbol{\beta})-\boldsymbol{u}^{\prime} \dot{g}\left(\boldsymbol{\beta}, z_{n i}\right)\right|=o(1)
$$

and

$$
\max _{1 \leq i \leq n}\left\|\dot{g}\left(\boldsymbol{\beta}_{0}, z_{n i}\right)\right\|=O(1)
$$

- Assumption $\mathrm{G}\left(a_{n}\right)$ is trivially satisfied in linear regression

M-estimators. Let $\phi=\phi(x), x \in \mathbb{R}$: a monotone score function, $E \phi\left(\varepsilon_{i}\right)=0$:

$$
\widehat{\boldsymbol{\beta}}=\operatorname{argmin}_{\boldsymbol{\beta} \in \Omega}\|M(\boldsymbol{\beta})\|, \quad M(\boldsymbol{\beta}):=\sum_{i=1}^{n} \dot{g}\left(\boldsymbol{\beta}, z_{n i}\right) \phi\left(X_{n i}-g\left(\boldsymbol{\beta}, z_{n i}\right)\right)
$$

- LS estimator: $\phi(x)=x$,

$$
\begin{aligned}
\widehat{\boldsymbol{\beta}}= & \operatorname{argmin}_{\boldsymbol{\beta}}\left(\sum \dot{g}\left(\boldsymbol{\beta}, z_{n i}\right)\left(X_{n i}-g\left(\boldsymbol{\beta}, z_{n i}\right)\right)\right)^{2} \\
& =\operatorname{argmin}_{\boldsymbol{\beta}} \sum_{i=1}^{n}\left(X_{n i}-g\left(\boldsymbol{\beta}, z_{n i}\right)\right)^{2}
\end{aligned}
$$

- LS is sensitive to outliers (not robust).
- LS is sensitive to outliers (not robust).
- Robust score function: $\phi(x)=o(|x|),|x| \rightarrow \infty$
- LS is sensitive to outliers (not robust).
- Robust score function: $\phi(x)=o(|x|),|x| \rightarrow \infty$
- 'Most robust': the median or M-estimator with score $\phi(x):=\operatorname{sgn}(x)$
- LS is sensitive to outliers (not robust).
- Robust score function: $\phi(x)=o(|x|),|x| \rightarrow \infty$
- 'Most robust': the median or M-estimator with score $\phi(x):=\operatorname{sgn}(x)$
- Huber (1981). Robust statistics.

Scale invariant estimators.

- LS is sensitive to outliers (not robust).
- Robust score function: $\phi(x)=o(|x|),|x| \rightarrow \infty$
- 'Most robust': the median or M-estimator with score $\phi(x):=\operatorname{sgn}(x)$
- Huber (1981). Robust statistics.

Scale invariant estimators.
Let $\widehat{\boldsymbol{\beta}}:=\widehat{\boldsymbol{\beta}}(\boldsymbol{X}, \boldsymbol{z}), \boldsymbol{X}:=\left(X_{n i}, 1 \leq i \leq n\right), \boldsymbol{z}:=\left(z_{n i}, 1 \leq i \leq n\right)$

- LS is sensitive to outliers (not robust).
- Robust score function: $\phi(x)=o(|x|),|x| \rightarrow \infty$
- 'Most robust': the median or M-estimator with score $\phi(x):=\operatorname{sgn}(x)$
- Huber (1981). Robust statistics.

Scale invariant estimators.
Let $\widehat{\boldsymbol{\beta}}:=\widehat{\boldsymbol{\beta}}(\boldsymbol{X}, \boldsymbol{z}), \boldsymbol{X}:=\left(X_{n i}, 1 \leq i \leq n\right), \boldsymbol{z}:=\left(z_{n i}, 1 \leq i \leq n\right)$

- Est. $\widehat{\boldsymbol{\beta}}=\widehat{\boldsymbol{\beta}}(\boldsymbol{X}, \boldsymbol{z})$ is called scale invariant if
- LS is sensitive to outliers (not robust).
- Robust score function: $\phi(x)=o(|x|),|x| \rightarrow \infty$
- 'Most robust': the median or M-estimator with score $\phi(x):=\operatorname{sgn}(x)$
- Huber (1981). Robust statistics.

Scale invariant estimators.

Let $\widehat{\boldsymbol{\beta}}:=\widehat{\boldsymbol{\beta}}(\boldsymbol{X}, \boldsymbol{z}), \boldsymbol{X}:=\left(X_{n i}, 1 \leq i \leq n\right), \boldsymbol{z}:=\left(z_{n i}, 1 \leq i \leq n\right)$

- Est. $\widehat{\boldsymbol{\beta}}=\widehat{\boldsymbol{\beta}}(\boldsymbol{X}, \boldsymbol{z})$ is called scale invariant if $\widehat{\boldsymbol{\beta}}(c \boldsymbol{X}, \boldsymbol{z})=c \widehat{\boldsymbol{\beta}}(\boldsymbol{X}, \boldsymbol{z}) \forall c>0$
- LS is sensitive to outliers (not robust).
- Robust score function: $\phi(x)=o(|x|),|x| \rightarrow \infty$
- 'Most robust': the median or M-estimator with score $\phi(x):=\operatorname{sgn}(x)$
- Huber (1981). Robust statistics.

Scale invariant estimators.

Let $\widehat{\boldsymbol{\beta}}:=\widehat{\boldsymbol{\beta}}(\boldsymbol{X}, \boldsymbol{z}), \quad \boldsymbol{X}:=\left(X_{n i}, 1 \leq i \leq n\right), \boldsymbol{z}:=\left(z_{n i}, 1 \leq i \leq n\right)$

- Est. $\widehat{\boldsymbol{\beta}}=\widehat{\boldsymbol{\beta}}(\boldsymbol{X}, \boldsymbol{z})$ is called scale invariant if $\widehat{\boldsymbol{\beta}}(c \boldsymbol{X}, \boldsymbol{z})=c \widehat{\boldsymbol{\beta}}(\boldsymbol{X}, \boldsymbol{z}) \forall c>0$
- Scale invariance is a natural and desirable property
- LS is sensitive to outliers (not robust).
- Robust score function: $\phi(x)=o(|x|),|x| \rightarrow \infty$
- 'Most robust': the median or M-estimator with score $\phi(x):=\operatorname{sgn}(x)$
- Huber (1981). Robust statistics.

Scale invariant estimators.

Let $\widehat{\boldsymbol{\beta}}:=\widehat{\boldsymbol{\beta}}(\boldsymbol{X}, \boldsymbol{z}), \boldsymbol{X}:=\left(X_{n i}, 1 \leq i \leq n\right), \boldsymbol{z}:=\left(z_{n i}, 1 \leq i \leq n\right)$

- Est. $\widehat{\boldsymbol{\beta}}=\widehat{\boldsymbol{\beta}}(\boldsymbol{X}, \boldsymbol{z})$ is called scale invariant if $\widehat{\boldsymbol{\beta}}(c \boldsymbol{X}, \boldsymbol{z})=c \widehat{\boldsymbol{\beta}}(\boldsymbol{X}, \boldsymbol{z}) \forall c>0$
- Scale invariance is a natural and desirable property
- LS estimator of $\boldsymbol{\beta}_{0}$ in linear regression is scale invariant
- LS is sensitive to outliers (not robust).
- Robust score function: $\phi(x)=o(|x|),|x| \rightarrow \infty$
- 'Most robust': the median or M-estimator with score $\phi(x):=\operatorname{sgn}(x)$
- Huber (1981). Robust statistics.

Scale invariant estimators.

Let $\widehat{\boldsymbol{\beta}}:=\widehat{\boldsymbol{\beta}}(\boldsymbol{X}, \boldsymbol{z}), \quad \boldsymbol{X}:=\left(X_{n i}, 1 \leq i \leq n\right), \boldsymbol{z}:=\left(z_{n i}, 1 \leq i \leq n\right)$

- Est. $\widehat{\boldsymbol{\beta}}=\widehat{\boldsymbol{\beta}}(\boldsymbol{X}, \boldsymbol{z})$ is called scale invariant if $\widehat{\boldsymbol{\beta}}(c \boldsymbol{X}, \boldsymbol{z})=c \widehat{\boldsymbol{\beta}}(\boldsymbol{X}, \boldsymbol{z}) \forall c>0$
- Scale invariance is a natural and desirable property
- LS estimator of $\boldsymbol{\beta}_{0}$ in linear regression is scale invariant (e.g. sample mean $\left.\widehat{\boldsymbol{\beta}}=\sum_{i=1}^{n} X_{n i}\right)$
- LS is sensitive to outliers (not robust).
- Robust score function: $\phi(x)=o(|x|),|x| \rightarrow \infty$
- 'Most robust': the median or M-estimator with score $\phi(x):=\operatorname{sgn}(x)$
- Huber (1981). Robust statistics.

Scale invariant estimators.

Let $\widehat{\boldsymbol{\beta}}:=\widehat{\boldsymbol{\beta}}(\boldsymbol{X}, \boldsymbol{z}), \quad \boldsymbol{X}:=\left(X_{n i}, 1 \leq i \leq n\right), \boldsymbol{z}:=\left(z_{n i}, 1 \leq i \leq n\right)$

- Est. $\widehat{\boldsymbol{\beta}}=\widehat{\boldsymbol{\beta}}(\boldsymbol{X}, \boldsymbol{z})$ is called scale invariant if $\widehat{\boldsymbol{\beta}}(c \boldsymbol{X}, \boldsymbol{z})=c \widehat{\boldsymbol{\beta}}(\boldsymbol{X}, \boldsymbol{z}) \forall c>0$
- Scale invariance is a natural and desirable property
- LS estimator of $\boldsymbol{\beta}_{0}$ in linear regression is scale invariant (e.g. sample mean $\left.\widehat{\boldsymbol{\beta}}=\sum_{i=1}^{n} X_{n i}\right)$
- generally M -estimator of $\boldsymbol{\beta}_{0}$ is not scale invariant even in linear regression
- LS is sensitive to outliers (not robust).
- Robust score function: $\phi(x)=o(|x|),|x| \rightarrow \infty$
- 'Most robust': the median or M-estimator with score $\phi(x):=\operatorname{sgn}(x)$
- Huber (1981). Robust statistics.

Scale invariant estimators.

Let $\widehat{\boldsymbol{\beta}}:=\widehat{\boldsymbol{\beta}}(\boldsymbol{X}, \boldsymbol{z}), \quad \boldsymbol{X}:=\left(X_{n i}, 1 \leq i \leq n\right), \boldsymbol{z}:=\left(z_{n i}, 1 \leq i \leq n\right)$

- Est. $\widehat{\boldsymbol{\beta}}=\widehat{\boldsymbol{\beta}}(\boldsymbol{X}, \boldsymbol{z})$ is called scale invariant if $\widehat{\boldsymbol{\beta}}(c \boldsymbol{X}, \boldsymbol{z})=c \widehat{\boldsymbol{\beta}}(\boldsymbol{X}, \boldsymbol{z}) \forall c>0$
- Scale invariance is a natural and desirable property
- LS estimator of $\boldsymbol{\beta}_{0}$ in linear regression is scale invariant (e.g. sample mean $\left.\widehat{\boldsymbol{\beta}}=\sum_{i=1}^{n} X_{n i}\right)$
- generally M -estimator of $\boldsymbol{\beta}_{0}$ is not scale invariant even in linear regression
- To have scale invariant M-estimators of regression parameters in regression models there is a need for having a robust scale invariant estimator of a scale parameter.
- To have scale invariant M-estimators of regression parameters in regression models there is a need for having a robust scale invariant estimator of a scale parameter.
- For this, the regression residuals in the definition of M-estimator must be divided by scale estimator.
- To have scale invariant M-estimators of regression parameters in regression models there is a need for having a robust scale invariant estimator of a scale parameter.
- For this, the regression residuals in the definition of M-estimator must be divided by scale estimator. See Koul (2002).
- To have scale invariant M-estimators of regression parameters in regression models there is a need for having a robust scale invariant estimator of a scale parameter.
- For this, the regression residuals in the definition of M-estimator must be divided by scale estimator. See Koul (2002).
- Robust estimation of scale parameter is of interest by itself, especially in the context of infinite variance errors as in the present paper.
- To have scale invariant M-estimators of regression parameters in regression models there is a need for having a robust scale invariant estimator of a scale parameter.
- For this, the regression residuals in the definition of M-estimator must be divided by scale estimator. See Koul (2002).
- Robust estimation of scale parameter is of interest by itself, especially in the context of infinite variance errors as in the present paper. (In this case, the usual scale estimation by standard deviation is inconsistent.)
- To have scale invariant M-estimators of regression parameters in regression models there is a need for having a robust scale invariant estimator of a scale parameter.
- For this, the regression residuals in the definition of M-estimator must be divided by scale estimator. See Koul (2002).
- Robust estimation of scale parameter is of interest by itself, especially in the context of infinite variance errors as in the present paper. (In this case, the usual scale estimation by standard deviation is inconsistent.)

2. Two robust estimators of scale parameter

- To have scale invariant M-estimators of regression parameters in regression models there is a need for having a robust scale invariant estimator of a scale parameter.
- For this, the regression residuals in the definition of M-estimator must be divided by scale estimator. See Koul (2002).
- Robust estimation of scale parameter is of interest by itself, especially in the context of infinite variance errors as in the present paper. (In this case, the usual scale estimation by standard deviation is inconsistent.)

2. Two robust estimators of scale parameter

Let $\widehat{\boldsymbol{\beta}}$ be an estimator of $\boldsymbol{\beta}_{0}$ and $r_{n i}:=X_{n i}-g\left(\widehat{\boldsymbol{\beta}}, z_{n i}\right), i=1, \cdots, n$ be residuals

- To have scale invariant M-estimators of regression parameters in regression models there is a need for having a robust scale invariant estimator of a scale parameter.
- For this, the regression residuals in the definition of M-estimator must be divided by scale estimator. See Koul (2002).
- Robust estimation of scale parameter is of interest by itself, especially in the context of infinite variance errors as in the present paper. (In this case, the usual scale estimation by standard deviation is inconsistent.)

2. Two robust estimators of scale parameter

Let $\widehat{\boldsymbol{\beta}}$ be an estimator of $\boldsymbol{\beta}_{0}$ and $r_{n i}:=X_{n i}-g\left(\widehat{\boldsymbol{\beta}}, z_{n i}\right), i=1, \cdots, n$ be residuals

Median of absolute residuals:

$$
\begin{equation*}
s_{1}:=\operatorname{med}\left\{\left|r_{n i}\right| ; 1 \leq i \leq n\right\} \tag{2}
\end{equation*}
$$

- To have scale invariant M-estimators of regression parameters in regression models there is a need for having a robust scale invariant estimator of a scale parameter.
- For this, the regression residuals in the definition of M-estimator must be divided by scale estimator. See Koul (2002).
- Robust estimation of scale parameter is of interest by itself, especially in the context of infinite variance errors as in the present paper. (In this case, the usual scale estimation by standard deviation is inconsistent.)

2. Two robust estimators of scale parameter

Let $\widehat{\boldsymbol{\beta}}$ be an estimator of $\boldsymbol{\beta}_{0}$ and $r_{n i}:=X_{n i}-g\left(\widehat{\boldsymbol{\beta}}, z_{n i}\right), i=1, \cdots, n$ be residuals

Median of absolute residuals:

$$
\begin{equation*}
s_{1}:=\operatorname{med}\left\{\left|r_{n i}\right| ; 1 \leq i \leq n\right\} \tag{2}
\end{equation*}
$$

Median of absolute pairwise residuals:

$$
\begin{equation*}
s_{2}:=\operatorname{med}\left\{\left|r_{n i}-r_{n j}\right| ; 1 \leq i<j \leq n\right\} \tag{3}
\end{equation*}
$$

Let $F(x):=P\left(\varepsilon_{i} \leq x\right)$ be the marginal d.f. and $f(x):=F^{\prime}(x)$ the marginal density (stationary errors $\left\{\varepsilon_{i}\right\}$)

Let $F(x):=P\left(\varepsilon_{i} \leq x\right)$ be the marginal d.f. and $f(x):=F^{\prime}(x)$ the marginal density (stationary errors $\left\{\varepsilon_{i}\right\}$)

- s_{1} (= the median of absolute residuals) estimates the median σ_{1} of $\left|\varepsilon_{1}\right|$ defined as the unique solution of

$$
F\left(\sigma_{1}\right)-F\left(-\sigma_{1}\right)=1 / 2
$$

Let $F(x):=P\left(\varepsilon_{i} \leq x\right)$ be the marginal d.f. and $f(x):=F^{\prime}(x)$ the marginal density (stationary errors $\left\{\varepsilon_{i}\right\}$)

- s_{1} (= the median of absolute residuals) estimates the median σ_{1} of $\left|\varepsilon_{1}\right|$ defined as the unique solution of

$$
F\left(\sigma_{1}\right)-F\left(-\sigma_{1}\right)=1 / 2
$$

- s_{2} (= the median of absolute pairwise residuals) estimates the median σ_{2} of $\left|\varepsilon_{1}-\varepsilon_{1}^{\prime}\right|$ where ε_{1}^{\prime} is independent copy of ε_{1}

Let $F(x):=P\left(\varepsilon_{i} \leq x\right)$ be the marginal d.f. and $f(x):=F^{\prime}(x)$ the marginal density (stationary errors $\left\{\varepsilon_{i}\right\}$)

- s_{1} (= the median of absolute residuals) estimates the median σ_{1} of $\left|\varepsilon_{1}\right|$ defined as the unique solution of

$$
F\left(\sigma_{1}\right)-F\left(-\sigma_{1}\right)=1 / 2
$$

- s_{2} (= the median of absolute pairwise residuals) estimates the median σ_{2} of $\left|\varepsilon_{1}-\varepsilon_{1}^{\prime}\right|$ where ε_{1}^{\prime} is independent copy of ε_{1} defined as the unique solution of

$$
\int\left[F\left(\sigma_{2}+x\right)-F\left(-\sigma_{2}+x\right)\right] \mathrm{d} F(x)=1 / 2
$$

Let $F(x):=P\left(\varepsilon_{i} \leq x\right)$ be the marginal d.f. and $f(x):=F^{\prime}(x)$ the marginal density (stationary errors $\left\{\varepsilon_{i}\right\}$)

- s_{1} (= the median of absolute residuals) estimates the median σ_{1} of $\left|\varepsilon_{1}\right|$ defined as the unique solution of

$$
F\left(\sigma_{1}\right)-F\left(-\sigma_{1}\right)=1 / 2
$$

- s_{2} (= the median of absolute pairwise residuals) estimates the median σ_{2} of $\left|\varepsilon_{1}-\varepsilon_{1}^{\prime}\right|$ where ε_{1}^{\prime} is independent copy of ε_{1} defined as the unique solution of

$$
\int\left[F\left(\sigma_{2}+x\right)-F\left(-\sigma_{2}+x\right)\right] \mathrm{d} F(x)=1 / 2
$$

- $\sigma_{1} \neq \sigma_{2}$ in general

Let $F(x):=P\left(\varepsilon_{i} \leq x\right)$ be the marginal d.f. and $f(x):=F^{\prime}(x)$ the marginal density (stationary errors $\left\{\varepsilon_{i}\right\}$)

- s_{1} (= the median of absolute residuals) estimates the median σ_{1} of $\left|\varepsilon_{1}\right|$ defined as the unique solution of

$$
F\left(\sigma_{1}\right)-F\left(-\sigma_{1}\right)=1 / 2
$$

- s_{2} (= the median of absolute pairwise residuals) estimates the median σ_{2} of $\left|\varepsilon_{1}-\varepsilon_{1}^{\prime}\right|$ where ε_{1}^{\prime} is independent copy of ε_{1} defined as the unique solution of

$$
\int\left[F\left(\sigma_{2}+x\right)-F\left(-\sigma_{2}+x\right)\right] \mathrm{d} F(x)=1 / 2
$$

- $\sigma_{1} \neq \sigma_{2}$ in general
- The fact that each of these estimators estimates a different scale parameter is not a point of concern if our goal is only to use them in arriving at scale invariant robust estimators of $\boldsymbol{\beta}_{0}$.

Koul (2002) [Asymptotic distributions of some scale estimators in nonlinear models. Metrika, 55, 75-90]

Koul (2002) [Asymptotic distributions of some scale estimators in nonlinear models. Metrika, 55, 75-90] studied consistency rates and asymptotic distributions of s_{1} and s_{2} for a large class of regression models with i.i.d. and finite variance long memory moving average errors $\left\{\varepsilon_{i}\right\}$

Koul (2002) [Asymptotic distributions of some scale estimators in nonlinear models. Metrika, 55, 75-90] studied consistency rates and asymptotic distributions of s_{1} and s_{2} for a large class of regression models with i.i.d. and finite variance long memory moving average errors $\left\{\varepsilon_{i}\right\}$

- In the i.i.d. error case Koul (2002) proved that the limit (Gaussian) distribution of s_{2} does not depend on $\widehat{\boldsymbol{\beta}}$ regardless of whether $f=F^{\prime}$ is symmetric around zero or not.

Koul (2002) [Asymptotic distributions of some scale estimators in nonlinear models. Metrika, 55, 75-90] studied consistency rates and asymptotic distributions of s_{1} and s_{2} for a large class of regression models with i.i.d. and finite variance long memory moving average errors $\left\{\varepsilon_{i}\right\}$

- In the i.i.d. error case Koul (2002) proved that the limit (Gaussian) distribution of s_{2} does not depend on $\widehat{\boldsymbol{\beta}}$ regardless of whether $f=F^{\prime}$ is symmetric around zero or not.
The limit Gaussian distribution of s_{1} in general depends of $\widehat{\boldsymbol{\beta}}$ unless the error density is symmetric around zero

Koul (2002) [Asymptotic distributions of some scale estimators in nonlinear models. Metrika, 55, 75-90] studied consistency rates and asymptotic distributions of s_{1} and s_{2} for a large class of regression models with i.i.d. and finite variance long memory moving average errors $\left\{\varepsilon_{i}\right\}$

- In the i.i.d. error case Koul (2002) proved that the limit (Gaussian) distribution of s_{2} does not depend on $\widehat{\boldsymbol{\beta}}$ regardless of whether $f=F^{\prime}$ is symmetric around zero or not.
The limit Gaussian distribution of s_{1} in general depends of $\widehat{\boldsymbol{\beta}}$ unless the error density is symmetric around zero
- In the finite variance long memory moving average error case Koul (2002) proved that the limit distribution of s_{2} is degenerate at zero and does not depend on $\widehat{\boldsymbol{\beta}}$.

Koul (2002) [Asymptotic distributions of some scale estimators in nonlinear models. Metrika, 55, 75-90] studied consistency rates and asymptotic distributions of s_{1} and s_{2} for a large class of regression models with i.i.d. and finite variance long memory moving average errors $\left\{\varepsilon_{i}\right\}$

- In the i.i.d. error case Koul (2002) proved that the limit (Gaussian) distribution of s_{2} does not depend on $\widehat{\boldsymbol{\beta}}$ regardless of whether $f=F^{\prime}$ is symmetric around zero or not.
The limit Gaussian distribution of s_{1} in general depends of $\widehat{\boldsymbol{\beta}}$ unless the error density is symmetric around zero
- In the finite variance long memory moving average error case Koul (2002) proved that the limit distribution of s_{2} is degenerate at zero and does not depend on $\widehat{\boldsymbol{\beta}}$.
For s_{1} similar conclusions hold if errors are symmetric around zero

Koul (2002) [Asymptotic distributions of some scale estimators in nonlinear models. Metrika, 55, 75-90] studied consistency rates and asymptotic distributions of s_{1} and s_{2} for a large class of regression models with i.i.d. and finite variance long memory moving average errors $\left\{\varepsilon_{i}\right\}$

- In the i.i.d. error case Koul (2002) proved that the limit (Gaussian) distribution of s_{2} does not depend on $\widehat{\boldsymbol{\beta}}$ regardless of whether $f=F^{\prime}$ is symmetric around zero or not.
The limit Gaussian distribution of s_{1} in general depends of $\widehat{\boldsymbol{\beta}}$ unless the error density is symmetric around zero
- In the finite variance long memory moving average error case Koul (2002) proved that the limit distribution of s_{2} is degenerate at zero and does not depend on $\widehat{\boldsymbol{\beta}}$.
For s_{1} similar conclusions hold if errors are symmetric around zero
- The limit distribution of scale estimator being free of the initial estimator $\widehat{\boldsymbol{\beta}}$ is desirable

3. Errors: linear process with LM and infinite variance
4. Errors: linear process with LM and infinite variance

Assumption $\mathbf{E}(\alpha, d)$ Errors of regression model (1) form MA process

$$
\varepsilon_{i}=\sum_{j \leq i} b_{i-j} \zeta_{j}, \quad i \in \mathbb{Z}
$$

3. Errors: linear process with LM and infinite variance

Assumption $\mathbf{E}(\alpha, d)$ Errors of regression model (1) form MA process

$$
\begin{align*}
\varepsilon_{i} & =\sum_{j \leq i} b_{i-j} \zeta_{j}, \quad i \in \mathbb{Z}, \tag{4}\\
b_{j} & \sim c_{0} j^{-(1-d)}, \quad(j \rightarrow \infty), 0<d<1-1 / \alpha, c_{0}>0
\end{align*}
$$

3. Errors: linear process with LM and infinite variance

Assumption $\mathbf{E}(\alpha, d)$ Errors of regression model (1) form MA process

$$
\begin{align*}
\varepsilon_{i} & =\sum_{j \leq i} b_{i-j} \zeta_{j}, \quad i \in \mathbb{Z} \tag{4}\\
b_{j} & \sim c_{0} j^{-(1-d)}, \quad(j \rightarrow \infty), 0<d<1-1 / \alpha, c_{0}>0
\end{align*}
$$

with i.i.d. innovations $\left\{\zeta_{j}, j \in \mathbb{Z}\right\}$ with d.f. $G(x)=P\left(\zeta_{0} \leq x\right)$ belonging to the domain of attraction of α-stable law, $1<\alpha<2$, viz., $E \zeta_{j}=0$ and

$$
\begin{equation*}
\lim _{x \rightarrow-\infty}|x|^{\alpha} G(x)=c_{-}, \lim _{x \rightarrow \infty} x^{\alpha}(1-G(x))=c_{+}, c_{+}+c_{-}>0 \tag{5}
\end{equation*}
$$

3. Errors: linear process with LM and infinite variance

Assumption $\mathbf{E}(\alpha, d)$ Errors of regression model (1) form MA process

$$
\begin{align*}
\varepsilon_{i} & =\sum_{j \leq i} b_{i-j} \zeta_{j}, \quad i \in \mathbb{Z} \tag{4}\\
b_{j} & \sim c_{0} j^{-(1-d)}, \quad(j \rightarrow \infty), 0<d<1-1 / \alpha, c_{0}>0
\end{align*}
$$

with i.i.d. innovations $\left\{\zeta_{j}, j \in \mathbb{Z}\right\}$ with d.f. $G(x)=P\left(\zeta_{0} \leq x\right)$ belonging to the domain of attraction of α-stable law, $1<\alpha<2$, viz., $E \zeta_{j}=0$ and

$$
\begin{equation*}
\lim _{x \rightarrow-\infty}|x|^{\alpha} G(x)=c_{-}, \lim _{x \rightarrow \infty} x^{\alpha}(1-G(x))=c_{+}, c_{+}+c_{-}>0 \tag{5}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\left|E \mathrm{e}^{\mathrm{i} u \zeta_{0}}\right| \leq C(1+|u|)^{-\delta} \quad(\forall u \in \mathbb{R}, \exists C, \delta>0) \tag{6}
\end{equation*}
$$

3. Errors: linear process with LM and infinite variance

Assumption $\mathbf{E}(\alpha, d)$ Errors of regression model (1) form MA process

$$
\begin{align*}
\varepsilon_{i} & =\sum_{j \leq i} b_{i-j} \zeta_{j}, \quad i \in \mathbb{Z} \tag{4}\\
b_{j} & \sim c_{0} j^{-(1-d)}, \quad(j \rightarrow \infty), 0<d<1-1 / \alpha, c_{0}>0
\end{align*}
$$

with i.i.d. innovations $\left\{\zeta_{j}, j \in \mathbb{Z}\right\}$ with d.f. $G(x)=P\left(\zeta_{0} \leq x\right)$ belonging to the domain of attraction of α-stable law, $1<\alpha<2$, viz., $E \zeta_{j}=0$ and

$$
\begin{equation*}
\lim _{x \rightarrow-\infty}|x|^{\alpha} G(x)=c_{-}, \lim _{x \rightarrow \infty} x^{\alpha}(1-G(x))=c_{+}, c_{+}+c_{-}>0 \tag{5}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\left|E \mathrm{e}^{\mathrm{i} u \zeta_{0}}\right| \leq C(1+|u|)^{-\delta} \quad(\forall u \in \mathbb{R}, \exists C, \delta>0) \tag{6}
\end{equation*}
$$

- (5) implies $n^{-1 / \alpha} \sum_{j=1}^{n} \zeta_{j} \rightarrow_{D} Z$, where Z is α-stable r.v. with ch.f.

$$
E \mathrm{e}^{\mathrm{i} u Z}=\mathrm{e}^{-|u|^{\alpha} \omega(\alpha, u)}, \quad u \in \mathbb{R}
$$

3. Errors: linear process with LM and infinite variance

Assumption $\mathbf{E}(\alpha, d)$ Errors of regression model (1) form MA process

$$
\begin{align*}
\varepsilon_{i} & =\sum_{j \leq i} b_{i-j} \zeta_{j}, \quad i \in \mathbb{Z} \tag{4}\\
b_{j} & \sim c_{0} j^{-(1-d)}, \quad(j \rightarrow \infty), 0<d<1-1 / \alpha, c_{0}>0
\end{align*}
$$

with i.i.d. innovations $\left\{\zeta_{j}, j \in \mathbb{Z}\right\}$ with d.f. $G(x)=P\left(\zeta_{0} \leq x\right)$ belonging to the domain of attraction of α-stable law, $1<\alpha<2$, viz., $E \zeta_{j}=0$ and

$$
\begin{equation*}
\lim _{x \rightarrow-\infty}|x|^{\alpha} G(x)=c_{-}, \lim _{x \rightarrow \infty} x^{\alpha}(1-G(x))=c_{+}, c_{+}+c_{-}>0 \tag{5}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\left|E \mathrm{e}^{\mathrm{i} u \zeta_{0}}\right| \leq C(1+|u|)^{-\delta} \quad(\forall u \in \mathbb{R}, \exists C, \delta>0) \tag{6}
\end{equation*}
$$

- (5) implies $n^{-1 / \alpha} \sum_{j=1}^{n} \zeta_{j} \rightarrow_{D} Z$, where Z is α-stable r.v. with ch.f.

$$
\begin{align*}
& E \mathrm{e}^{\mathrm{i} u Z}=\mathrm{e}^{-|u|^{\alpha} \omega(\alpha, u)}, \quad u \in \mathbb{R} \tag{7}\\
& \omega(\alpha, u):=-\frac{\Gamma(2-\alpha)\left(c_{+}+c_{-}\right)}{\alpha-1} \cos (\pi \alpha / 2)\left(1-\mathrm{i} \frac{c_{+}-c_{-}}{c_{+}+c_{-}} \operatorname{sgn}(u) \tan (\pi \alpha / 2)\right)
\end{align*}
$$

- D.f. $F(x):=P\left(\varepsilon_{i} \leq x\right)$ is regularly varying with tail parameter $\alpha \in(1,2)$:

$$
\lim _{x \rightarrow-\infty}|x|^{\alpha} F(x)=B_{-}, \lim _{x \rightarrow \infty} x^{\alpha}(1-F(x))=B_{+} .
$$

- D.f. $F(x):=P\left(\varepsilon_{i} \leq x\right)$ is regularly varying with tail parameter $\alpha \in(1,2)$:

$$
\lim _{x \rightarrow-\infty}|x|^{\alpha} F(x)=B_{-}, \lim _{x \rightarrow \infty} x^{\alpha}(1-F(x))=B_{+}
$$

- $d \in(0,1-1 / \alpha)$: LM parameter,
- D.f. $F(x):=P\left(\varepsilon_{i} \leq x\right)$ is regularly varying with tail parameter $\alpha \in(1,2)$:

$$
\lim _{x \rightarrow-\infty}|x|^{\alpha} F(x)=B_{-}, \lim _{x \rightarrow \infty} x^{\alpha}(1-F(x))=B_{+}
$$

- $d \in(0,1-1 / \alpha)$: LM parameter, $\sum_{j=0}^{\infty}\left|b_{j}\right|=\infty, \sum_{j=0}^{\infty}\left|b_{j}\right|^{\alpha}<\infty$
- D.f. $F(x):=P\left(\varepsilon_{i} \leq x\right)$ is regularly varying with tail parameter $\alpha \in(1,2)$:

$$
\lim _{x \rightarrow-\infty}|x|^{\alpha} F(x)=B_{-}, \lim _{x \rightarrow \infty} x^{\alpha}(1-F(x))=B_{+}
$$

- $d \in(0,1-1 / \alpha)$: LM parameter, $\sum_{j=0}^{\infty}\left|b_{j}\right|=\infty, \sum_{j=0}^{\infty}\left|b_{j}\right|^{\alpha}<\infty$
- CLT for sample mean $\bar{\varepsilon}_{n}:=n^{-1} \sum_{i=1}^{n} \varepsilon_{i}$ (Astrauskas, 1984), (Avram and Taqqu, 1986, 1992), (Kasahara and Maejima, 1988):
- D.f. $F(x):=P\left(\varepsilon_{i} \leq x\right)$ is regularly varying with tail parameter $\alpha \in(1,2)$:

$$
\lim _{x \rightarrow-\infty}|x|^{\alpha} F(x)=B_{-}, \lim _{x \rightarrow \infty} x^{\alpha}(1-F(x))=B_{+}
$$

- $d \in(0,1-1 / \alpha)$: LM parameter, $\sum_{j=0}^{\infty}\left|b_{j}\right|=\infty, \sum_{j=0}^{\infty}\left|b_{j}\right|^{\alpha}<\infty$
- CLT for sample mean $\bar{\varepsilon}_{n}:=n^{-1} \sum_{i=1}^{n} \varepsilon_{i}$ (Astrauskas, 1984), (Avram and Taqqu, 1986, 1992), (Kasahara and Maejima, 1988):

$$
\begin{equation*}
n^{1-d-1 / \alpha} \bar{\varepsilon}_{n}=n^{-d-1 / \alpha} \sum_{i=1}^{n} \varepsilon_{i} \rightarrow_{D} \tilde{c} Z \tag{8}
\end{equation*}
$$

where Z is α-stable r.v. in (7) and $\tilde{c}=c_{0}\left(\int_{-\infty}^{1}\left(\int_{0}^{1}(t-s)_{+}^{-(1-d)} \mathrm{d} t\right)^{\alpha} \mathrm{d} s\right)^{1 / \alpha}$

- D.f. $F(x):=P\left(\varepsilon_{i} \leq x\right)$ is regularly varying with tail parameter $\alpha \in(1,2)$:

$$
\lim _{x \rightarrow-\infty}|x|^{\alpha} F(x)=B_{-}, \lim _{x \rightarrow \infty} x^{\alpha}(1-F(x))=B_{+}
$$

- $d \in(0,1-1 / \alpha)$: LM parameter, $\sum_{j=0}^{\infty}\left|b_{j}\right|=\infty, \sum_{j=0}^{\infty}\left|b_{j}\right|^{\alpha}<\infty$
- CLT for sample mean $\bar{\varepsilon}_{n}:=n^{-1} \sum_{i=1}^{n} \varepsilon_{i}$ (Astrauskas, 1984), (Avram and Taqqu, 1986, 1992), (Kasahara and Maejima, 1988):

$$
\begin{equation*}
n^{1-d-1 / \alpha} \bar{\varepsilon}_{n}=n^{-d-1 / \alpha} \sum_{i=1}^{n} \varepsilon_{i} \rightarrow_{D} \tilde{c} Z \tag{8}
\end{equation*}
$$

where Z is α-stable r.v. in (7) and $\tilde{c}=c_{0}\left(\int_{-\infty}^{1}\left(\int_{0}^{1}(t-s)_{+}^{-(1-d)} \mathrm{d} t\right)^{\alpha} \mathrm{d} s\right)^{1 / \alpha}$

- (6) is a weak regularity condition on the d.f. G
- D.f. $F(x):=P\left(\varepsilon_{i} \leq x\right)$ is regularly varying with tail parameter $\alpha \in(1,2)$:

$$
\lim _{x \rightarrow-\infty}|x|^{\alpha} F(x)=B_{-}, \lim _{x \rightarrow \infty} x^{\alpha}(1-F(x))=B_{+}
$$

- $d \in(0,1-1 / \alpha)$: LM parameter, $\sum_{j=0}^{\infty}\left|b_{j}\right|=\infty, \sum_{j=0}^{\infty}\left|b_{j}\right|^{\alpha}<\infty$
- CLT for sample mean $\bar{\varepsilon}_{n}:=n^{-1} \sum_{i=1}^{n} \varepsilon_{i}$ (Astrauskas, 1984), (Avram and Taqqu, 1986, 1992), (Kasahara and Maejima, 1988):

$$
\begin{equation*}
n^{1-d-1 / \alpha} \bar{\varepsilon}_{n}=n^{-d-1 / \alpha} \sum_{i=1}^{n} \varepsilon_{i} \rightarrow_{D} \tilde{c} Z \tag{8}
\end{equation*}
$$

where Z is α-stable r.v. in (7) and $\tilde{c}=c_{0}\left(\int_{-\infty}^{1}\left(\int_{0}^{1}(t-s)_{+}^{-(1-d)} \mathrm{d} t\right)^{\alpha} \mathrm{d} s\right)^{1 / \alpha}$

- (6) is a weak regularity condition on the d.f. G which implies however that the d.f. F is infinitely differentiable
- D.f. $F(x):=P\left(\varepsilon_{i} \leq x\right)$ is regularly varying with tail parameter $\alpha \in(1,2)$:

$$
\lim _{x \rightarrow-\infty}|x|^{\alpha} F(x)=B_{-}, \lim _{x \rightarrow \infty} x^{\alpha}(1-F(x))=B_{+}
$$

- $d \in(0,1-1 / \alpha)$: LM parameter, $\sum_{j=0}^{\infty}\left|b_{j}\right|=\infty, \sum_{j=0}^{\infty}\left|b_{j}\right|^{\alpha}<\infty$
- CLT for sample mean $\bar{\varepsilon}_{n}:=n^{-1} \sum_{i=1}^{n} \varepsilon_{i}$ (Astrauskas, 1984), (Avram and Taqqu, 1986, 1992), (Kasahara and Maejima, 1988):

$$
\begin{equation*}
n^{1-d-1 / \alpha} \bar{\varepsilon}_{n}=n^{-d-1 / \alpha} \sum_{i=1}^{n} \varepsilon_{i} \rightarrow_{D} \tilde{c} Z \tag{8}
\end{equation*}
$$

where Z is α-stable r.v. in (7) and $\tilde{c}=c_{0}\left(\int_{-\infty}^{1}\left(\int_{0}^{1}(t-s)_{+}^{-(1-d)} \mathrm{d} t\right)^{\alpha} \mathrm{d} s\right)^{1 / \alpha}$

- (6) is a weak regularity condition on the d.f. G which implies however that the d.f. F is infinitely differentiable
- Assumption $\mathrm{E}(\alpha, d)$ is satisfied by $\operatorname{ARFIMA}(p, d, q)$ with α-stable innovations (Kokoszka and Taqqu, 1995)

4. Asymptotic distributions of scale estimators

4. Asymptotic distributions of scale estimators

Recall: $s_{1}:=\operatorname{med}\left\{\left|r_{n i}\right| ; 1 \leq i \leq n\right\}, s_{2}:=\operatorname{med}\left\{\left|r_{n i}-r_{n j}\right| ; 1 \leq i<j \leq n\right\}$

4. Asymptotic distributions of scale estimators

Recall: $s_{1}:=\operatorname{med}\left\{\left|r_{n i}\right| ; 1 \leq i \leq n\right\}, s_{2}:=\operatorname{med}\left\{\left|r_{n i}-r_{n j}\right| ; 1 \leq i<j \leq n\right\}$ where $r_{n i}:=X_{n i}-g\left(\widehat{\boldsymbol{\beta}}, z_{n i}\right)$ are residuals of regression model in (1)

4. Asymptotic distributions of scale estimators

Recall: $s_{1}:=\operatorname{med}\left\{\left|r_{n i}\right| ; 1 \leq i \leq n\right\}, s_{2}:=\operatorname{med}\left\{\left|r_{n i}-r_{n j}\right| ; 1 \leq i<j \leq n\right\}$ where $r_{n i}:=X_{n i}-g\left(\widehat{\boldsymbol{\beta}}, z_{n i}\right)$ are residuals of regression model in (1)
$F(x)=P\left(\varepsilon_{i} \leq x\right)=$ d.f. of errors, $f(x)=F^{\prime}(x), f_{ \pm}(x):=f(x) \pm f(-x)$

4. Asymptotic distributions of scale estimators

Recall: $s_{1}:=\operatorname{med}\left\{\left|r_{n i}\right| ; 1 \leq i \leq n\right\}, s_{2}:=\operatorname{med}\left\{\left|r_{n i}-r_{n j}\right| ; 1 \leq i<j \leq n\right\}$ where $r_{n i}:=X_{n i}-g\left(\widehat{\boldsymbol{\beta}}, z_{n i}\right)$ are residuals of regression model in (1)
$F(x)=P\left(\varepsilon_{i} \leq x\right)=$ d.f. of errors, $f(x)=F^{\prime}(x), f_{ \pm}(x):=f(x) \pm f(-x)$
Let

$$
\alpha_{*}:=\alpha(1-d)
$$

4. Asymptotic distributions of scale estimators

Recall: $s_{1}:=\operatorname{med}\left\{\left|r_{n i}\right| ; 1 \leq i \leq n\right\}, s_{2}:=\operatorname{med}\left\{\left|r_{n i}-r_{n j}\right| ; 1 \leq i<j \leq n\right\}$ where $r_{n i}:=X_{n i}-g\left(\widehat{\boldsymbol{\beta}}, z_{n i}\right)$ are residuals of regression model in (1)
$F(x)=P\left(\varepsilon_{i} \leq x\right)=$ d.f. of errors, $f(x)=F^{\prime}(x), f_{ \pm}(x):=f(x) \pm f(-x)$
Let

$$
\alpha_{*}:=\alpha(1-d)
$$

Note

$$
1<\alpha_{*}<\alpha \quad \text { for } \quad 0<d<1-1 / \alpha, 1<\alpha<2
$$

4. Asymptotic distributions of scale estimators

Recall: $s_{1}:=\operatorname{med}\left\{\left|r_{n i}\right| ; 1 \leq i \leq n\right\}, s_{2}:=\operatorname{med}\left\{\left|r_{n i}-r_{n j}\right| ; 1 \leq i<j \leq n\right\}$ where $r_{n i}:=X_{n i}-g\left(\widehat{\boldsymbol{\beta}}, z_{n i}\right)$ are residuals of regression model in (1)
$F(x)=P\left(\varepsilon_{i} \leq x\right)=$ d.f. of errors, $f(x)=F^{\prime}(x), f_{ \pm}(x):=f(x) \pm f(-x)$
Let

$$
\alpha_{*}:=\alpha(1-d)
$$

Note

$$
1<\alpha_{*}<\alpha \quad \text { for } \quad 0<d<1-1 / \alpha, 1<\alpha<2
$$

Thm 1 Suppose regression model (1) holds with regression function satisfying Assumption $\mathrm{G}\left(a_{n}\right)$ with $a_{n}=n^{1-d-1 / \alpha}$ and errors satisfying Assumption $\mathrm{E}(\alpha, d)$ with $1<\alpha<2,0<d<1-1 / \alpha$.

4. Asymptotic distributions of scale estimators

Recall: $s_{1}:=\operatorname{med}\left\{\left|r_{n i}\right| ; 1 \leq i \leq n\right\}, s_{2}:=\operatorname{med}\left\{\left|r_{n i}-r_{n j}\right| ; 1 \leq i<j \leq n\right\}$ where $r_{n i}:=X_{n i}-g\left(\widehat{\boldsymbol{\beta}}, z_{n i}\right)$ are residuals of regression model in (1)
$F(x)=P\left(\varepsilon_{i} \leq x\right)=$ d.f. of errors, $f(x)=F^{\prime}(x), f_{ \pm}(x):=f(x) \pm f(-x)$
Let

$$
\alpha_{*}:=\alpha(1-d)
$$

Note

$$
1<\alpha_{*}<\alpha \quad \text { for } \quad 0<d<1-1 / \alpha, 1<\alpha<2
$$

Thm 1 Suppose regression model (1) holds with regression function satisfying Assumption $\mathrm{G}\left(a_{n}\right)$ with $a_{n}=n^{1-d-1 / \alpha}$ and errors satisfying Assumption $\mathrm{E}(\alpha, d)$ with $1<\alpha<2,0<d<1-1 / \alpha$.
In addition, suppose $\widehat{\boldsymbol{\beta}}$ is an estimator of $\boldsymbol{\beta}_{0}$ satisfying

$$
\begin{equation*}
\left\|n^{1-d-1 / \alpha}\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right)\right\|=O_{p}(1) \tag{9}
\end{equation*}
$$

4. Asymptotic distributions of scale estimators

Recall: $s_{1}:=\operatorname{med}\left\{\left|r_{n i}\right| ; 1 \leq i \leq n\right\}, s_{2}:=\operatorname{med}\left\{\left|r_{n i}-r_{n j}\right| ; 1 \leq i<j \leq n\right\}$ where $r_{n i}:=X_{n i}-g\left(\widehat{\boldsymbol{\beta}}, z_{n i}\right)$ are residuals of regression model in (1)
$F(x)=P\left(\varepsilon_{i} \leq x\right)=$ d.f. of errors, $f(x)=F^{\prime}(x), f_{ \pm}(x):=f(x) \pm f(-x)$
Let

$$
\alpha_{*}:=\alpha(1-d)
$$

Note

$$
1<\alpha_{*}<\alpha \quad \text { for } \quad 0<d<1-1 / \alpha, 1<\alpha<2
$$

Thm 1 Suppose regression model (1) holds with regression function satisfying Assumption $\mathrm{G}\left(a_{n}\right)$ with $a_{n}=n^{1-d-1 / \alpha}$ and errors satisfying Assumption $\mathrm{E}(\alpha, d)$ with $1<\alpha<2,0<d<1-1 / \alpha$.
In addition, suppose $\widehat{\boldsymbol{\beta}}$ is an estimator of $\boldsymbol{\beta}_{0}$ satisfying

$$
\begin{equation*}
\left\|n^{1-d-1 / \alpha}\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right)\right\|=O_{p}(1) \tag{9}
\end{equation*}
$$

(i) Let $f\left(\sigma_{1}\right) \neq f\left(-\sigma_{1}\right)$. Then, for every $x \in \mathbb{R}$,

$$
\begin{aligned}
& P\left(n^{1-d-1 / \alpha}\left(s_{1}-\sigma_{1}\right) \leq x \sigma_{1}\right) \\
& \quad=P\left(n^{1-d-1 / \alpha}\left(\bar{\varepsilon}_{n}+\left(\frac{1}{n} \sum_{i=1}^{n} \dot{g}\left(\boldsymbol{\beta}_{0}, z_{n i}\right)\right)^{\prime}\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right)\right) \geq-\frac{x \sigma_{1} f_{+}\left(\sigma_{1}\right)}{f_{-}\left(\sigma_{1}\right)}\right)+o(1) .
\end{aligned}
$$

(ii) Let $f\left(\sigma_{1}\right)=f\left(-\sigma_{1}\right)$. Then, for every $x \in \mathbb{R}$,

$$
P\left(n^{1-1 / \alpha_{*}}\left(s_{1}-\sigma_{1}\right) \leq x \sigma_{1}\right) \quad \rightarrow \quad P\left(Z_{1}^{*} \leq x \sigma_{1} f_{+}\left(\sigma_{1}\right)\right),
$$

where $Z_{1}^{*}:=\mathcal{Z}^{*}\left(\sigma_{1}\right)-\mathcal{Z}^{*}\left(-\sigma_{1}\right)$ and $\mathcal{Z}^{*}(x), x \in \mathbb{R}$ is α_{*}-stable process defined in (13) below.
(i) Let $f\left(\sigma_{1}\right) \neq f\left(-\sigma_{1}\right)$. Then, for every $x \in \mathbb{R}$,

$$
\begin{aligned}
& P\left(n^{1-d-1 / \alpha}\left(s_{1}-\sigma_{1}\right) \leq x \sigma_{1}\right) \\
& \quad=P\left(n^{1-d-1 / \alpha}\left(\bar{\varepsilon}_{n}+\left(\frac{1}{n} \sum_{i=1}^{n} \dot{g}\left(\boldsymbol{\beta}_{0}, z_{n i}\right)\right)^{\prime}\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right)\right) \geq-\frac{x \sigma_{1} f_{+}\left(\sigma_{1}\right)}{f_{-}\left(\sigma_{1}\right)}\right)+o(1) .
\end{aligned}
$$

(ii) Let $f\left(\sigma_{1}\right)=f\left(-\sigma_{1}\right)$. Then, for every $x \in \mathbb{R}$,

$$
P\left(n^{1-1 / \alpha_{*}}\left(s_{1}-\sigma_{1}\right) \leq x \sigma_{1}\right) \quad \rightarrow \quad P\left(Z_{1}^{*} \leq x \sigma_{1} f_{+}\left(\sigma_{1}\right)\right),
$$

where $Z_{1}^{*}:=\mathcal{Z}^{*}\left(\sigma_{1}\right)-\mathcal{Z}^{*}\left(-\sigma_{1}\right)$ and $\mathcal{Z}^{*}(x), x \in \mathbb{R}$ is α_{*}-stable process defined in (13) below.

- If $f(x)$ is not symmetric and $\widehat{\boldsymbol{\beta}}$ and the regression model satisfy some additional conditions
(i) Let $f\left(\sigma_{1}\right) \neq f\left(-\sigma_{1}\right)$. Then, for every $x \in \mathbb{R}$,

$$
\begin{aligned}
& P\left(n^{1-d-1 / \alpha}\left(s_{1}-\sigma_{1}\right) \leq x \sigma_{1}\right) \\
& \quad=P\left(n^{1-d-1 / \alpha}\left(\bar{\varepsilon}_{n}+\left(\frac{1}{n} \sum_{i=1}^{n} \dot{g}\left(\boldsymbol{\beta}_{0}, z_{n i}\right)\right)^{\prime}\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right)\right) \geq-\frac{x \sigma_{1} f_{+}\left(\sigma_{1}\right)}{f_{-}\left(\sigma_{1}\right)}\right)+o(1) .
\end{aligned}
$$

(ii) Let $f\left(\sigma_{1}\right)=f\left(-\sigma_{1}\right)$. Then, for every $x \in \mathbb{R}$,

$$
P\left(n^{1-1 / \alpha_{*}}\left(s_{1}-\sigma_{1}\right) \leq x \sigma_{1}\right) \quad \rightarrow \quad P\left(Z_{1}^{*} \leq x \sigma_{1} f_{+}\left(\sigma_{1}\right)\right),
$$

where $Z_{1}^{*}:=\mathcal{Z}^{*}\left(\sigma_{1}\right)-\mathcal{Z}^{*}\left(-\sigma_{1}\right)$ and $\mathcal{Z}^{*}(x), x \in \mathbb{R}$ is α_{*}-stable process defined in (13) below.

- If $f(x)$ is not symmetric and $\widehat{\boldsymbol{\beta}}$ and the regression model satisfy some additional conditions then s_{1} has α-stable limit
(i) Let $f\left(\sigma_{1}\right) \neq f\left(-\sigma_{1}\right)$. Then, for every $x \in \mathbb{R}$,

$$
\begin{aligned}
& P\left(n^{1-d-1 / \alpha}\left(s_{1}-\sigma_{1}\right) \leq x \sigma_{1}\right) \\
& \quad=P\left(n^{1-d-1 / \alpha}\left(\bar{\varepsilon}_{n}+\left(\frac{1}{n} \sum_{i=1}^{n} \dot{g}\left(\boldsymbol{\beta}_{0}, z_{n i}\right)\right)^{\prime}\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right)\right) \geq-\frac{x \sigma_{1} f_{+}\left(\sigma_{1}\right)}{f_{-}\left(\sigma_{1}\right)}\right)+o(1) .
\end{aligned}
$$

(ii) Let $f\left(\sigma_{1}\right)=f\left(-\sigma_{1}\right)$. Then, for every $x \in \mathbb{R}$,

$$
P\left(n^{1-1 / \alpha_{*}}\left(s_{1}-\sigma_{1}\right) \leq x \sigma_{1}\right) \quad \rightarrow \quad P\left(Z_{1}^{*} \leq x \sigma_{1} f_{+}\left(\sigma_{1}\right)\right),
$$

where $Z_{1}^{*}:=\mathcal{Z}^{*}\left(\sigma_{1}\right)-\mathcal{Z}^{*}\left(-\sigma_{1}\right)$ and $\mathcal{Z}^{*}(x), x \in \mathbb{R}$ is α_{*}-stable process defined in (13) below.

- If $f(x)$ is not symmetric and $\widehat{\boldsymbol{\beta}}$ and the regression model satisfy some additional conditions then s_{1} has α-stable limit and the convergence rate of s_{1} is the same as that of $\bar{\varepsilon}_{n}$
(i) Let $f\left(\sigma_{1}\right) \neq f\left(-\sigma_{1}\right)$. Then, for every $x \in \mathbb{R}$,
$P\left(n^{1-d-1 / \alpha}\left(s_{1}-\sigma_{1}\right) \leq x \sigma_{1}\right)$

$$
=P\left(n^{1-d-1 / \alpha}\left(\bar{\varepsilon}_{n}+\left(\frac{1}{n} \sum_{i=1}^{n} \dot{g}\left(\boldsymbol{\beta}_{0}, z_{n i}\right)\right)^{\prime}\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right)\right) \geq-\frac{x \sigma_{1} f_{+}\left(\sigma_{1}\right)}{f_{-}\left(\sigma_{1}\right)}\right)+o(1) .
$$

(ii) Let $f\left(\sigma_{1}\right)=f\left(-\sigma_{1}\right)$. Then, for every $x \in \mathbb{R}$,

$$
P\left(n^{1-1 / \alpha_{*}}\left(s_{1}-\sigma_{1}\right) \leq x \sigma_{1}\right) \quad \rightarrow \quad P\left(Z_{1}^{*} \leq x \sigma_{1} f_{+}\left(\sigma_{1}\right)\right),
$$

where $Z_{1}^{*}:=\mathcal{Z}^{*}\left(\sigma_{1}\right)-\mathcal{Z}^{*}\left(-\sigma_{1}\right)$ and $\mathcal{Z}^{*}(x), x \in \mathbb{R}$ is α_{*}-stable process defined in (13) below.

- If $f(x)$ is not symmetric and $\widehat{\boldsymbol{\beta}}$ and the regression model satisfy some additional conditions then s_{1} has α-stable limit and the convergence rate of s_{1} is the same as that of $\bar{\varepsilon}_{n}$
- If $f(x)$ is symmetric then s_{1} has α_{*}-stable limit with $\alpha_{*}<\alpha$ which is free of $\widehat{\beta}$
(i) Let $f\left(\sigma_{1}\right) \neq f\left(-\sigma_{1}\right)$. Then, for every $x \in \mathbb{R}$,
$P\left(n^{1-d-1 / \alpha}\left(s_{1}-\sigma_{1}\right) \leq x \sigma_{1}\right)$

$$
=P\left(n^{1-d-1 / \alpha}\left(\bar{\varepsilon}_{n}+\left(\frac{1}{n} \sum_{i=1}^{n} \dot{g}\left(\boldsymbol{\beta}_{0}, z_{n i}\right)\right)^{\prime}\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right)\right) \geq-\frac{x \sigma_{1} f_{+}\left(\sigma_{1}\right)}{f_{-}\left(\sigma_{1}\right)}\right)+o(1) .
$$

(ii) Let $f\left(\sigma_{1}\right)=f\left(-\sigma_{1}\right)$. Then, for every $x \in \mathbb{R}$,

$$
P\left(n^{1-1 / \alpha_{*}}\left(s_{1}-\sigma_{1}\right) \leq x \sigma_{1}\right) \quad \rightarrow \quad P\left(Z_{1}^{*} \leq x \sigma_{1} f_{+}\left(\sigma_{1}\right)\right),
$$

where $Z_{1}^{*}:=\mathcal{Z}^{*}\left(\sigma_{1}\right)-\mathcal{Z}^{*}\left(-\sigma_{1}\right)$ and $\mathcal{Z}^{*}(x), x \in \mathbb{R}$ is α_{*}-stable process defined in (13) below.

- If $f(x)$ is not symmetric and $\widehat{\boldsymbol{\beta}}$ and the regression model satisfy some additional conditions then s_{1} has α-stable limit and the convergence rate of s_{1} is the same as that of $\bar{\varepsilon}_{n}$
- If $f(x)$ is symmetric then s_{1} has α_{*}-stable limit with $\alpha_{*}<\alpha$ which is free of $\widehat{\boldsymbol{\beta}}$ and the convergence rate of s_{1} is faster than that of $\bar{\varepsilon}_{n}$

Thm 2 Suppose the regression model, errors and $\widehat{\beta}$ satisfy the same conditions as in Thm 1.

Thm 2 Suppose the regression model, errors and $\widehat{\beta}$ satisfy the same conditions as in Thm 1. Then

$$
P\left(n^{1-1 / \alpha_{*}}\left(s_{2}-\sigma_{2}\right) \leq x \sigma_{2}\right) \quad \rightarrow \quad P\left(Z_{2}^{*} \leq x\right), \quad \forall x \in \mathbb{R}
$$

Thm 2 Suppose the regression model, errors and $\widehat{\beta}$ satisfy the same conditions as in Thm 1. Then

$$
P\left(n^{1-1 / \alpha_{*}}\left(s_{2}-\sigma_{2}\right) \leq x \sigma_{2}\right) \quad \rightarrow \quad P\left(Z_{2}^{*} \leq x\right), \quad \forall x \in \mathbb{R}
$$

where Z_{2}^{*} is an α_{*}-stable r.v. defined in below.

Thm 2 Suppose the regression model, errors and $\widehat{\beta}$ satisfy the same conditions as in Thm 1. Then

$$
P\left(n^{1-1 / \alpha_{*}}\left(s_{2}-\sigma_{2}\right) \leq x \sigma_{2}\right) \quad \rightarrow \quad P\left(Z_{2}^{*} \leq x\right), \quad \forall x \in \mathbb{R}
$$

where Z_{2}^{*} is an α_{*}-stable r.v. defined in below.
Idea of the proof. $s_{1}=\operatorname{med}\left\{\left|r_{n i}\right| ; 1 \leq i \leq n\right\}, S(y):=\sum_{i=1}^{n} I\left(\left|r_{n i}\right| \leq y\right)$, $y \geq 0$. Then $S(y):=\sum_{i=1}^{n} I\left(r_{n i} \leq y\right)-\sum_{i=1}^{n} I\left(r_{n i} \leq-y\right)$ and

$$
\left\{s_{1} \leq y\right\}=\{S(y) \geq(n+1) / 2\}, \quad n \text { odd }
$$

Thm 2 Suppose the regression model, errors and $\widehat{\beta}$ satisfy the same conditions as in Thm 1. Then

$$
P\left(n^{1-1 / \alpha_{*}}\left(s_{2}-\sigma_{2}\right) \leq x \sigma_{2}\right) \quad \rightarrow \quad P\left(Z_{2}^{*} \leq x\right), \quad \forall x \in \mathbb{R}
$$

where Z_{2}^{*} is an α_{*}-stable r.v. defined in below.
Idea of the proof. $s_{1}=\operatorname{med}\left\{\left|r_{n i}\right| ; 1 \leq i \leq n\right\}, S(y):=\sum_{i=1}^{n} I\left(\left|r_{n i}\right| \leq y\right)$, $y \geq 0$. Then $S(y):=\sum_{i=1}^{n} I\left(r_{n i} \leq y\right)-\sum_{i=1}^{n} I\left(r_{n i} \leq-y\right)$ and

$$
\left\{s_{1} \leq y\right\}=\{S(y) \geq(n+1) / 2\}, \quad n \text { odd }
$$

Since $r_{n i} \approx \varepsilon_{i}$ the study of $P\left(s_{1} \leq y\right)$ reduces to that of $F_{n}(y)-F_{n}(-y)$, where $F_{n}(x)$ is the empirical process:

$$
F_{n}(x):=n^{-1} \sum_{i=1}^{n} I\left(\varepsilon_{i} \leq x\right), \quad x \in \mathbb{R}
$$

Thm 2 Suppose the regression model, errors and $\widehat{\boldsymbol{\beta}}$ satisfy the same conditions as in Thm 1. Then

$$
P\left(n^{1-1 / \alpha_{*}}\left(s_{2}-\sigma_{2}\right) \leq x \sigma_{2}\right) \quad \rightarrow \quad P\left(Z_{2}^{*} \leq x\right), \quad \forall x \in \mathbb{R}
$$

where Z_{2}^{*} is an α_{*}-stable r.v. defined in below.
Idea of the proof. $s_{1}=\operatorname{med}\left\{\left|r_{n i}\right| ; 1 \leq i \leq n\right\}, \quad S(y):=\sum_{i=1}^{n} I\left(\left|r_{n i}\right| \leq y\right)$, $y \geq 0$. Then $S(y):=\sum_{i=1}^{n} I\left(r_{n i} \leq y\right)-\sum_{i=1}^{n} I\left(r_{n i} \leq-y\right)$ and

$$
\left\{s_{1} \leq y\right\}=\{S(y) \geq(n+1) / 2\}, \quad n \text { odd }
$$

Since $r_{n i} \approx \varepsilon_{i}$ the study of $P\left(s_{1} \leq y\right)$ reduces to that of $F_{n}(y)-F_{n}(-y)$, where $F_{n}(x)$ is the empirical process:

$$
F_{n}(x):=n^{-1} \sum_{i=1}^{n} I\left(\varepsilon_{i} \leq x\right), \quad x \in \mathbb{R}
$$

Similarly, probabilities of $s_{2}=\operatorname{med}\left\{\left|r_{n i}-r_{n j}\right| ; 1 \leq i<j \leq n\right\}$ can be expressed via those of $T(y):=\sum_{1 \leq i<j \leq n} I\left(\left|r_{n i}-r_{n j}\right| \leq y\right)$

Thm 2 Suppose the regression model, errors and $\widehat{\beta}$ satisfy the same conditions as in Thm 1. Then

$$
P\left(n^{1-1 / \alpha_{*}}\left(s_{2}-\sigma_{2}\right) \leq x \sigma_{2}\right) \quad \rightarrow \quad P\left(Z_{2}^{*} \leq x\right), \quad \forall x \in \mathbb{R}
$$

where Z_{2}^{*} is an α_{*}-stable r.v. defined in below.
Idea of the proof. $s_{1}=\operatorname{med}\left\{\left|r_{n i}\right| ; 1 \leq i \leq n\right\}, \quad S(y):=\sum_{i=1}^{n} I\left(\left|r_{n i}\right| \leq y\right)$, $y \geq 0$. Then $S(y):=\sum_{i=1}^{n} I\left(r_{n i} \leq y\right)-\sum_{i=1}^{n} I\left(r_{n i} \leq-y\right)$ and

$$
\left\{s_{1} \leq y\right\}=\{S(y) \geq(n+1) / 2\}, \quad n \text { odd }
$$

Since $r_{n i} \approx \varepsilon_{i}$ the study of $P\left(s_{1} \leq y\right)$ reduces to that of $F_{n}(y)-F_{n}(-y)$, where $F_{n}(x)$ is the empirical process:

$$
F_{n}(x):=n^{-1} \sum_{i=1}^{n} I\left(\varepsilon_{i} \leq x\right), \quad x \in \mathbb{R}
$$

Similarly, probabilities of $s_{2}=\operatorname{med}\left\{\left|r_{n i}-r_{n j}\right| ; 1 \leq i<j \leq n\right\}$ can be expressed via those of $T(y):=\sum_{1 \leq i<j \leq n} I\left(\left|r_{n i}-r_{n j}\right| \leq y\right)$ and the latter probabilities since $r_{n i} \approx \varepsilon_{i}$ can be expressed via those of the 'bilinear empirical integral':

$$
\int\left[F_{n}(y+x)-F_{n}(-y+x)\right] \mathrm{d} F_{n}(x), \quad y \geq 0
$$

Thm 2 Suppose the regression model, errors and $\widehat{\beta}$ satisfy the same conditions as in Thm 1. Then

$$
P\left(n^{1-1 / \alpha_{*}}\left(s_{2}-\sigma_{2}\right) \leq x \sigma_{2}\right) \quad \rightarrow \quad P\left(Z_{2}^{*} \leq x\right), \quad \forall x \in \mathbb{R}
$$

where Z_{2}^{*} is an α_{*}-stable r.v. defined in below.
Idea of the proof. $s_{1}=\operatorname{med}\left\{\left|r_{n i}\right| ; 1 \leq i \leq n\right\}, \quad S(y):=\sum_{i=1}^{n} I\left(\left|r_{n i}\right| \leq y\right)$, $y \geq 0$. Then $S(y):=\sum_{i=1}^{n} I\left(r_{n i} \leq y\right)-\sum_{i=1}^{n} I\left(r_{n i} \leq-y\right)$ and

$$
\left\{s_{1} \leq y\right\}=\{S(y) \geq(n+1) / 2\}, \quad n \text { odd }
$$

Since $r_{n i} \approx \varepsilon_{i}$ the study of $P\left(s_{1} \leq y\right)$ reduces to that of $F_{n}(y)-F_{n}(-y)$, where $F_{n}(x)$ is the empirical process:

$$
F_{n}(x):=n^{-1} \sum_{i=1}^{n} I\left(\varepsilon_{i} \leq x\right), \quad x \in \mathbb{R}
$$

Similarly, probabilities of $s_{2}=\operatorname{med}\left\{\left|r_{n i}-r_{n j}\right| ; 1 \leq i<j \leq n\right\}$ can be expressed via those of $T(y):=\sum_{1 \leq i<j \leq n} I\left(\left|r_{n i}-r_{n j}\right| \leq y\right)$ and the latter probabilities since $r_{n i} \approx \varepsilon_{i}$ can be expressed via those of the 'bilinear empirical integral':

$$
\int\left[F_{n}(y+x)-F_{n}(-y+x)\right] \mathrm{d} F_{n}(x), \quad y \geq 0
$$

- Reduction of 'residual' empirical functionals to 'true' empirical functionals corresponding to completely observed errors ε_{i} follows the methodology in the monograph Koul (2002)
- Reduction of 'residual' empirical functionals to 'true' empirical functionals corresponding to completely observed errors ε_{i} follows the methodology in the monograph Koul (2002)
- The study of the limit distribution of 'true' empirical functionals uses the first and second order asymptotic expansions and Uniform Reduction Principles (URP) for the EP (empirical process) (see below).
- Reduction of 'residual' empirical functionals to 'true' empirical functionals corresponding to completely observed errors ε_{i} follows the methodology in the monograph Koul (2002)
- The study of the limit distribution of 'true' empirical functionals uses the first and second order asymptotic expansions and Uniform Reduction Principles (URP) for the EP (empirical process) (see below).

5. The EP of linear LM sequence with infinite variance. The first and second order URP.

- Reduction of 'residual' empirical functionals to 'true' empirical functionals corresponding to completely observed errors ε_{i} follows the methodology in the monograph Koul (2002)
- The study of the limit distribution of 'true' empirical functionals uses the first and second order asymptotic expansions and Uniform Reduction Principles (URP) for the EP (empirical process) (see below).

5. The EP of linear LM sequence with infinite variance. The first and second order URP.

Let $\left\{\varepsilon_{i}, i \in \mathbb{Z}\right\}$ be a strictly stationary and ergodic sequence with marginal d.f. $F(x)=P\left(\varepsilon_{0} \leq x\right), x \in \mathbb{R}$

- Reduction of 'residual' empirical functionals to 'true' empirical functionals corresponding to completely observed errors ε_{i} follows the methodology in the monograph Koul (2002)
- The study of the limit distribution of 'true' empirical functionals uses the first and second order asymptotic expansions and Uniform Reduction Principles (URP) for the EP (empirical process) (see below).

5. The EP of linear LM sequence with infinite variance. The first and second order URP.

Let $\left\{\varepsilon_{i}, i \in \mathbb{Z}\right\}$ be a strictly stationary and ergodic sequence with marginal d.f. $F(x)=P\left(\varepsilon_{0} \leq x\right), x \in \mathbb{R}$

The EP $\left\{F_{n}(x):=n^{-1} \sum_{i=1}^{n} I\left(\varepsilon_{i} \leq x\right), x \in \mathbb{R}\right\}$ is an unbiased $\left(E F_{n}(x)=F(x)\right)$ and strongly consistent estimator of F :

- Reduction of 'residual' empirical functionals to 'true' empirical functionals corresponding to completely observed errors ε_{i} follows the methodology in the monograph Koul (2002)
- The study of the limit distribution of 'true' empirical functionals uses the first and second order asymptotic expansions and Uniform Reduction Principles (URP) for the EP (empirical process) (see below).

5. The EP of linear LM sequence with infinite variance. The first and second order URP.

Let $\left\{\varepsilon_{i}, i \in \mathbb{Z}\right\}$ be a strictly stationary and ergodic sequence with marginal d.f. $F(x)=P\left(\varepsilon_{0} \leq x\right), x \in \mathbb{R}$
The EP $\left\{F_{n}(x):=n^{-1} \sum_{i=1}^{n} I\left(\varepsilon_{i} \leq x\right), x \in \mathbb{R}\right\}$ is an unbiased ($E F_{n}(x)=F(x)$) and strongly consistent estimator of F :

$$
\sup _{x \in \mathbb{R}}\left|F_{n}(x)-F(x)\right|=o_{p}(1)
$$

- Reduction of 'residual' empirical functionals to 'true' empirical functionals corresponding to completely observed errors ε_{i} follows the methodology in the monograph Koul (2002)
- The study of the limit distribution of 'true' empirical functionals uses the first and second order asymptotic expansions and Uniform Reduction Principles (URP) for the EP (empirical process) (see below).

5. The EP of linear LM sequence with infinite variance. The first and second order URP.

Let $\left\{\varepsilon_{i}, i \in \mathbb{Z}\right\}$ be a strictly stationary and ergodic sequence with marginal d.f. $F(x)=P\left(\varepsilon_{0} \leq x\right), x \in \mathbb{R}$
The EP $\left\{F_{n}(x):=n^{-1} \sum_{i=1}^{n} I\left(\varepsilon_{i} \leq x\right), x \in \mathbb{R}\right\}$ is an unbiased ($E F_{n}(x)=F(x)$) and strongly consistent estimator of F :

$$
\sup _{x \in \mathbb{R}}\left|F_{n}(x)-F(x)\right|=o_{p}(1) .
$$

- For 'weakly dependent' $\left\{\varepsilon_{i}\right\}$, the consistency rate of F_{n} is $n^{1 / 2}$ and $n^{1 / 2}\left(F_{n}(x)-F(x)\right)$ tends weakly in the Skorohod space $D(\overline{\mathbb{R}})$ to a nontrivial Gaussian process
- Reduction of 'residual' empirical functionals to 'true' empirical functionals corresponding to completely observed errors ε_{i} follows the methodology in the monograph Koul (2002)
- The study of the limit distribution of 'true' empirical functionals uses the first and second order asymptotic expansions and Uniform Reduction Principles (URP) for the EP (empirical process) (see below).

5. The EP of linear LM sequence with infinite variance. The first and second order URP.

Let $\left\{\varepsilon_{i}, i \in \mathbb{Z}\right\}$ be a strictly stationary and ergodic sequence with marginal d.f. $F(x)=P\left(\varepsilon_{0} \leq x\right), x \in \mathbb{R}$
The EP $\left\{F_{n}(x):=n^{-1} \sum_{i=1}^{n} I\left(\varepsilon_{i} \leq x\right), x \in \mathbb{R}\right\}$ is an unbiased ($E F_{n}(x)=F(x)$) and strongly consistent estimator of F :

$$
\sup _{x \in \mathbb{R}}\left|F_{n}(x)-F(x)\right|=o_{p}(1) .
$$

- For 'weakly dependent' $\left\{\varepsilon_{i}\right\}$, the consistency rate of F_{n} is $n^{1 / 2}$ and $n^{1 / 2}\left(F_{n}(x)-F(x)\right)$ tends weakly in the Skorohod space $D(\overline{\mathbb{R}})$ to a nontrivial Gaussian process
- For LM Gaussian process $\left\{\varepsilon_{i}\right\}$ with memory parameter $d \in(0,1 / 2)$ the EP tends to completely a different degenerated limit (Dehling and Taqqu, 1989):
- For LM Gaussian process $\left\{\varepsilon_{i}\right\}$ with memory parameter $d \in(0,1 / 2)$ the EP tends to completely a different degenerated limit (Dehling and Taqqu, 1989):

$$
\begin{equation*}
n^{1 / 2-d}\left(F_{n}(x)-F(x)\right) \Longrightarrow_{D(\overline{\mathbb{R}})} f(x) Z \tag{10}
\end{equation*}
$$

where $f(x)=F^{\prime}(x)$ is (Gaussian) density and $Z \sim N\left(0, \sigma^{2}\right)$ is a normal r.v.

- For LM Gaussian process $\left\{\varepsilon_{i}\right\}$ with memory parameter $d \in(0,1 / 2)$ the EP tends to completely a different degenerated limit (Dehling and Taqqu, 1989):

$$
\begin{equation*}
n^{1 / 2-d}\left(F_{n}(x)-F(x)\right) \Longrightarrow_{D(\overline{\mathbb{R}})} f(x) Z \tag{10}
\end{equation*}
$$

where $f(x)=F^{\prime}(x)$ is (Gaussian) density and $Z \sim N\left(0, \sigma^{2}\right)$ is a normal r.v.

- (10) remains true if $\left\{\varepsilon_{i}\right\}$ is a linear MA process with finite variance
- For LM Gaussian process $\left\{\varepsilon_{i}\right\}$ with memory parameter $d \in(0,1 / 2)$ the EP tends to completely a different degenerated limit (Dehling and Taqqu, 1989):

$$
\begin{equation*}
n^{1 / 2-d}\left(F_{n}(x)-F(x)\right) \Longrightarrow_{D(\overline{\mathbb{R}})} f(x) Z \tag{10}
\end{equation*}
$$

where $f(x)=F^{\prime}(x)$ is (Gaussian) density and $Z \sim N\left(0, \sigma^{2}\right)$ is a normal r.v.

- (10) remains true if $\left\{\varepsilon_{i}\right\}$ is a linear MA process with finite variance (Giraitis et al., 1996), (Ho and Hsing, 1996), (Giraitis and S., 1989)
- For LM Gaussian process $\left\{\varepsilon_{i}\right\}$ with memory parameter $d \in(0,1 / 2)$ the EP tends to completely a different degenerated limit (Dehling and Taqqu, 1989):

$$
\begin{equation*}
n^{1 / 2-d}\left(F_{n}(x)-F(x)\right) \Longrightarrow_{D(\overline{\mathbb{R}})} f(x) Z \tag{10}
\end{equation*}
$$

where $f(x)=F^{\prime}(x)$ is (Gaussian) density and $Z \sim N\left(0, \sigma^{2}\right)$ is a normal r.v.

- (10) remains true if $\left\{\varepsilon_{i}\right\}$ is a linear MA process with finite variance (Giraitis et al., 1996), (Ho and Hsing, 1996), (Giraitis and S., 1989)
- (10) is a consequence of the URP I (the first order URP) for the EP:

$$
\begin{equation*}
\sup _{x \in \mathbb{R}} n^{1 / 2-d}\left|F_{n}(x)-F(x)+f(x) \bar{\varepsilon}_{n}\right|=o_{p}(1) \tag{11}
\end{equation*}
$$

where $\bar{\varepsilon}_{n}=n^{-1} \sum_{i=1}^{n} \varepsilon_{i}$ is the sample mean.

- For LM Gaussian process $\left\{\varepsilon_{i}\right\}$ with memory parameter $d \in(0,1 / 2)$ the EP tends to completely a different degenerated limit (Dehling and Taqqu, 1989):

$$
\begin{equation*}
n^{1 / 2-d}\left(F_{n}(x)-F(x)\right) \Longrightarrow_{D(\overline{\mathbb{R}})} f(x) Z \tag{10}
\end{equation*}
$$

where $f(x)=F^{\prime}(x)$ is (Gaussian) density and $Z \sim N\left(0, \sigma^{2}\right)$ is a normal r.v.

- (10) remains true if $\left\{\varepsilon_{i}\right\}$ is a linear MA process with finite variance (Giraitis et al., 1996), (Ho and Hsing, 1996), (Giraitis and S., 1989)
- (10) is a consequence of the URP I (the first order URP) for the EP:

$$
\begin{equation*}
\sup _{x \in \mathbb{R}} n^{1 / 2-d}\left|F_{n}(x)-F(x)+f(x) \bar{\varepsilon}_{n}\right|=o_{p}(1) \tag{11}
\end{equation*}
$$

where $\bar{\varepsilon}_{n}=n^{-1} \sum_{i=1}^{n} \varepsilon_{i}$ is the sample mean.

- $f(x) \bar{\varepsilon}_{n}$ can be regarded as the first term of the asymptotic expansion of F_{n}
- For LM Gaussian process $\left\{\varepsilon_{i}\right\}$ with memory parameter $d \in(0,1 / 2)$ the EP tends to completely a different degenerated limit (Dehling and Taqqu, 1989):

$$
\begin{equation*}
n^{1 / 2-d}\left(F_{n}(x)-F(x)\right) \Longrightarrow_{D(\overline{\mathbb{R}})} f(x) Z \tag{10}
\end{equation*}
$$

where $f(x)=F^{\prime}(x)$ is (Gaussian) density and $Z \sim N\left(0, \sigma^{2}\right)$ is a normal r.v.

- (10) remains true if $\left\{\varepsilon_{i}\right\}$ is a linear MA process with finite variance (Giraitis et al., 1996), (Ho and Hsing, 1996), (Giraitis and S., 1989)
- (10) is a consequence of the URP I (the first order URP) for the EP:

$$
\begin{equation*}
\sup _{x \in \mathbb{R}} n^{1 / 2-d}\left|F_{n}(x)-F(x)+f(x) \bar{\varepsilon}_{n}\right|=o_{p}(1) \tag{11}
\end{equation*}
$$

where $\bar{\varepsilon}_{n}=n^{-1} \sum_{i=1}^{n} \varepsilon_{i}$ is the sample mean.

- $f(x) \bar{\varepsilon}_{n}$ can be regarded as the first term of the asymptotic expansion of F_{n} which may vanish for some nonlinear statistics
- For LM Gaussian process $\left\{\varepsilon_{i}\right\}$ with memory parameter $d \in(0,1 / 2)$ the EP tends to completely a different degenerated limit (Dehling and Taqqu, 1989):

$$
\begin{equation*}
n^{1 / 2-d}\left(F_{n}(x)-F(x)\right) \Longrightarrow_{D(\overline{\mathbb{R}})} f(x) Z \tag{10}
\end{equation*}
$$

where $f(x)=F^{\prime}(x)$ is (Gaussian) density and $Z \sim N\left(0, \sigma^{2}\right)$ is a normal r.v.

- (10) remains true if $\left\{\varepsilon_{i}\right\}$ is a linear MA process with finite variance (Giraitis et al., 1996), (Ho and Hsing, 1996), (Giraitis and S., 1989)
- (10) is a consequence of the URP I (the first order URP) for the EP:

$$
\begin{equation*}
\sup _{x \in \mathbb{R}} n^{1 / 2-d}\left|F_{n}(x)-F(x)+f(x) \bar{\varepsilon}_{n}\right|=o_{p}(1) \tag{11}
\end{equation*}
$$

where $\bar{\varepsilon}_{n}=n^{-1} \sum_{i=1}^{n} \varepsilon_{i}$ is the sample mean.

- $f(x) \bar{\varepsilon}_{n}$ can be regarded as the first term of the asymptotic expansion of F_{n} which may vanish for some nonlinear statistics and is insufficient for some applications
- For LM Gaussian process $\left\{\varepsilon_{i}\right\}$ with memory parameter $d \in(0,1 / 2)$ the EP tends to completely a different degenerated limit (Dehling and Taqqu, 1989):

$$
\begin{equation*}
n^{1 / 2-d}\left(F_{n}(x)-F(x)\right) \Longrightarrow_{D(\overline{\mathbb{R}})} f(x) Z \tag{10}
\end{equation*}
$$

where $f(x)=F^{\prime}(x)$ is (Gaussian) density and $Z \sim N\left(0, \sigma^{2}\right)$ is a normal r.v.

- (10) remains true if $\left\{\varepsilon_{i}\right\}$ is a linear MA process with finite variance (Giraitis et al., 1996), (Ho and Hsing, 1996), (Giraitis and S., 1989)
- (10) is a consequence of the URP I (the first order URP) for the EP:

$$
\begin{equation*}
\sup _{x \in \mathbb{R}} n^{1 / 2-d}\left|F_{n}(x)-F(x)+f(x) \bar{\varepsilon}_{n}\right|=o_{p}(1) \tag{11}
\end{equation*}
$$

where $\bar{\varepsilon}_{n}=n^{-1} \sum_{i=1}^{n} \varepsilon_{i}$ is the sample mean.

- $f(x) \bar{\varepsilon}_{n}$ can be regarded as the first term of the asymptotic expansion of F_{n} which may vanish for some nonlinear statistics and is insufficient for some applications
- Higher-order asymptotic expansions of the EP and noncentral limit theorems:

$$
F_{n}(x)-F(x)=\sum_{1 \leq k \leq[1 /(1-2 d)]}(-1)^{k} F^{(k)}(x) \varepsilon_{n}^{(k)}+n^{-1 / 2} Q_{n}(x)
$$

- For LM Gaussian process $\left\{\varepsilon_{i}\right\}$ with memory parameter $d \in(0,1 / 2)$ the EP tends to completely a different degenerated limit (Dehling and Taqqu, 1989):

$$
\begin{equation*}
n^{1 / 2-d}\left(F_{n}(x)-F(x)\right) \Longrightarrow_{D(\overline{\mathbb{R}})} f(x) Z \tag{10}
\end{equation*}
$$

where $f(x)=F^{\prime}(x)$ is (Gaussian) density and $Z \sim N\left(0, \sigma^{2}\right)$ is a normal r.v.

- (10) remains true if $\left\{\varepsilon_{i}\right\}$ is a linear MA process with finite variance (Giraitis et al., 1996), (Ho and Hsing, 1996), (Giraitis and S., 1989)
- (10) is a consequence of the URP I (the first order URP) for the EP:

$$
\begin{equation*}
\sup _{x \in \mathbb{R}} n^{1 / 2-d}\left|F_{n}(x)-F(x)+f(x) \bar{\varepsilon}_{n}\right|=o_{p}(1) \tag{11}
\end{equation*}
$$

where $\bar{\varepsilon}_{n}=n^{-1} \sum_{i=1}^{n} \varepsilon_{i}$ is the sample mean.

- $f(x) \bar{\varepsilon}_{n}$ can be regarded as the first term of the asymptotic expansion of F_{n} which may vanish for some nonlinear statistics and is insufficient for some applications
- Higher-order asymptotic expansions of the EP and noncentral limit theorems:

$$
\begin{equation*}
F_{n}(x)-F(x)=\sum_{1 \leq k \leq[1 /(1-2 d)]}(-1)^{k} F^{(k)}(x) \varepsilon_{n}^{(k)}+n^{-1 / 2} Q_{n}(x) \tag{12}
\end{equation*}
$$

- The above results refer to linear/Gaussian LM processes with finite variance
- The above results refer to linear/Gaussian LM processes with finite variance This talk: EP of linear process with long memory and infinite variance:

$$
\varepsilon_{i}=\sum_{j \leq i} b_{i-j} \zeta_{j}, \quad b_{j} \sim c_{0} j^{-(1-d)}, \quad 0<d<1-1 / \alpha
$$

- The above results refer to linear/Gaussian LM processes with finite variance This talk: EP of linear process with long memory and infinite variance:

$$
\varepsilon_{i}=\sum_{j \leq i} b_{i-j} \zeta_{j}, \quad b_{j} \sim c_{0} j^{-(1-d)}, \quad 0<d<1-1 / \alpha
$$

with i.i.d. innovations $\left\{\zeta_{j}\right\}$ in the domain of attraction of α-stable law, $1<\alpha<2$, see Assumption $\mathrm{E}(\alpha, d)$.

- The above results refer to linear/Gaussian LM processes with finite variance This talk: EP of linear process with long memory and infinite variance:

$$
\varepsilon_{i}=\sum_{j \leq i} b_{i-j} \zeta_{j}, \quad b_{j} \sim c_{0} j^{-(1-d)}, \quad 0<d<1-1 / \alpha
$$

with i.i.d. innovations $\left\{\zeta_{j}\right\}$ in the domain of attraction of α-stable law, $1<\alpha<2$, see Assumption $\mathrm{E}(\alpha, d)$.

The EP $F_{n}(x)=\sum_{i=1}^{n} I\left(\varepsilon_{i} \leq x\right)$ is a sum of bounded r.v.s.

- The above results refer to linear/Gaussian LM processes with finite variance This talk: EP of linear process with long memory and infinite variance:

$$
\varepsilon_{i}=\sum_{j \leq i} b_{i-j} \zeta_{j}, \quad b_{j} \sim c_{0} j^{-(1-d)}, \quad 0<d<1-1 / \alpha
$$

with i.i.d. innovations $\left\{\zeta_{j}\right\}$ in the domain of attraction of α-stable law, $1<\alpha<2$, see Assumption $\mathrm{E}(\alpha, d)$.

The EP $F_{n}(x)=\sum_{i=1}^{n} I\left(\varepsilon_{i} \leq x\right)$ is a sum of bounded r.v.s.
Hsing (1999, Ann. Probab.) claimed that the limit distribution of $n^{(\alpha(1-d)-1) / 2}\left(F_{n}(x)-F(x)\right)$ is Gaussian,

- The above results refer to linear/Gaussian LM processes with finite variance This talk: EP of linear process with long memory and infinite variance:

$$
\varepsilon_{i}=\sum_{j \leq i} b_{i-j} \zeta_{j}, \quad b_{j} \sim c_{0} j^{-(1-d)}, \quad 0<d<1-1 / \alpha
$$

with i.i.d. innovations $\left\{\zeta_{j}\right\}$ in the domain of attraction of α-stable law, $1<\alpha<2$, see Assumption $\mathrm{E}(\alpha, d)$.

The EP $F_{n}(x)=\sum_{i=1}^{n} I\left(\varepsilon_{i} \leq x\right)$ is a sum of bounded r.v.s.
Hsing (1999, Ann. Probab.) claimed that the limit distribution of $n^{(\alpha(1-d)-1) / 2}\left(F_{n}(x)-F(x)\right)$ is Gaussian, which is incorrect

- The above results refer to linear/Gaussian LM processes with finite variance This talk: EP of linear process with long memory and infinite variance:

$$
\varepsilon_{i}=\sum_{j \leq i} b_{i-j} \zeta_{j}, \quad b_{j} \sim c_{0} j^{-(1-d)}, \quad 0<d<1-1 / \alpha
$$

with i.i.d. innovations $\left\{\zeta_{j}\right\}$ in the domain of attraction of α-stable law, $1<\alpha<2$, see Assumption $\mathrm{E}(\alpha, d)$.
The EP $F_{n}(x)=\sum_{i=1}^{n} I\left(\varepsilon_{i} \leq x\right)$ is a sum of bounded r.v.s.
Hsing (1999, Ann. Probab.) claimed that the limit distribution of $n^{(\alpha(1-d)-1) / 2}\left(F_{n}(x)-F(x)\right)$ is Gaussian, which is incorrect

Koul and S. (2001) proved that $n^{1-d-1 / \alpha}\left(F_{n}(x)-F(x)\right)$ tends to a degenerated α-stable process:

- The above results refer to linear/Gaussian LM processes with finite variance This talk: EP of linear process with long memory and infinite variance:

$$
\varepsilon_{i}=\sum_{j \leq i} b_{i-j} \zeta_{j}, \quad b_{j} \sim c_{0} j^{-(1-d)}, \quad 0<d<1-1 / \alpha
$$

with i.i.d. innovations $\left\{\zeta_{j}\right\}$ in the domain of attraction of α-stable law, $1<\alpha<2$, see Assumption $\mathrm{E}(\alpha, d)$.
The EP $F_{n}(x)=\sum_{i=1}^{n} I\left(\varepsilon_{i} \leq x\right)$ is a sum of bounded r.v.s.
Hsing (1999, Ann. Probab.) claimed that the limit distribution of $n^{(\alpha(1-d)-1) / 2}\left(F_{n}(x)-F(x)\right)$ is Gaussian, which is incorrect

Koul and S. (2001) proved that $n^{1-d-1 / \alpha}\left(F_{n}(x)-F(x)\right)$ tends to a degenerated α-stable process:

$$
n^{1-d-1 / \alpha}\left(F_{n}(x)-F(x)\right) \Longrightarrow_{D(\overline{\mathbb{R}})} f(x) Z
$$

- The above results refer to linear/Gaussian LM processes with finite variance This talk: EP of linear process with long memory and infinite variance:

$$
\varepsilon_{i}=\sum_{j \leq i} b_{i-j} \zeta_{j}, \quad b_{j} \sim c_{0} j^{-(1-d)}, \quad 0<d<1-1 / \alpha
$$

with i.i.d. innovations $\left\{\zeta_{j}\right\}$ in the domain of attraction of α-stable law, $1<\alpha<2$, see Assumption $\mathrm{E}(\alpha, d)$.
The EP $F_{n}(x)=\sum_{i=1}^{n} I\left(\varepsilon_{i} \leq x\right)$ is a sum of bounded r.v.s.
Hsing (1999, Ann. Probab.) claimed that the limit distribution of $n^{(\alpha(1-d)-1) / 2}\left(F_{n}(x)-F(x)\right)$ is Gaussian, which is incorrect

Koul and S. (2001) proved that $n^{1-d-1 / \alpha}\left(F_{n}(x)-F(x)\right)$ tends to a degenerated α-stable process:

$$
n^{1-d-1 / \alpha}\left(F_{n}(x)-F(x)\right) \Longrightarrow_{D(\overline{\mathbb{R}})} f(x) Z
$$

where $f(x)=F^{\prime}(x)$ is marginal density and Z is α-stable r.v.

- The above results refer to linear/Gaussian LM processes with finite variance This talk: EP of linear process with long memory and infinite variance:

$$
\varepsilon_{i}=\sum_{j \leq i} b_{i-j} \zeta_{j}, \quad b_{j} \sim c_{0} j^{-(1-d)}, \quad 0<d<1-1 / \alpha
$$

with i.i.d. innovations $\left\{\zeta_{j}\right\}$ in the domain of attraction of α-stable law, $1<\alpha<2$, see Assumption $\mathrm{E}(\alpha, d)$.
The EP $F_{n}(x)=\sum_{i=1}^{n} I\left(\varepsilon_{i} \leq x\right)$ is a sum of bounded r.v.s.
Hsing (1999, Ann. Probab.) claimed that the limit distribution of $n^{(\alpha(1-d)-1) / 2}\left(F_{n}(x)-F(x)\right)$ is Gaussian, which is incorrect

Koul and S. (2001) proved that $n^{1-d-1 / \alpha}\left(F_{n}(x)-F(x)\right)$ tends to a degenerated α-stable process:

$$
n^{1-d-1 / \alpha}\left(F_{n}(x)-F(x)\right) \Longrightarrow_{D(\overline{\mathbb{R}})} f(x) Z
$$

where $f(x)=F^{\prime}(x)$ is marginal density and Z is α-stable r.v.

- The above results refer to linear/Gaussian LM processes with finite variance

This talk: EP of linear process with long memory and infinite variance:

$$
\varepsilon_{i}=\sum_{j \leq i} b_{i-j} \zeta_{j}, \quad b_{j} \sim c_{0} j^{-(1-d)}, \quad 0<d<1-1 / \alpha
$$

with i.i.d. innovations $\left\{\zeta_{j}\right\}$ in the domain of attraction of α-stable law, $1<\alpha<2$, see Assumption $\mathrm{E}(\alpha, d)$.
The EP $F_{n}(x)=\sum_{i=1}^{n} I\left(\varepsilon_{i} \leq x\right)$ is a sum of bounded r.v.s.
Hsing (1999, Ann. Probab.) claimed that the limit distribution of $n^{(\alpha(1-d)-1) / 2}\left(F_{n}(x)-F(x)\right)$ is Gaussian, which is incorrect

Koul and S. (2001) proved that $n^{1-d-1 / \alpha}\left(F_{n}(x)-F(x)\right)$ tends to a degenerated α-stable process:

$$
n^{1-d-1 / \alpha}\left(F_{n}(x)-F(x)\right) \Longrightarrow_{D(\overline{\mathbb{R}})} f(x) Z
$$

where $f(x)=F^{\prime}(x)$ is marginal density and Z is α-stable r.v.
Note $n^{(\alpha(1-d)-1) / 2}=o\left(n^{1-d-1 / \alpha}\right)$ since $(\alpha(1-d)-1) / 2<1-d-1 / \alpha$ is equivalent to $d<1-1 / \alpha$ for $1<\alpha<2$

- The above results refer to linear/Gaussian LM processes with finite variance

This talk: EP of linear process with long memory and infinite variance:

$$
\varepsilon_{i}=\sum_{j \leq i} b_{i-j} \zeta_{j}, \quad b_{j} \sim c_{0} j^{-(1-d)}, \quad 0<d<1-1 / \alpha
$$

with i.i.d. innovations $\left\{\zeta_{j}\right\}$ in the domain of attraction of α-stable law, $1<\alpha<2$, see Assumption $\mathrm{E}(\alpha, d)$.
The EP $F_{n}(x)=\sum_{i=1}^{n} I\left(\varepsilon_{i} \leq x\right)$ is a sum of bounded r.v.s.
Hsing (1999, Ann. Probab.) claimed that the limit distribution of $n^{(\alpha(1-d)-1) / 2}\left(F_{n}(x)-F(x)\right)$ is Gaussian, which is incorrect

Koul and S. (2001) proved that $n^{1-d-1 / \alpha}\left(F_{n}(x)-F(x)\right)$ tends to a degenerated α-stable process:

$$
n^{1-d-1 / \alpha}\left(F_{n}(x)-F(x)\right) \Longrightarrow_{D(\overline{\mathbb{R}})} f(x) Z
$$

where $f(x)=F^{\prime}(x)$ is marginal density and Z is α-stable r.v.
Note $n^{(\alpha(1-d)-1) / 2}=o\left(n^{1-d-1 / \alpha}\right)$ since $(\alpha(1-d)-1) / 2<1-d-1 / \alpha$ is equivalent to $d<1-1 / \alpha$ for $1<\alpha<2$

The last result is a consequence of the following URP for the EP:

Thm 3 (URP I for the EP)

Thm 3 (URP I for the EP) Suppose $\left\{\varepsilon_{i}\right\}$ satisfies Assumption $\mathrm{E}(\alpha, d)$, for $0<d<1-1 / \alpha, 1<\alpha<2, \bar{\varepsilon}_{n}=n^{-1} \sum_{i=1}^{n} \varepsilon_{i}$.

Thm 3 (URP I for the EP) Suppose $\left\{\varepsilon_{i}\right\}$ satisfies Assumption $\mathrm{E}(\alpha, d)$, for $0<d<1-1 / \alpha, 1<\alpha<2, \bar{\varepsilon}_{n}=n^{-1} \sum_{i=1}^{n} \varepsilon_{i}$. Then

$$
\sup _{x \in \mathbb{R}} n^{1-d-1 / \alpha}\left|F_{n}(x)-F(x)+f(x) \bar{\varepsilon}_{n}\right|=o_{p}(1) .
$$

Thm 3 (URP I for the EP) Suppose $\left\{\varepsilon_{i}\right\}$ satisfies Assumption $\mathrm{E}(\alpha, d)$, for $0<d<1-1 / \alpha, 1<\alpha<2, \bar{\varepsilon}_{n}=n^{-1} \sum_{i=1}^{n} \varepsilon_{i}$. Then

$$
\sup _{x \in \mathbb{R}} n^{1-d-1 / \alpha}\left|F_{n}(x)-F(x)+f(x) \bar{\varepsilon}_{n}\right|=o_{p}(1) .
$$

Questions:

Thm 3 (URP I for the EP) Suppose $\left\{\varepsilon_{i}\right\}$ satisfies Assumption $\mathrm{E}(\alpha, d)$, for $0<d<1-1 / \alpha, 1<\alpha<2, \bar{\varepsilon}_{n}=n^{-1} \sum_{i=1}^{n} \varepsilon_{i}$. Then

$$
\sup _{x \in \mathbb{R}} n^{1-d-1 / \alpha}\left|F_{n}(x)-F(x)+f(x) \bar{\varepsilon}_{n}\right|=o_{p}(1) .
$$

Questions:

1. Does $A_{n}\left(F_{n}(x)-F(x)+f(x) \bar{\varepsilon}_{n}\right)$ has a limit distribution under some normalization $A_{n} \gg n^{1-d-1 / \alpha}$?

Thm 3 (URP I for the EP) Suppose $\left\{\varepsilon_{i}\right\}$ satisfies Assumption $\mathrm{E}(\alpha, d)$, for $0<d<1-1 / \alpha, 1<\alpha<2, \bar{\varepsilon}_{n}=n^{-1} \sum_{i=1}^{n} \varepsilon_{i}$. Then

$$
\sup _{x \in \mathbb{R}} n^{1-d-1 / \alpha}\left|F_{n}(x)-F(x)+f(x) \bar{\varepsilon}_{n}\right|=o_{p}(1) .
$$

Questions:

1. Does $A_{n}\left(F_{n}(x)-F(x)+f(x) \bar{\varepsilon}_{n}\right)$ has a limit distribution under some normalization $A_{n} \gg n^{1-d-1 / \alpha}$?
2. Is there URP II for the EP?

Thm 3 (URP I for the EP) Suppose $\left\{\varepsilon_{i}\right\}$ satisfies Assumption $\mathrm{E}(\alpha, d)$, for $0<d<1-1 / \alpha, 1<\alpha<2, \bar{\varepsilon}_{n}=n^{-1} \sum_{i=1}^{n} \varepsilon_{i}$. Then

$$
\sup _{x \in \mathbb{R}} n^{1-d-1 / \alpha}\left|F_{n}(x)-F(x)+f(x) \bar{\varepsilon}_{n}\right|=o_{p}(1) .
$$

Questions:

1. Does $A_{n}\left(F_{n}(x)-F(x)+f(x) \bar{\varepsilon}_{n}\right)$ has a limit distribution under some normalization $A_{n} \gg n^{1-d-1 / \alpha}$?
2. Is there URP II for the EP? What is the second expansion term?

Thm 3 (URP I for the EP) Suppose $\left\{\varepsilon_{i}\right\}$ satisfies Assumption $\mathrm{E}(\alpha, d)$, for $0<d<1-1 / \alpha, 1<\alpha<2, \bar{\varepsilon}_{n}=n^{-1} \sum_{i=1}^{n} \varepsilon_{i}$. Then

$$
\sup _{x \in \mathbb{R}} n^{1-d-1 / \alpha}\left|F_{n}(x)-F(x)+f(x) \bar{\varepsilon}_{n}\right|=o_{p}(1)
$$

Questions:

1. Does $A_{n}\left(F_{n}(x)-F(x)+f(x) \bar{\varepsilon}_{n}\right)$ has a limit distribution under some normalization $A_{n} \gg n^{1-d-1 / \alpha}$?
2. Is there URP II for the EP? What is the second expansion term? Affirmative answer to Q. 1 with $A_{n}=n^{1-1 / \alpha_{*}}, \alpha_{*}=\alpha(1-d) \in(1, \alpha)$ is provided in Thm 4.

Thm 3 (URP I for the EP) Suppose $\left\{\varepsilon_{i}\right\}$ satisfies Assumption $\mathrm{E}(\alpha, d)$, for $0<d<1-1 / \alpha, 1<\alpha<2, \bar{\varepsilon}_{n}=n^{-1} \sum_{i=1}^{n} \varepsilon_{i}$. Then

$$
\sup _{x \in \mathbb{R}} n^{1-d-1 / \alpha}\left|F_{n}(x)-F(x)+f(x) \bar{\varepsilon}_{n}\right|=o_{p}(1)
$$

Questions:

1. Does $A_{n}\left(F_{n}(x)-F(x)+f(x) \bar{\varepsilon}_{n}\right)$ has a limit distribution under some normalization $A_{n} \gg n^{1-d-1 / \alpha}$?
2. Is there URP II for the EP? What is the second expansion term? Affirmative answer to Q. 1 with $A_{n}=n^{1-1 / \alpha_{*}}, \alpha_{*}=\alpha(1-d) \in(1, \alpha)$ is provided in Thm 4.

Thm 3 (URP I for the EP) Suppose $\left\{\varepsilon_{i}\right\}$ satisfies Assumption $\mathrm{E}(\alpha, d)$, for $0<d<1-1 / \alpha, 1<\alpha<2, \bar{\varepsilon}_{n}=n^{-1} \sum_{i=1}^{n} \varepsilon_{i}$. Then

$$
\sup _{x \in \mathbb{R}} n^{1-d-1 / \alpha}\left|F_{n}(x)-F(x)+f(x) \bar{\varepsilon}_{n}\right|=o_{p}(1) .
$$

Questions:

1. Does $A_{n}\left(F_{n}(x)-F(x)+f(x) \bar{\varepsilon}_{n}\right)$ has a limit distribution under some normalization $A_{n} \gg n^{1-d-1 / \alpha}$?
2. Is there URP II for the EP? What is the second expansion term?

Affirmative answer to Q. 1 with $A_{n}=n^{1-1 / \alpha_{*}}, \alpha_{*}=\alpha(1-d) \in(1, \alpha)$ is provided in Thm 4.

Thm 4 Under the same conditions as in Thm 3

Thm 3 (URP I for the EP) Suppose $\left\{\varepsilon_{i}\right\}$ satisfies Assumption $\mathrm{E}(\alpha, d)$, for $0<d<1-1 / \alpha, 1<\alpha<2, \bar{\varepsilon}_{n}=n^{-1} \sum_{i=1}^{n} \varepsilon_{i}$. Then

$$
\sup _{x \in \mathbb{R}} n^{1-d-1 / \alpha}\left|F_{n}(x)-F(x)+f(x) \bar{\varepsilon}_{n}\right|=o_{p}(1) .
$$

Questions:

1. Does $A_{n}\left(F_{n}(x)-F(x)+f(x) \bar{\varepsilon}_{n}\right)$ has a limit distribution under some normalization $A_{n} \gg n^{1-d-1 / \alpha}$?
2. Is there URP II for the EP? What is the second expansion term?

Affirmative answer to Q. 1 with $A_{n}=n^{1-1 / \alpha_{*}}, \alpha_{*}=\alpha(1-d) \in(1, \alpha)$ is provided in Thm 4.

Thm 4 Under the same conditions as in Thm 3

$$
n^{1-1 / \alpha_{*}}\left(F_{n}(x)-F(x)+f(x) \bar{\varepsilon}_{n}\right) \Longrightarrow_{D(\overline{\mathbb{R}})} \quad \mathcal{Z}^{*}(x)
$$

Thm 3 (URP I for the EP) Suppose $\left\{\varepsilon_{i}\right\}$ satisfies Assumption $\mathrm{E}(\alpha, d)$, for $0<d<1-1 / \alpha, 1<\alpha<2, \bar{\varepsilon}_{n}=n^{-1} \sum_{i=1}^{n} \varepsilon_{i}$. Then

$$
\sup _{x \in \mathbb{R}} n^{1-d-1 / \alpha}\left|F_{n}(x)-F(x)+f(x) \bar{\varepsilon}_{n}\right|=o_{p}(1) .
$$

Questions:

1. Does $A_{n}\left(F_{n}(x)-F(x)+f(x) \bar{\varepsilon}_{n}\right)$ has a limit distribution under some normalization $A_{n} \gg n^{1-d-1 / \alpha}$?
2. Is there URP II for the EP? What is the second expansion term?

Affirmative answer to Q. 1 with $A_{n}=n^{1-1 / \alpha_{*}}, \alpha_{*}=\alpha(1-d) \in(1, \alpha)$ is provided in Thm 4.

Thm 4 Under the same conditions as in Thm 3

$$
n^{1-1 / \alpha_{*}}\left(F_{n}(x)-F(x)+f(x) \bar{\varepsilon}_{n}\right) \Longrightarrow_{D(\overline{\mathbb{R}})} \quad \mathcal{Z}^{*}(x)
$$

where $\left\{\mathcal{Z}^{*}(x), x \in \mathbb{R}\right\}$ is α_{*}-stable process written as

Thm 3 (URP I for the EP) Suppose $\left\{\varepsilon_{i}\right\}$ satisfies Assumption $\mathrm{E}(\alpha, d)$, for $0<d<1-1 / \alpha, 1<\alpha<2, \bar{\varepsilon}_{n}=n^{-1} \sum_{i=1}^{n} \varepsilon_{i}$. Then

$$
\sup _{x \in \mathbb{R}} n^{1-d-1 / \alpha}\left|F_{n}(x)-F(x)+f(x) \bar{\varepsilon}_{n}\right|=o_{p}(1) .
$$

Questions:

1. Does $A_{n}\left(F_{n}(x)-F(x)+f(x) \bar{\varepsilon}_{n}\right)$ has a limit distribution under some normalization $A_{n} \gg n^{1-d-1 / \alpha}$?
2. Is there URP II for the EP? What is the second expansion term?

Affirmative answer to Q. 1 with $A_{n}=n^{1-1 / \alpha_{*}}, \alpha_{*}=\alpha(1-d) \in(1, \alpha)$ is provided in Thm 4.

Thm 4 Under the same conditions as in Thm 3

$$
n^{1-1 / \alpha_{*}}\left(F_{n}(x)-F(x)+f(x) \bar{\varepsilon}_{n}\right) \Longrightarrow_{D(\overline{\mathbb{R}})} \quad \mathcal{Z}^{*}(x)
$$

where $\left\{\mathcal{Z}^{*}(x), x \in \mathbb{R}\right\}$ is α_{*}-stable process written as

$$
\begin{equation*}
\mathcal{Z}^{*}(x):=c_{+}^{1 / \alpha_{*}} \psi_{+}(x) Z_{+}+c_{-}^{1 / \alpha_{*}} \psi_{-}(x) Z_{-}, \quad x \in \mathbb{R}, \tag{13}
\end{equation*}
$$

where:

$$
\begin{equation*}
\mathcal{Z}^{*}(x):=c_{+}^{1 / \alpha_{*}} \psi_{+}(x) Z_{+}+c_{-}^{1 / \alpha_{*}} \psi_{-}(x) Z_{-}, \quad x \in \mathbb{R} \tag{13}
\end{equation*}
$$

where:

- $Z_{ \pm}$are independent copies of a totally skewed α_{*}-stable r.v. Z with

$$
\begin{equation*}
\mathcal{Z}^{*}(x):=c_{+}^{1 / \alpha_{*}} \psi_{+}(x) Z_{+}+c_{-}^{1 / \alpha_{*}} \psi_{-}(x) Z_{-}, \quad x \in \mathbb{R} \tag{13}
\end{equation*}
$$

where:

- $Z_{ \pm}$are independent copies of a totally skewed α_{*}-stable r.v. Z with

$$
P(Z>x) \sim x^{-\alpha_{*}}, \quad P(Z<-x)=o\left(x^{-\alpha_{*}}\right), x \rightarrow \infty
$$

$$
\begin{equation*}
\mathcal{Z}^{*}(x):=c_{+}^{1 / \alpha_{*}} \psi_{+}(x) Z_{+}+c_{-}^{1 / \alpha_{*}} \psi_{-}(x) Z_{-}, \quad x \in \mathbb{R}, \tag{13}
\end{equation*}
$$

where:

- $Z_{ \pm}$are independent copies of a totally skewed α_{*}-stable r.v. Z with

$$
P(Z>x) \sim x^{-\alpha_{*}}, \quad P(Z<-x)=o\left(x^{-\alpha_{*}}\right), x \rightarrow \infty
$$

- $\psi_{ \pm}(x), x \in \mathbb{R}$ are deterministic functions written as

$$
\begin{equation*}
\psi_{ \pm}(x):=\left(c_{0}^{\frac{1}{1-d}} /(1-d)\right) \int_{0}^{\infty}(F(x \mp s)-F(x) \pm f(x) s) s^{-1-\frac{1}{1-d}} \mathrm{~d} s \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
\mathcal{Z}^{*}(x):=c_{+}^{1 / \alpha_{*}} \psi_{+}(x) Z_{+}+c_{-}^{1 / \alpha_{*}} \psi_{-}(x) Z_{-}, \quad x \in \mathbb{R}, \tag{13}
\end{equation*}
$$

where:

- $Z_{ \pm}$are independent copies of a totally skewed α_{*}-stable r.v. Z with

$$
P(Z>x) \sim x^{-\alpha_{*}}, \quad P(Z<-x)=o\left(x^{-\alpha_{*}}\right), x \rightarrow \infty
$$

- $\psi_{ \pm}(x), x \in \mathbb{R}$ are deterministic functions written as

$$
\begin{equation*}
\psi_{ \pm}(x):=\left(c_{0}^{\frac{1}{1-d}} /(1-d)\right) \int_{0}^{\infty}(F(x \mp s)-F(x) \pm f(x) s) s^{-1-\frac{1}{1-d}} \mathrm{~d} s \tag{14}
\end{equation*}
$$

- $\psi_{ \pm}(x)$ agree, up to a multiplicative factor, with the Marchaud (left and right) fractional derivative of $F(x)$ of order $1 /(1-d) \in(1,2)$

$$
\begin{equation*}
\mathcal{Z}^{*}(x):=c_{+}^{1 / \alpha_{*}} \psi_{+}(x) Z_{+}+c_{-}^{1 / \alpha_{*}} \psi_{-}(x) Z_{-}, \quad x \in \mathbb{R} \tag{13}
\end{equation*}
$$

where:

- $Z_{ \pm}$are independent copies of a totally skewed α_{*}-stable r.v. Z with

$$
P(Z>x) \sim x^{-\alpha_{*}}, \quad P(Z<-x)=o\left(x^{-\alpha_{*}}\right), x \rightarrow \infty
$$

- $\psi_{ \pm}(x), x \in \mathbb{R}$ are deterministic functions written as

$$
\begin{equation*}
\psi_{ \pm}(x):=\left(c_{0}^{\frac{1}{1-d}} /(1-d)\right) \int_{0}^{\infty}(F(x \mp s)-F(x) \pm f(x) s) s^{-1-\frac{1}{1-d}} \mathrm{~d} s \tag{14}
\end{equation*}
$$

- $\psi_{ \pm}(x)$ agree, up to a multiplicative factor, with the Marchaud (left and right) fractional derivative of $F(x)$ of order $1 /(1-d) \in(1,2)$
- In contrast, asymptotic expansion of Ho and Hsing (1996) of EP under finite 4th moment of ζ_{0} contains only integer derivatives $F^{(k)}(x), k=1,2, \cdots$, see (12)

The answer to Q. 2 which also explains

The answer to Q. 2 which also explains how α_{*}-stable limit in Thm 4 originates is given in Thm 5

The answer to Q. 2 which also explains how α_{*}-stable limit in Thm 4 originates is given in Thm 5

Thm 5 (URP II)

The answer to Q. 2 which also explains how α_{*}-stable limit in Thm 4 originates is given in Thm 5

Thm 5 (URP II) Under the same conditions as in Thms 3 and 4,

$$
\sup _{x \in \mathbb{R}} n^{1-1 / \alpha_{*}}\left|F_{n}(x)-F(x)+f(x) \bar{\varepsilon}_{n}-\mathcal{Z}_{n}(x)\right|=o_{p}(1)
$$

The answer to Q. 2 which also explains how α_{*}-stable limit in Thm 4 originates is given in Thm 5

Thm 5 (URP II) Under the same conditions as in Thms 3 and 4,

$$
\begin{equation*}
\sup _{x \in \mathbb{R}} n^{1-1 / \alpha_{*}}\left|F_{n}(x)-F(x)+f(x) \bar{\varepsilon}_{n}-\mathcal{Z}_{n}(x)\right|=o_{p}(1) \tag{15}
\end{equation*}
$$

where

The answer to Q. 2 which also explains how α_{*}-stable limit in Thm 4 originates is given in Thm 5

Thm 5 (URP II) Under the same conditions as in Thms 3 and 4,

$$
\begin{equation*}
\sup _{x \in \mathbb{R}} n^{1-1 / \alpha_{*}}\left|F_{n}(x)-F(x)+f(x) \bar{\varepsilon}_{n}-\mathcal{Z}_{n}(x)\right|=o_{p}(1) \tag{15}
\end{equation*}
$$

where

$$
\begin{gathered}
\mathcal{Z}_{n}(x):=n^{-1} \sum_{s=1}^{n} \eta_{n, s}\left(x ; \zeta_{s}\right), \quad x \in \mathbb{R}, \quad \text { where } \\
\eta_{n, s}(x ; z):=\sum_{j=0}^{n-s}\left(F\left(x-b_{j} z\right)-E F\left(x-b_{j} \zeta_{0}\right)+f(x) b_{j} z\right) .
\end{gathered}
$$

The answer to Q. 2 which also explains how α_{*}-stable limit in Thm 4 originates is given in Thm 5

Thm 5 (URP II) Under the same conditions as in Thms 3 and 4,

$$
\begin{equation*}
\sup _{x \in \mathbb{R}} n^{1-1 / \alpha_{*}}\left|F_{n}(x)-F(x)+f(x) \bar{\varepsilon}_{n}-\mathcal{Z}_{n}(x)\right|=o_{p}(1) \tag{15}
\end{equation*}
$$

where

$$
\begin{gathered}
\mathcal{Z}_{n}(x):=n^{-1} \sum_{s=1}^{n} \eta_{n, s}\left(x ; \zeta_{s}\right), \quad x \in \mathbb{R}, \quad \text { where } \\
\eta_{n, s}(x ; z):=\sum_{j=0}^{n-s}\left(F\left(x-b_{j} z\right)-E F\left(x-b_{j} \zeta_{0}\right)+f(x) b_{j} z\right) .
\end{gathered}
$$

- $\mathcal{Z}_{n}(x)$ is a sum of independent r.v.s $\eta_{n, s}\left(x ; \zeta_{s}\right), s=1, \cdots, n$

The answer to Q. 2 which also explains how α_{*}-stable limit in Thm 4 originates is given in Thm 5

Thm 5 (URP II) Under the same conditions as in Thms 3 and 4,

$$
\begin{equation*}
\sup _{x \in \mathbb{R}} n^{1-1 / \alpha_{*}}\left|F_{n}(x)-F(x)+f(x) \bar{\varepsilon}_{n}-\mathcal{Z}_{n}(x)\right|=o_{p}(1) \tag{15}
\end{equation*}
$$

where

$$
\begin{gathered}
\mathcal{Z}_{n}(x):=n^{-1} \sum_{s=1}^{n} \eta_{n, s}\left(x ; \zeta_{s}\right), \quad x \in \mathbb{R}, \quad \text { where } \\
\eta_{n, s}(x ; z):=\sum_{j=0}^{n-s}\left(F\left(x-b_{j} z\right)-E F\left(x-b_{j} \zeta_{0}\right)+f(x) b_{j} z\right) .
\end{gathered}
$$

- $\mathcal{Z}_{n}(x)$ is a sum of independent r.v.s $\eta_{n, s}\left(x ; \zeta_{s}\right), s=1, \cdots, n$ in the domain of attraction of α_{*}-stable law

The answer to Q. 2 which also explains how α_{*}-stable limit in Thm 4 originates is given in Thm 5

Thm 5 (URP II) Under the same conditions as in Thms 3 and 4,

$$
\begin{equation*}
\sup _{x \in \mathbb{R}} n^{1-1 / \alpha_{*}}\left|F_{n}(x)-F(x)+f(x) \bar{\varepsilon}_{n}-\mathcal{Z}_{n}(x)\right|=o_{p}(1) \tag{15}
\end{equation*}
$$

where

$$
\begin{gathered}
\mathcal{Z}_{n}(x):=n^{-1} \sum_{s=1}^{n} \eta_{n, s}\left(x ; \zeta_{s}\right), \quad x \in \mathbb{R}, \quad \text { where } \\
\eta_{n, s}(x ; z):=\sum_{j=0}^{n-s}\left(F\left(x-b_{j} z\right)-E F\left(x-b_{j} \zeta_{0}\right)+f(x) b_{j} z\right) .
\end{gathered}
$$

- $\mathcal{Z}_{n}(x)$ is a sum of independent r.v.s $\eta_{n, s}\left(x ; \zeta_{s}\right), s=1, \cdots, n$ in the domain of attraction of α_{*}-stable law
- The convergence $n^{1-1 / \alpha_{*}} \mathcal{Z}_{n}(x) \rightarrow_{D} \mathcal{Z}^{*}(x)$ can be obtained from classical CLT

Open problems:

Open problems:

1. Extension of the limit results on scale estimators to random regressors:

Open problems:

1. Extension of the limit results on scale estimators to random regressors:

$$
X_{n i}=g\left(\boldsymbol{\beta}_{0}, z_{n i}\right)+\varepsilon_{i}, \quad 1 \leq i \leq n
$$

where $\left\{z_{n i}, 1 \leq i \leq n\right\}$ are random and independent of $\left\{\varepsilon_{i}\right\}$

Open problems:

1. Extension of the limit results on scale estimators to random regressors:

$$
X_{n i}=g\left(\boldsymbol{\beta}_{0}, z_{n i}\right)+\varepsilon_{i}, \quad 1 \leq i \leq n
$$

where $\left\{z_{n i}, 1 \leq i \leq n\right\}$ are random and independent of $\left\{\varepsilon_{i}\right\}$
Estimation of $\boldsymbol{\beta}_{0}$ with LM finite variance errors: Koul (1996), Koul et al. (2004)

Open problems:

1. Extension of the limit results on scale estimators to random regressors:

$$
X_{n i}=g\left(\boldsymbol{\beta}_{0}, z_{n i}\right)+\varepsilon_{i}, \quad 1 \leq i \leq n
$$

where $\left\{z_{n i}, 1 \leq i \leq n\right\}$ are random and independent of $\left\{\varepsilon_{i}\right\}$
Estimation of $\boldsymbol{\beta}_{0}$ with LM finite variance errors: Koul (1996), Koul et al. (2004)
2. Limit distribution of unbounded functionals of linear LM sequence with infinite variance.

Open problems:

1. Extension of the limit results on scale estimators to random regressors:

$$
X_{n i}=g\left(\boldsymbol{\beta}_{0}, z_{n i}\right)+\varepsilon_{i}, \quad 1 \leq i \leq n
$$

where $\left\{z_{n i}, 1 \leq i \leq n\right\}$ are random and independent of $\left\{\varepsilon_{i}\right\}$
Estimation of $\boldsymbol{\beta}_{0}$ with LM finite variance errors: Koul (1996), Koul et al. (2004)
2. Limit distribution of unbounded functionals of linear LM sequence with infinite variance.

Given a nonlinear function $H: \mathbb{R} \rightarrow \mathbb{R}$ and $\left\{\varepsilon_{i}\right\}$ as in Thms 3-4,

Open problems:

1. Extension of the limit results on scale estimators to random regressors:

$$
X_{n i}=g\left(\boldsymbol{\beta}_{0}, z_{n i}\right)+\varepsilon_{i}, \quad 1 \leq i \leq n
$$

where $\left\{z_{n i}, 1 \leq i \leq n\right\}$ are random and independent of $\left\{\varepsilon_{i}\right\}$
Estimation of $\boldsymbol{\beta}_{0}$ with LM finite variance errors: Koul (1996), Koul et al. (2004)
2. Limit distribution of unbounded functionals of linear LM sequence with infinite variance.

Given a nonlinear function $H: \mathbb{R} \rightarrow \mathbb{R}$ and $\left\{\varepsilon_{i}\right\}$ as in Thms 3-4, what is the limit distribution of $S_{n}(H)=\sum_{i=1}^{n} H\left(\varepsilon_{i}\right)$?

Open problems:

1. Extension of the limit results on scale estimators to random regressors:

$$
X_{n i}=g\left(\boldsymbol{\beta}_{0}, z_{n i}\right)+\varepsilon_{i}, \quad 1 \leq i \leq n
$$

where $\left\{z_{n i}, 1 \leq i \leq n\right\}$ are random and independent of $\left\{\varepsilon_{i}\right\}$
Estimation of $\boldsymbol{\beta}_{0}$ with LM finite variance errors: Koul (1996), Koul et al. (2004)
2. Limit distribution of unbounded functionals of linear LM sequence with infinite variance.

Given a nonlinear function $H: \mathbb{R} \rightarrow \mathbb{R}$ and $\left\{\varepsilon_{i}\right\}$ as in Thms 3-4, what is the limit distribution of $S_{n}(H)=\sum_{i=1}^{n} H\left(\varepsilon_{i}\right)$?

Informally, $S_{n}(H)$ can be represented through the EP:

$$
S_{n}(H)-E S_{n}(H)
$$

Open problems:

1. Extension of the limit results on scale estimators to random regressors:

$$
X_{n i}=g\left(\boldsymbol{\beta}_{0}, z_{n i}\right)+\varepsilon_{i}, \quad 1 \leq i \leq n
$$

where $\left\{z_{n i}, 1 \leq i \leq n\right\}$ are random and independent of $\left\{\varepsilon_{i}\right\}$
Estimation of $\boldsymbol{\beta}_{0}$ with LM finite variance errors: Koul (1996), Koul et al. (2004)
2. Limit distribution of unbounded functionals of linear LM sequence with infinite variance.

Given a nonlinear function $H: \mathbb{R} \rightarrow \mathbb{R}$ and $\left\{\varepsilon_{i}\right\}$ as in Thms 3-4, what is the limit distribution of $S_{n}(H)=\sum_{i=1}^{n} H\left(\varepsilon_{i}\right)$?

Informally, $S_{n}(H)$ can be represented through the EP:

$$
S_{n}(H)-E S_{n}(H)=n \int H(x) \mathrm{d}\left(F_{n}(x)-F(x)\right)
$$

Open problems:

1. Extension of the limit results on scale estimators to random regressors:

$$
X_{n i}=g\left(\boldsymbol{\beta}_{0}, z_{n i}\right)+\varepsilon_{i}, \quad 1 \leq i \leq n
$$

where $\left\{z_{n i}, 1 \leq i \leq n\right\}$ are random and independent of $\left\{\varepsilon_{i}\right\}$
Estimation of $\boldsymbol{\beta}_{0}$ with LM finite variance errors: Koul (1996), Koul et al. (2004)
2. Limit distribution of unbounded functionals of linear LM sequence with infinite variance.

Given a nonlinear function $H: \mathbb{R} \rightarrow \mathbb{R}$ and $\left\{\varepsilon_{i}\right\}$ as in Thms 3-4, what is the limit distribution of $S_{n}(H)=\sum_{i=1}^{n} H\left(\varepsilon_{i}\right)$?

Informally, $S_{n}(H)$ can be represented through the EP:

$$
\begin{aligned}
S_{n}(H)-E S_{n}(H) & =n \int H(x) \mathrm{d}\left(F_{n}(x)-F(x)\right) \\
& =-n \int\left(F_{n}(x)-F(x)\right) \mathrm{d} H(x)
\end{aligned}
$$

Open problems:

1. Extension of the limit results on scale estimators to random regressors:

$$
X_{n i}=g\left(\boldsymbol{\beta}_{0}, z_{n i}\right)+\varepsilon_{i}, \quad 1 \leq i \leq n
$$

where $\left\{z_{n i}, 1 \leq i \leq n\right\}$ are random and independent of $\left\{\varepsilon_{i}\right\}$
Estimation of $\boldsymbol{\beta}_{0}$ with LM finite variance errors: Koul (1996), Koul et al. (2004)
2. Limit distribution of unbounded functionals of linear LM sequence with infinite variance.

Given a nonlinear function $H: \mathbb{R} \rightarrow \mathbb{R}$ and $\left\{\varepsilon_{i}\right\}$ as in Thms 3-4, what is the limit distribution of $S_{n}(H)=\sum_{i=1}^{n} H\left(\varepsilon_{i}\right)$?

Informally, $S_{n}(H)$ can be represented through the EP:

$$
\begin{aligned}
S_{n}(H)-E S_{n}(H) & =n \int H(x) \mathrm{d}\left(F_{n}(x)-F(x)\right) \\
& =-n \int\left(F_{n}(x)-F(x)\right) \mathrm{d} H(x) \\
& =n \bar{\varepsilon}_{n} \int f(x) \mathrm{d} H(x)-n \int \mathcal{Z}_{n}(x) \mathrm{d} H(x)
\end{aligned}
$$

Open problems:

1. Extension of the limit results on scale estimators to random regressors:

$$
X_{n i}=g\left(\boldsymbol{\beta}_{0}, z_{n i}\right)+\varepsilon_{i}, \quad 1 \leq i \leq n
$$

where $\left\{z_{n i}, 1 \leq i \leq n\right\}$ are random and independent of $\left\{\varepsilon_{i}\right\}$
Estimation of $\boldsymbol{\beta}_{0}$ with LM finite variance errors: Koul (1996), Koul et al. (2004)
2. Limit distribution of unbounded functionals of linear LM sequence with infinite variance.

Given a nonlinear function $H: \mathbb{R} \rightarrow \mathbb{R}$ and $\left\{\varepsilon_{i}\right\}$ as in Thms 3-4, what is the limit distribution of $S_{n}(H)=\sum_{i=1}^{n} H\left(\varepsilon_{i}\right)$?

Informally, $S_{n}(H)$ can be represented through the EP:

$$
\begin{aligned}
S_{n}(H)-E S_{n}(H) & =n \int H(x) \mathrm{d}\left(F_{n}(x)-F(x)\right) \\
& =-n \int\left(F_{n}(x)-F(x)\right) \mathrm{d} H(x) \\
& =n \bar{\varepsilon}_{n} \int f(x) \mathrm{d} H(x)-n \int \mathcal{Z}_{n}(x) \mathrm{d} H(x)
\end{aligned}
$$

For symmetric H and f, 1st order term $\int f(x) \mathrm{d} H(x)=0$ suggesting α_{*}-stable limit:

Open problems:

1. Extension of the limit results on scale estimators to random regressors:

$$
X_{n i}=g\left(\boldsymbol{\beta}_{0}, z_{n i}\right)+\varepsilon_{i}, \quad 1 \leq i \leq n
$$

where $\left\{z_{n i}, 1 \leq i \leq n\right\}$ are random and independent of $\left\{\varepsilon_{i}\right\}$
Estimation of $\boldsymbol{\beta}_{0}$ with LM finite variance errors: Koul (1996), Koul et al. (2004)
2. Limit distribution of unbounded functionals of linear LM sequence with infinite variance.

Given a nonlinear function $H: \mathbb{R} \rightarrow \mathbb{R}$ and $\left\{\varepsilon_{i}\right\}$ as in Thms 3-4, what is the limit distribution of $S_{n}(H)=\sum_{i=1}^{n} H\left(\varepsilon_{i}\right)$?

Informally, $S_{n}(H)$ can be represented through the EP:

$$
\begin{aligned}
S_{n}(H)-E S_{n}(H) & =n \int H(x) \mathrm{d}\left(F_{n}(x)-F(x)\right) \\
& =-n \int\left(F_{n}(x)-F(x)\right) \mathrm{d} H(x) \\
& =n \bar{\varepsilon}_{n} \int f(x) \mathrm{d} H(x)-n \int \mathcal{Z}_{n}(x) \mathrm{d} H(x)
\end{aligned}
$$

For symmetric H and f, 1st order term $\int f(x) \mathrm{d} H(x)=0$ suggesting α_{*}-stable limit:

$$
\begin{align*}
& n^{-1 / \alpha_{*}}\left(S_{n}(H)-E S_{n}(H)\right) \rightarrow_{D}-\int \mathcal{Z}^{*}(x) \mathrm{d} H(x) \tag{16}\\
& \quad=\int H(x) \mathrm{d} \mathcal{Z}^{*}(x)
\end{align*}
$$

$$
\begin{align*}
& n^{-1 / \alpha_{*}}\left(S_{n}(H)-E S_{n}(H)\right) \rightarrow_{D}-\int \mathcal{Z}^{*}(x) \mathrm{d} H(x) \tag{16}\\
& \quad=\int H(x) \mathrm{d} \mathcal{Z}^{*}(x) \\
& \quad=c_{+}^{1 / \alpha_{*}} Z_{+} \int H(x) \mathrm{d} \psi_{+}(x)+c_{-}^{1 / \alpha_{*}} Z_{-} \int H(x) \mathrm{d} \psi_{-}(x)
\end{align*}
$$

$$
\begin{align*}
& n^{-1 / \alpha_{*}}\left(S_{n}(H)-E S_{n}(H)\right) \rightarrow_{D}-\int \mathcal{Z}^{*}(x) \mathrm{d} H(x) \tag{16}\\
&=\int H(x) \mathrm{d} \mathcal{Z}^{*}(x) \\
&=c_{+}^{1 / \alpha_{*}} Z_{+} \int H(x) \mathrm{d} \psi_{+}(x)+c_{-}^{1 / \alpha_{*}} Z_{-} \int H(x) \mathrm{d} \psi_{-}(x)
\end{align*}
$$

(Recall $\psi_{ \pm}$are fractional derivatives of d.f. F of order $1 /(1-d) \in(1,2)$.)

$$
\begin{align*}
& n^{-1 / \alpha_{*}}\left(S_{n}(H)-E S_{n}(H)\right) \rightarrow_{D}-\int \mathcal{Z}^{*}(x) \mathrm{d} H(x) \tag{16}\\
&=\int H(x) \mathrm{d} \mathcal{Z}^{*}(x) \\
&=c_{+}^{1 / \alpha_{*}} Z_{+} \int H(x) \mathrm{d} \psi_{+}(x)+c_{-}^{1 / \alpha_{*}} Z_{-} \int H(x) \mathrm{d} \psi_{-}(x)
\end{align*}
$$

(Recall $\psi_{ \pm}$are fractional derivatives of d.f. F of order $1 /(1-d) \in(1,2)$.)

- The above derivation of α_{*}-stable limit in (16) is heuristic

$$
\begin{align*}
& n^{-1 / \alpha_{*}}\left(S_{n}(H)-E S_{n}(H)\right) \rightarrow_{D}-\int \mathcal{Z}^{*}(x) \mathrm{d} H(x) \tag{16}\\
&=\int H(x) \mathrm{d} \mathcal{Z}^{*}(x) \\
&=c_{+}^{1 / \alpha_{*}} Z_{+} \int H(x) \mathrm{d} \psi_{+}(x)+c_{-}^{1 / \alpha_{*}} Z_{-} \int H(x) \mathrm{d} \psi_{-}(x)
\end{align*}
$$

(Recall $\psi_{ \pm}$are fractional derivatives of d.f. F of order $1 /(1-d) \in(1,2)$.)

- The above derivation of α_{*}-stable limit in (16) is heuristic but hopefully can be justified under additional conditions on H

$$
\begin{align*}
& n^{-1 / \alpha_{*}}\left(S_{n}(H)-E S_{n}(H)\right) \rightarrow_{D}-\int \mathcal{Z}^{*}(x) \mathrm{d} H(x) \tag{16}\\
&=\int H(x) \mathrm{d} \mathcal{Z}^{*}(x) \\
&=c_{+}^{1 / \alpha_{*}} Z_{+} \int H(x) \mathrm{d} \psi_{+}(x)+c_{-}^{1 / \alpha_{*}} Z_{-} \int H(x) \mathrm{d} \psi_{-}(x)
\end{align*}
$$

(Recall $\psi_{ \pm}$are fractional derivatives of d.f. F of order $1 /(1-d) \in(1,2)$.)

- The above derivation of α_{*}-stable limit in (16) is heuristic but hopefully can be justified under additional conditions on H
- The problem is completely open for H s.t. the integrals $\int H(x) \mathrm{d} \psi_{ \pm}(x)$ do not exist

$$
\begin{align*}
& n^{-1 / \alpha_{*}}\left(S_{n}(H)-E S_{n}(H)\right) \rightarrow_{D}-\int \mathcal{Z}^{*}(x) \mathrm{d} H(x) \tag{16}\\
&=\int H(x) \mathrm{d} \mathcal{Z}^{*}(x) \\
&=c_{+}^{1 / \alpha_{*}} Z_{+} \int H(x) \mathrm{d} \psi_{+}(x)+c_{-}^{1 / \alpha_{*}} Z_{-} \int H(x) \mathrm{d} \psi_{-}(x)
\end{align*}
$$

(Recall $\psi_{ \pm}$are fractional derivatives of d.f. F of order $1 /(1-d) \in(1,2)$.)

- The above derivation of α_{*}-stable limit in (16) is heuristic but hopefully can be justified under additional conditions on H
- The problem is completely open for H s.t. the integrals $\int H(x) \mathrm{d} \psi_{ \pm}(x)$ do not exist
- The case of power functions $H(x)=|x|^{p}$ is of particular interest

$$
\begin{align*}
& n^{-1 / \alpha_{*}}\left(S_{n}(H)-E S_{n}(H)\right) \rightarrow_{D}-\int \mathcal{Z}^{*}(x) \mathrm{d} H(x) \tag{16}\\
&=\int H(x) \mathrm{d} \mathcal{Z}^{*}(x) \\
&=c_{+}^{1 / \alpha_{*}} Z_{+} \int H(x) \mathrm{d} \psi_{+}(x)+c_{-}^{1 / \alpha_{*}} Z_{-} \int H(x) \mathrm{d} \psi_{-}(x)
\end{align*}
$$

(Recall $\psi_{ \pm}$are fractional derivatives of d.f. F of order $1 /(1-d) \in(1,2)$.)

- The above derivation of α_{*}-stable limit in (16) is heuristic but hopefully can be justified under additional conditions on H
- The problem is completely open for H s.t. the integrals $\int H(x) \mathrm{d} \psi_{ \pm}(x)$ do not exist
- The case of power functions $H(x)=|x|^{p}$ is of particular interest
- The problem of the limit distribution of $\sum_{i=1}^{n}\left|\varepsilon_{i}\right|^{p}$ for LM infinite variance moving averages $\left\{\varepsilon_{i}\right\}$ is related to that of the limit distributions of power variations of semi-stationary Lévy process discussed in Basse-O'Connor, Lachièze-Rey and Podolskij (2015)

6. Sketch of the proof of Thms 4 and 5
7. Sketch of the proof of Thms 4 and 5

Thm 5 (URP II) \Rightarrow Thm 4.
6. Sketch of the proof of Thms 4 and 5

Thm 5 (URP II) \Rightarrow Thm 4. By Thm 5 it suffices to prove

$$
n^{1-1 / \alpha_{*}} \mathcal{Z}_{n}(x) \Longrightarrow_{D(\mathbb{\mathbb { R }})} \mathcal{Z}^{*}(x)
$$

6. Sketch of the proof of Thms 4 and 5

Thm 5 (URP II) \Rightarrow Thm 4. By Thm 5 it suffices to prove

$$
n^{1-1 / \alpha_{*}} \mathcal{Z}_{n}(x) \Longrightarrow_{D(\overline{\mathbb{R}})} \mathcal{Z}^{*}(x)
$$

or

$$
n^{-1 / \alpha_{*}} \sum_{s=1}^{n} \eta_{n, s}\left(x ; \zeta_{s}\right) \Longrightarrow_{D(\overline{\mathbb{R}})} \mathcal{Z}^{*}(x)
$$

6. Sketch of the proof of Thms 4 and 5

Thm 5 (URP II) \Rightarrow Thm 4. By Thm 5 it suffices to prove

$$
n^{1-1 / \alpha_{*}} \mathcal{Z}_{n}(x) \Longrightarrow_{D(\overline{\mathbb{R}})} \mathcal{Z}^{*}(x)
$$

or

$$
\begin{equation*}
n^{-1 / \alpha_{*}} \sum_{s=1}^{n} \eta_{n, s}\left(x ; \zeta_{s}\right) \Longrightarrow_{D(\overline{\mathbb{R}})} \mathcal{Z}^{*}(x) \tag{17}
\end{equation*}
$$

Step 1. Replace independent but not identically distributed $\eta_{n, s}\left(x ; \zeta_{s}\right)$ in (17) by independent and identically distributed $\eta\left(x ; \zeta_{s}\right), s=1, \cdots, n$ where

6. Sketch of the proof of Thms 4 and 5

Thm 5 (URP II) \Rightarrow Thm 4. By Thm 5 it suffices to prove

$$
n^{1-1 / \alpha_{*}} \mathcal{Z}_{n}(x) \Longrightarrow_{D(\overline{\mathbb{R}})} \mathcal{Z}^{*}(x)
$$

or

$$
\begin{equation*}
n^{-1 / \alpha_{*}} \sum_{s=1}^{n} \eta_{n, s}\left(x ; \zeta_{s}\right) \Longrightarrow_{D(\overline{\mathbb{R}})} \mathcal{Z}^{*}(x) \tag{17}
\end{equation*}
$$

Step 1. Replace independent but not identically distributed $\eta_{n, s}\left(x ; \zeta_{s}\right)$ in (17) by independent and identically distributed $\eta\left(x ; \zeta_{s}\right), s=1, \cdots, n$ where

$$
\eta(x ; z):=\sum_{j=0}^{\infty}\left(F\left(x-b_{j} z\right)-E F\left(x-b_{j} \zeta_{0}\right)+f(x) b_{j} z\right)
$$

is a deterministic function of x and z

6. Sketch of the proof of Thms 4 and 5

Thm 5 (URP II) \Rightarrow Thm 4. By Thm 5 it suffices to prove

$$
n^{1-1 / \alpha_{*}} \mathcal{Z}_{n}(x) \Longrightarrow_{D(\overline{\mathbb{R}})} \mathcal{Z}^{*}(x)
$$

or

$$
\begin{equation*}
n^{-1 / \alpha_{*}} \sum_{s=1}^{n} \eta_{n, s}\left(x ; \zeta_{s}\right) \Longrightarrow_{D(\overline{\mathbb{R}})} \mathcal{Z}^{*}(x) \tag{17}
\end{equation*}
$$

Step 1. Replace independent but not identically distributed $\eta_{n, s}\left(x ; \zeta_{s}\right)$ in (17) by independent and identically distributed $\eta\left(x ; \zeta_{s}\right), s=1, \cdots, n$ where

$$
\eta(x ; z):=\sum_{j=0}^{\infty}\left(F\left(x-b_{j} z\right)-E F\left(x-b_{j} \zeta_{0}\right)+f(x) b_{j} z\right)
$$

is a deterministic function of x and z
Step 2. Show the limits:

$$
\lim _{z \rightarrow \pm \infty}|z|^{-1 /(1-d)} \eta(x ; z)=\psi_{ \pm}(x)
$$

6. Sketch of the proof of Thms 4 and 5

Thm 5 (URP II) \Rightarrow Thm 4. By Thm 5 it suffices to prove

$$
n^{1-1 / \alpha_{*}} \mathcal{Z}_{n}(x) \Longrightarrow_{D(\overline{\mathbb{R}})} \mathcal{Z}^{*}(x)
$$

or

$$
\begin{equation*}
n^{-1 / \alpha_{*}} \sum_{s=1}^{n} \eta_{n, s}\left(x ; \zeta_{s}\right) \Longrightarrow_{D(\overline{\mathbb{R}})} \mathcal{Z}^{*}(x) \tag{17}
\end{equation*}
$$

Step 1. Replace independent but not identically distributed $\eta_{n, s}\left(x ; \zeta_{s}\right)$ in (17) by independent and identically distributed $\eta\left(x ; \zeta_{s}\right), s=1, \cdots, n$ where

$$
\eta(x ; z):=\sum_{j=0}^{\infty}\left(F\left(x-b_{j} z\right)-E F\left(x-b_{j} \zeta_{0}\right)+f(x) b_{j} z\right)
$$

is a deterministic function of x and z
Step 2. Show the limits:

$$
\lim _{z \rightarrow \pm \infty}|z|^{-1 /(1-d)} \eta(x ; z)=\psi_{ \pm}(x)=\text { const } \int_{0}^{\infty}(F(x \mp s)-F(x) \pm f(x) s) \frac{\mathrm{d} s}{s^{1+\frac{1}{1-d}}}
$$

Step 3. Show Step 2 and α-tails of ζ_{s} imply α_{*}-tails of $\eta\left(x ; \zeta_{s}\right)$

Step 3. Show Step 2 and α-tails of ζ_{s} imply α_{*}-tails of $\eta\left(x ; \zeta_{s}\right)$ and hence α_{*}-stable limit of $\sum_{s=1}^{n} \eta_{n, s}\left(x ; \zeta_{s}\right)$ for x fixed

Step 3. Show Step 2 and α-tails of ζ_{s} imply α_{*}-tails of $\eta\left(x ; \zeta_{s}\right)$ and hence α_{*}-stable limit of $\sum_{s=1}^{n} \eta_{n, s}\left(x ; \zeta_{s}\right)$ for x fixed (also convergence of finite-dimensional distributions)

Step 3. Show Step 2 and α-tails of ζ_{s} imply α_{*}-tails of $\eta\left(x ; \zeta_{s}\right)$ and hence α_{*}-stable limit of $\sum_{s=1}^{n} \eta_{n, s}\left(x ; \zeta_{s}\right)$ for x fixed (also convergence of finite-dimensional distributions)
Step 4. Verify the tightness in $D(\overline{\mathbb{R}})$ in (17) using Kolmogorov's criterion in Billingsley (1968)

Step 3. Show Step 2 and α-tails of ζ_{s} imply α_{*}-tails of $\eta\left(x ; \zeta_{s}\right)$ and hence α_{*}-stable limit of $\sum_{s=1}^{n} \eta_{n, s}\left(x ; \zeta_{s}\right)$ for x fixed (also convergence of finite-dimensional distributions)

Step 4. Verify the tightness in $D(\overline{\mathbb{R}})$ in (17) using Kolmogorov's criterion in Billingsley (1968)

Sketch of proof of Thm 5 (URP II).

Step 3. Show Step 2 and α-tails of ζ_{s} imply α_{*}-tails of $\eta\left(x ; \zeta_{s}\right)$ and hence α_{*}-stable limit of $\sum_{s=1}^{n} \eta_{n, s}\left(x ; \zeta_{s}\right)$ for x fixed (also convergence of finite-dimensional distributions)

Step 4. Verify the tightness in $D(\overline{\mathbb{R}})$ in (17) using Kolmogorov's criterion in Billingsley (1968)

Sketch of proof of Thm 5 (URP II).

Step 1. Decompose

$$
F_{n}(x)-F(x)+f(x) \bar{\varepsilon}_{n}-\mathcal{Z}_{n}(x)
$$

Step 3. Show Step 2 and α-tails of ζ_{s} imply α_{*}-tails of $\eta\left(x ; \zeta_{s}\right)$ and hence α_{*}-stable limit of $\sum_{s=1}^{n} \eta_{n, s}\left(x ; \zeta_{s}\right)$ for x fixed (also convergence of finite-dimensional distributions)

Step 4. Verify the tightness in $D(\overline{\mathbb{R}})$ in (17) using Kolmogorov's criterion in Billingsley (1968)

Sketch of proof of Thm 5 (URP II).

Step 1. Decompose

$$
\begin{aligned}
& F_{n}(x)-F(x)+f(x) \bar{\varepsilon}_{n}-\mathcal{Z}_{n}(x) \\
& \quad=n^{-1} \sum_{i=1}^{n}\left(I\left(\varepsilon_{i} \leq x\right)-F(x)+f(x) \varepsilon_{i}\right)-\mathcal{Z}_{n}(x)
\end{aligned}
$$

Step 3. Show Step 2 and α-tails of ζ_{s} imply α_{*}-tails of $\eta\left(x ; \zeta_{s}\right)$ and hence α_{*}-stable limit of $\sum_{s=1}^{n} \eta_{n, s}\left(x ; \zeta_{s}\right)$ for x fixed (also convergence of finite-dimensional distributions)

Step 4. Verify the tightness in $D(\overline{\mathbb{R}})$ in (17) using Kolmogorov's criterion in Billingsley (1968)

Sketch of proof of Thm 5 (URP II).

Step 1. Decompose

$$
\begin{aligned}
& F_{n}(x)-F(x)+f(x) \bar{\varepsilon}_{n}-\mathcal{Z}_{n}(x) \\
& =n^{-1} \sum_{i=1}^{n}\left(I\left(\varepsilon_{i} \leq x\right)-F(x)+f(x) \varepsilon_{i}\right)-\mathcal{Z}_{n}(x) \\
& =\mathcal{R}_{n 1}(x)+\mathcal{R}_{n 2}(x)
\end{aligned}
$$

Step 3. Show Step 2 and α-tails of ζ_{s} imply α_{*}-tails of $\eta\left(x ; \zeta_{s}\right)$ and hence α_{*}-stable limit of $\sum_{s=1}^{n} \eta_{n, s}\left(x ; \zeta_{s}\right)$ for x fixed (also convergence of finite-dimensional distributions)

Step 4. Verify the tightness in $D(\overline{\mathbb{R}})$ in (17) using Kolmogorov's criterion in Billingsley (1968)

Sketch of proof of Thm 5 (URP II).

Step 1. Decompose

$$
\begin{aligned}
& F_{n}(x)-F(x)+f(x) \bar{\varepsilon}_{n}-\mathcal{Z}_{n}(x) \\
& =n^{-1} \sum_{i=1}^{n}\left(I\left(\varepsilon_{i} \leq x\right)-F(x)+f(x) \varepsilon_{i}\right)-\mathcal{Z}_{n}(x) \\
& =\mathcal{R}_{n 1}(x)+\mathcal{R}_{n 2}(x)
\end{aligned}
$$

where

$$
\mathcal{R}_{n 1}(x):=n^{-1} \sum_{i=1}^{n}\left\{I\left(\varepsilon_{i} \leq x\right)-F(x)+f(x) \varepsilon_{i}\right.
$$

Step 3. Show Step 2 and α-tails of ζ_{s} imply α_{*}-tails of $\eta\left(x ; \zeta_{s}\right)$ and hence α_{*}-stable limit of $\sum_{s=1}^{n} \eta_{n, s}\left(x ; \zeta_{s}\right)$ for x fixed (also convergence of finite-dimensional distributions)

Step 4. Verify the tightness in $D(\overline{\mathbb{R}})$ in (17) using Kolmogorov's criterion in Billingsley (1968)

Sketch of proof of Thm 5 (URP II).

Step 1. Decompose

$$
\begin{aligned}
& F_{n}(x)-F(x)+f(x) \bar{\varepsilon}_{n}-\mathcal{Z}_{n}(x) \\
& =n^{-1} \sum_{i=1}^{n}\left(I\left(\varepsilon_{i} \leq x\right)-F(x)+f(x) \varepsilon_{i}\right)-\mathcal{Z}_{n}(x) \\
& =\mathcal{R}_{n 1}(x)+\mathcal{R}_{n 2}(x)
\end{aligned}
$$

where

$$
\begin{aligned}
\mathcal{R}_{n 1}(x):=n^{-1} \sum_{i=1}^{n}\{ & I\left(\varepsilon_{i} \leq x\right)-F(x)+f(x) \varepsilon_{i} \\
& \left.-\sum_{s \leq i} E\left[I\left(\varepsilon_{i} \leq x\right)-F(x)+f(x) \varepsilon_{i} \mid \zeta_{s}\right]\right\}
\end{aligned}
$$

Step 3. Show Step 2 and α-tails of ζ_{s} imply α_{*}-tails of $\eta\left(x ; \zeta_{s}\right)$ and hence α_{*}-stable limit of $\sum_{s=1}^{n} \eta_{n, s}\left(x ; \zeta_{s}\right)$ for x fixed (also convergence of finite-dimensional distributions)

Step 4. Verify the tightness in $D(\overline{\mathbb{R}})$ in (17) using Kolmogorov's criterion in Billingsley (1968)

Sketch of proof of Thm 5 (URP II).

Step 1. Decompose

$$
\begin{aligned}
& F_{n}(x)-F(x)+f(x) \bar{\varepsilon}_{n}-\mathcal{Z}_{n}(x) \\
& =n^{-1} \sum_{i=1}^{n}\left(I\left(\varepsilon_{i} \leq x\right)-F(x)+f(x) \varepsilon_{i}\right)-\mathcal{Z}_{n}(x) \\
& =\mathcal{R}_{n 1}(x)+\mathcal{R}_{n 2}(x)
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathcal{R}_{n 1}(x):=n^{-1} \sum_{i=1}^{n}\left\{I\left(\varepsilon_{i} \leq x\right)-F(x)+f(x) \varepsilon_{i}\right. \\
&\left.-\sum_{s \leq i} E\left[I\left(\varepsilon_{i} \leq x\right)-F(x)+f(x) \varepsilon_{i} \mid \zeta_{s}\right]\right\} \\
&=n^{-1} \sum_{i=1}^{n}\left\{I\left(\varepsilon_{i} \leq x\right)-F(x)-\sum_{s \leq i}\left(P\left[\varepsilon_{i} \leq x \mid \zeta_{s}\right]-F(x)\right)\right\}(18)
\end{aligned}
$$

Step 3. Show Step 2 and α-tails of ζ_{s} imply α_{*}-tails of $\eta\left(x ; \zeta_{s}\right)$ and hence α_{*}-stable limit of $\sum_{s=1}^{n} \eta_{n, s}\left(x ; \zeta_{s}\right)$ for x fixed (also convergence of finite-dimensional distributions)

Step 4. Verify the tightness in $D(\overline{\mathbb{R}})$ in (17) using Kolmogorov's criterion in Billingsley (1968)

Sketch of proof of Thm 5 (URP II).

Step 1. Decompose

$$
\begin{aligned}
& F_{n}(x)-F(x)+f(x) \bar{\varepsilon}_{n}-\mathcal{Z}_{n}(x) \\
& =n^{-1} \sum_{i=1}^{n}\left(I\left(\varepsilon_{i} \leq x\right)-F(x)+f(x) \varepsilon_{i}\right)-\mathcal{Z}_{n}(x) \\
& =\mathcal{R}_{n 1}(x)+\mathcal{R}_{n 2}(x)
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathcal{R}_{n 1}(x):=n^{-1} \sum_{i=1}^{n}\left\{I\left(\varepsilon_{i} \leq x\right)-F(x)+f(x) \varepsilon_{i}\right. \\
&\left.-\sum_{s \leq i} E\left[I\left(\varepsilon_{i} \leq x\right)-F(x)+f(x) \varepsilon_{i} \mid \zeta_{s}\right]\right\} \\
&=n^{-1} \sum_{i=1}^{n}\left\{I\left(\varepsilon_{i} \leq x\right)-F(x)-\sum_{s \leq i}\left(P\left[\varepsilon_{i} \leq x \mid \zeta_{s}\right]-F(x)\right)\right\}(18)
\end{aligned}
$$

- The approximation of EP in (18) originates to Hsing (1999) and was used in S. $(2002,2004)$
- The approximation of EP in (18) originates to Hsing (1999) and was used in S. $(2002,2004)$
- It is not intuitive and is crucial for reducing the problem to a sum of independent r.v.s.
- The approximation of EP in (18) originates to Hsing (1999) and was used in S. $(2002,2004)$
- It is not intuitive and is crucial for reducing the problem to a sum of independent r.v.s. since $\sum_{i=1 \mathrm{v} s}^{n}\left(P\left[\varepsilon_{i} \leq x \mid \zeta_{s}\right]-F(x)\right), s \leq n$ are independent and have zero mean
- The approximation of EP in (18) originates to Hsing (1999) and was used in S. $(2002,2004)$
- It is not intuitive and is crucial for reducing the problem to a sum of independent r.v.s. since $\sum_{i=1 \vee s}^{n}\left(P\left[\varepsilon_{i} \leq x \mid \zeta_{s}\right]-F(x)\right), s \leq n$ are independent and have zero mean

Step 2. Proof of

$$
\sup _{x \in \mathbb{R}} n^{1-1 / \alpha_{*}}\left|\mathcal{R}_{n i}(x)\right|=o_{p}(1), \quad i=1,2 .
$$

- The approximation of EP in (18) originates to Hsing (1999) and was used in S. $(2002,2004)$
- It is not intuitive and is crucial for reducing the problem to a sum of independent r.v.s. since $\sum_{i=1 \vee s}^{n}\left(P\left[\varepsilon_{i} \leq x \mid \zeta_{s}\right]-F(x)\right), s \leq n$ are independent and have zero mean

Step 2. Proof of

$$
\begin{equation*}
\sup _{x \in \mathbb{R}} n^{1-1 / \alpha_{*}}\left|\mathcal{R}_{n i}(x)\right|=o_{p}(1), \quad i=1,2 . \tag{19}
\end{equation*}
$$

The control of the sup in (19) follows from a chaining argument and the following bound:

- The approximation of EP in (18) originates to Hsing (1999) and was used in S. $(2002,2004)$
- It is not intuitive and is crucial for reducing the problem to a sum of independent r.v.s. since $\sum_{i=1 \mathrm{v} s}^{n}\left(P\left[\varepsilon_{i} \leq x \mid \zeta_{s}\right]-F(x)\right), s \leq n$ are independent and have zero mean

Step 2. Proof of

$$
\begin{equation*}
\sup _{x \in \mathbb{R}} n^{1-1 / \alpha_{*}}\left|\mathcal{R}_{n i}(x)\right|=o_{p}(1), \quad i=1,2 . \tag{19}
\end{equation*}
$$

The control of the sup in (19) follows from a chaining argument and the following bound:

$$
E\left|\mathcal{R}_{n i}(x, y)\right|^{r} \leq \mu(x, y) n^{r\left(\frac{1}{\alpha_{*}}-1\right)-\kappa}, \quad \forall x<y, \quad i=1,2
$$

- The approximation of EP in (18) originates to Hsing (1999) and was used in S. $(2002,2004)$
- It is not intuitive and is crucial for reducing the problem to a sum of independent r.v.s. since $\sum_{i=1 \mathrm{v} s}^{n}\left(P\left[\varepsilon_{i} \leq x \mid \zeta_{s}\right]-F(x)\right), s \leq n$ are independent and have zero mean

Step 2. Proof of

$$
\begin{equation*}
\sup _{x \in \mathbb{R}} n^{1-1 / \alpha_{*}}\left|\mathcal{R}_{n i}(x)\right|=o_{p}(1), \quad i=1,2 . \tag{19}
\end{equation*}
$$

The control of the sup in (19) follows from a chaining argument and the following bound:

$$
\begin{equation*}
E\left|\mathcal{R}_{n i}(x, y)\right|^{r} \leq \mu(x, y) n^{r\left(\frac{1}{\alpha_{*}}-1\right)-\kappa}, \quad \forall x<y, \quad i=1,2 \tag{20}
\end{equation*}
$$

where $\mathcal{R}_{n i}(x, y)=\mathcal{R}_{n i}(y)-\mathcal{R}_{n i}(x), 1<r<2, \kappa>0$ and $\mu(x, y)$ is a finite measure on \mathbb{R}.

- The approximation of $E P$ in (18) originates to Hsing (1999) and was used in S. $(2002,2004)$
- It is not intuitive and is crucial for reducing the problem to a sum of independent r.v.s. since $\sum_{i=1 \mathrm{v} s}^{n}\left(P\left[\varepsilon_{i} \leq x \mid \zeta_{s}\right]-F(x)\right), s \leq n$ are independent and have zero mean

Step 2. Proof of

$$
\begin{equation*}
\sup _{x \in \mathbb{R}} n^{1-1 / \alpha_{*}}\left|\mathcal{R}_{n i}(x)\right|=o_{p}(1), \quad i=1,2 . \tag{19}
\end{equation*}
$$

The control of the sup in (19) follows from a chaining argument and the following bound:

$$
\begin{equation*}
E\left|\mathcal{R}_{n i}(x, y)\right|^{r} \leq \mu(x, y) n^{r\left(\frac{1}{\alpha_{*}}-1\right)-\kappa}, \quad \forall x<y, \quad i=1,2 \tag{20}
\end{equation*}
$$

where $\mathcal{R}_{n i}(x, y)=\mathcal{R}_{n i}(y)-\mathcal{R}_{n i}(x), 1<r<2, \kappa>0$ and $\mu(x, y)$ is a finite measure on \mathbb{R}.

- To prove (20) following Ho and Hsing (1996) etc. we represent $\mathcal{R}_{n i}(x, y)$ as a sum of martingale differences w.r.t. $\mathcal{F}_{s}=\sigma\left\{\zeta_{u}, u \leq s\right\}$:

$$
\mathcal{R}_{n i}(x, y)=\sum_{s \leq n} \underbrace{\left(E\left[\mathcal{R}_{n i}(x, y) \mid \mathcal{F}_{s}\right]-E\left[\mathcal{R}_{n i}(x, y) \mid \mathcal{F}_{s-1}\right]\right)}
$$

- The approximation of EP in (18) originates to Hsing (1999) and was used in S. $(2002,2004)$
- It is not intuitive and is crucial for reducing the problem to a sum of independent r.v.s. since $\sum_{i=1 \mathrm{v} s}^{n}\left(P\left[\varepsilon_{i} \leq x \mid \zeta_{s}\right]-F(x)\right), s \leq n$ are independent and have zero mean

Step 2. Proof of

$$
\begin{equation*}
\sup _{x \in \mathbb{R}} n^{1-1 / \alpha_{*}}\left|\mathcal{R}_{n i}(x)\right|=o_{p}(1), \quad i=1,2 . \tag{19}
\end{equation*}
$$

The control of the sup in (19) follows from a chaining argument and the following bound:

$$
\begin{equation*}
E\left|\mathcal{R}_{n i}(x, y)\right|^{r} \leq \mu(x, y) n^{r\left(\frac{1}{\alpha_{*}}-1\right)-\kappa}, \quad \forall x<y, \quad i=1,2 \tag{20}
\end{equation*}
$$

where $\mathcal{R}_{n i}(x, y)=\mathcal{R}_{n i}(y)-\mathcal{R}_{n i}(x), 1<r<2, \kappa>0$ and $\mu(x, y)$ is a finite measure on \mathbb{R}.

- To prove (20) following Ho and Hsing (1996) etc. we represent $\mathcal{R}_{n i}(x, y)$ as a sum of martingale differences w.r.t. $\mathcal{F}_{s}=\sigma\left\{\zeta_{u}, u \leq s\right\}$:

$$
\mathcal{R}_{n i}(x, y)=\sum_{s \leq n} \underbrace{\left(E\left[\mathcal{R}_{n i}(x, y) \mid \mathcal{F}_{s}\right]-E\left[\mathcal{R}_{n i}(x, y) \mid \mathcal{F}_{s-1}\right]\right)}_{=U_{n i, s}(x, y)}
$$

- The approximation of EP in (18) originates to Hsing (1999) and was used in S. $(2002,2004)$
- It is not intuitive and is crucial for reducing the problem to a sum of independent r.v.s. since $\sum_{i=1 \mathrm{v} s}^{n}\left(P\left[\varepsilon_{i} \leq x \mid \zeta_{s}\right]-F(x)\right), s \leq n$ are independent and have zero mean

Step 2. Proof of

$$
\begin{equation*}
\sup _{x \in \mathbb{R}} n^{1-1 / \alpha_{*}}\left|\mathcal{R}_{n i}(x)\right|=o_{p}(1), \quad i=1,2 . \tag{19}
\end{equation*}
$$

The control of the sup in (19) follows from a chaining argument and the following bound:

$$
\begin{equation*}
E\left|\mathcal{R}_{n i}(x, y)\right|^{r} \leq \mu(x, y) n^{r\left(\frac{1}{\alpha_{*}}-1\right)-\kappa}, \quad \forall x<y, \quad i=1,2 \tag{20}
\end{equation*}
$$

where $\mathcal{R}_{n i}(x, y)=\mathcal{R}_{n i}(y)-\mathcal{R}_{n i}(x), 1<r<2, \kappa>0$ and $\mu(x, y)$ is a finite measure on \mathbb{R}.

- To prove (20) following Ho and Hsing (1996) etc. we represent $\mathcal{R}_{n i}(x, y)$ as a sum of martingale differences w.r.t. $\mathcal{F}_{s}=\sigma\left\{\zeta_{u}, u \leq s\right\}$:

$$
\mathcal{R}_{n i}(x, y)=\sum_{s \leq n} \underbrace{\left(E\left[\mathcal{R}_{n i}(x, y) \mid \mathcal{F}_{s}\right]-E\left[\mathcal{R}_{n i}(x, y) \mid \mathcal{F}_{s-1}\right]\right)}_{=U_{n i, s}(x, y)}
$$

and use moment inequality due to Esseen and von Bahr (1965):

$$
E\left|\mathcal{R}_{n i}(x, y)\right|^{r} \leq 2 \sum_{s \leq n} E\left|U_{n i, s}(x, y)\right|^{r}
$$

and use moment inequality due to Esseen and von Bahr (1965):

$$
E\left|\mathcal{R}_{n i}(x, y)\right|^{r} \leq 2 \sum_{s \leq n} E\left|U_{n i, s}(x, y)\right|^{r}
$$

- Furthermore, $U_{n 1, s}(x, y)$ needs one more time expanded in martingale differences w.r.t. $\mathcal{F}_{v} \vee\left\{\zeta_{s}\right\}, v \leq s$:
and use moment inequality due to Esseen and von Bahr (1965):

$$
E\left|\mathcal{R}_{n i}(x, y)\right|^{r} \leq 2 \sum_{s \leq n} E\left|U_{n i, s}(x, y)\right|^{r}
$$

- Furthermore, $U_{n 1, s}(x, y)$ needs one more time expanded in martingale differences w.r.t. $\mathcal{F}_{v} \vee\left\{\zeta_{s}\right\}, v \leq s$:

$$
U_{n 1, s}(x, y)=\sum_{v \leq s} \underbrace{\left(E\left[U_{n 1, s, v}(x, y) \mid \mathcal{F}_{v}, \zeta_{s}\right]-E\left[U_{n 1}(x, y) \mid \mathcal{F}_{v-1}, \zeta_{s}\right]\right)}
$$

and use moment inequality due to Esseen and von Bahr (1965):

$$
E\left|\mathcal{R}_{n i}(x, y)\right|^{r} \leq 2 \sum_{s \leq n} E\left|U_{n i, s}(x, y)\right|^{r}
$$

- Furthermore, $U_{n 1, s}(x, y)$ needs one more time expanded in martingale differences w.r.t. $\mathcal{F}_{v} \vee\left\{\zeta_{s}\right\}, v \leq s$:

$$
U_{n 1, s}(x, y)=\sum_{v \leq s} \underbrace{\left(E\left[U_{n 1, s, v}(x, y) \mid \mathcal{F}_{v}, \zeta_{s}\right]-E\left[U_{n 1}(x, y) \mid \mathcal{F}_{v-1}, \zeta_{s}\right]\right)}_{=: W_{n, s, v}(x, y)}
$$

and use moment inequality due to Esseen and von Bahr (1965):

$$
E\left|\mathcal{R}_{n i}(x, y)\right|^{r} \leq 2 \sum_{s \leq n} E\left|U_{n i, s}(x, y)\right|^{r}
$$

- Furthermore, $U_{n 1, s}(x, y)$ needs one more time expanded in martingale differences w.r.t. $\mathcal{F}_{v} \vee\left\{\zeta_{s}\right\}, v \leq s$:

$$
U_{n 1, s}(x, y)=\sum_{v \leq s} \underbrace{\left(E\left[U_{n 1, s, v}(x, y) \mid \mathcal{F}_{v}, \zeta_{s}\right]-E\left[U_{n 1}(x, y) \mid \mathcal{F}_{v-1}, \zeta_{s}\right]\right)}_{=: W_{n, s, v}(x, y)}
$$

and estimated $E\left|U_{n 1, s}(x, y)\right|^{r} \leq 2 \sum_{v \leq s} E\left|W_{n, s, v}(x, y)\right|^{r}$ as above.
and use moment inequality due to Esseen and von Bahr (1965):

$$
E\left|\mathcal{R}_{n i}(x, y)\right|^{r} \leq 2 \sum_{s \leq n} E\left|U_{n i, s}(x, y)\right|^{r}
$$

- Furthermore, $U_{n 1, s}(x, y)$ needs one more time expanded in martingale differences w.r.t. $\mathcal{F}_{v} \vee\left\{\zeta_{s}\right\}, v \leq s$:

$$
U_{n 1, s}(x, y)=\sum_{v \leq s} \underbrace{\left(E\left[U_{n 1, s, v}(x, y) \mid \mathcal{F}_{v}, \zeta_{s}\right]-E\left[U_{n 1}(x, y) \mid \mathcal{F}_{v-1}, \zeta_{s}\right]\right)}_{=: W_{n, s, v}(x, y)}
$$

and estimated $E\left|U_{n 1, s}(x, y)\right|^{r} \leq 2 \sum_{v \leq s} E\left|W_{n, s, v}(x, y)\right|^{r}$ as above.
Step 3. Proof of

$$
E\left|W_{n, s, v}(x, y)\right|^{r} \leq \mu(x, y) \sum_{i=1 \vee s}^{n}\left|b_{i-s}\right|^{r}\left|b_{i-v}\right|^{r}
$$

References

- Astrauskas, A. (1983). Limit theorems for sums of linearly generated random variables. Lithuanian Math. J., 23, 127-134.
\rightarrow Astrauskas, A., Levy, J.B. and Taqqu, M.S. (1991). The asymptotic dependence structure of the linear fractional Lévy motion. Lithuanian Math. J., 31, 1-28.
$>$ Avram, F. and Taqqu, M.S. (1986). Weak convergence of moving averages with infinite variance. In: Eberlein, E. and M.S. Taqqu (eds), Dependence in Probability and Statistics, pp. 399-415. Birkhäuser, Boston.
- Avram, F. and Taqqu, M.S. (1992). Weak convergence of sums of moving averages in the α-stable domain of attraction. Ann. Probab., 20, 483-503.

B Basse-O'Connor, A., Lachièze-Rey, R. and Podolskij, M. (2015). Limit theorems for stationary increments Lévy driven moving averages. Preprint.

- Dehling, H. and Taqqu, M.S. (1989). The empirical process of some long range dependent sequences with an application to U-statistics. Ann. Statist., 17, 1767-1783.
- Dobrushin, R.L. and Major, P. (1979) Non-central limit theorems for non-linear functionals of Gaussian fields. Probab. Th. Rel. Fields 50, 27-52.
- Giraitis, L. and Surgailis, D. (1999). Central limit theorem for the empirical process of a linear sequence with long memory. J. Statist. Plan. Inf. 80, 290-311.
- Giraitis, L., Koul, H.L. and Surgailis D. (1996). Asymptotic normality of regression estimators with long memory errors. Statist. Probab. Letters 29, 317-335.
- Giraitis, L., Koul, H.L. and Surgailis, D. (2012). Large Sample Inference for Long Memory Processes. Imperial College Press, London.
\rightarrow Ho, H.-C. and Hsing, T. (1996). On the asymptotic expansion of the empirical process of long memory moving averages. Ann. Statist., 24, 992-1024, 1996.
- Hsing, T. (1999) On the asymptotic distributions of partial sums of functionals of infinite-variance moving averaged. Ann. Probab., 27, 1579-1599.
- Huber, P.J. (1981). Robust Statistics. Wiley, New York.
- Hult, H. and Samorodnitsky, G. (2008). Tail probabilities for infinite series of regularly varying random vectors. Bernoulli, 14, 838-864.
- Ibragimov, I.A. and Linnik, Yu.V. (1971). Independent and Stationary Sequences of Random Variables. Wolters-Noordhoff, Groningen.
- Kasahara, Y. and Maejima, M. (1988). Weighted sums of i.i.d. random variables attracted to integrals of stable processes. Probab. Th. Rel. Fields, 78, 75-96.
- Kokoszka, P.S. and Taqqu, M.S. (1995). Fractional ARIMA with stable innovations. Stoch. Proc. Appl. 60, 19-47.
- Koul, H.L. (2002). Asymptotic distributions of some scale estimators in nonlinear models. Metrika, 55, 75-90.
\rightarrow Koul, H.L. (2002a). Weighted Empirical Processes in Dynamic Nonlinear Models. 2nd Edition. Lecture Notes Series in Statistics, 166, Springer, New York, N.Y., USA.
- Koul, H.L. and Surgailis, D. (2001). Asymptotics of empirical processes of long memory moving averages with infinite variance. Stochastic Process. Appl., 91, 309-336.
- Koul, H.L. and Surgailis, D. (2002). Asymptotic expansion of the empirical process of long memory moving averages. In: H. Dehling, T. Mikosch and M. Sorensen (eds.), Empirical Process Techniques for Dependent Data, pp. 213-239. Birkhäuser: Boston.
- Koul, H.L., Baillie, R. and Surgailis, D. (2004). Regression model fitting with a long memory covariate process. Econometric Theory, 20, 485-512.
- Koul, H.L. and Surgailis, D. (2017). Asymptotic distributions of some scale estimators in nonlinear models with long memory errors having infinite variance. Preprint.
- Rosenblatt, M. (1961). Independence and dependence. Proceed. 4th Berk. Symp. Math. Statist. \& Probab. 2 431-443. University of California Press, Berkeley.
- Samorodnitsky, G. and Taqqu, M.S. (1994). Stable Non-Gaussian Random Processes. Chapman and Hall, New York.
- Surgailis, D. (2002). Stable limits of empirical processes of long memory moving averages with infinite variance. Stochastic Process. Appl., 100, 255-274.
- Surgailis, D. (2004). Stable limits of sums of bounded functions of long memory moving averages with finite variance. Bernoulli, 10, 327-355.
- Taqqu, M.S. (1975). Weak convergence to Fractional Brownian Motion and to the Rosenblatt Process. Z. Wahrsch. verw. Geb. 31, 287-302.
- Taqqu, M.S. (1979). Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrsch. verw. Geb. 50, 53-83.

