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Motivation: Ambit stochastics

ä Name for the theory and applications of ambit fields and ambit processes
ä Probabilistic framework for spatio-temporal modelling
ä Introduced by O. E. Barndorff-Nielsen and J. Schmiegel in the context of

modelling turbulence in physics.

ä In this talk, we focus on the null-spatial case of an ambit field:

A Brownian semistationary process.
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The Brownian semistationary (BSS) process

ä The BSS process in its most basic form can be written as:

Yt =
∫ t

−∞
g(t − s)σs dWs,

for a deterministic kernel function g, a stochastic volatility process σ and
a Brownian motion W .

ä Areas of application:
à Turbulence (Barndorff-Nielsen & Schmiegel (2009)),
à (energy) finance (Barndorff-Nielsen, Benth, V. (2013)),
à (rough) volatility (Bennedsen, Lunde, Pakkanen (2017+)).

ä Recent interest in inference on σ (and related quantities) in particular in
the case when Y is NOT a semimartingale.

ä Related work: Power variation for Gaussian, BSS and LSS processes:
Barndorff-Nielsen, Corcuera, Podolskij, and Woerner (2009), Barndorff-Nielsen, Corcuera,
Podolskij (2011, 2013), Corcuera (2012), Corcuera, Hedevang, Pakkanen, and Podolskij
(2013), Basse-O’Connor, Heinrich and Podolskij (2017), Basse-O’Connor,Lachiéze-Rey and
Podolskij (2017), Basse-O’Connor and Podolskij (2017) etc.
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Aim of the project

ä Consider a bivariate semimartingale Y = (Y (1),Y (2))> sampled at high
frequency with increments given by ∆n

i Y (j) = Y (j)
i∆n
− Y (j)

(i−1)∆n
, for

j ∈ {1,2} and for ∆n = n−1 with n ∈N.
ä For t ≥ 0, we call

bntc

∑
i=1

∆n
i Y (1)∆n

i Y (2)

the realised covariation.
ä It is well-known that the quadratic covariation denoted by [Y (1),Y (2)]

exists and that

bntc

∑
i=1

∆n
i Y (1)∆n

i Y (2) u.c.p.→ [Y (1),Y (2)]t , as n→ ∞.

ä Aim: Derive the asymptotic properties of (the possibly scaled) realised
covariation for a bivariate BSS process Y outside the semimartingale
framework.
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General remarks

ä Focus on the non-semimartingale case throughout the study.
ä Aims: Derive both a weak law of large numbers and a central limit

theorem for (scaled) realised covariation.
ä Method of proofs:

à Focus on the bivariate Gaussian core first, i.e. a bivariate Brownian
semistationary process without stochastic volatility.

à Derive all results in the absence of stochastic volatility.
à Extend all results to the general case with stochastic volatility using

Bernstein’s blocking technique, where the volatility is “frozen” on a coarser
time grid.

à The weak law of large numbers can be proven using classical techniques for
convergence of measures.

à For the central limit theorem we invoke the powerful fourth moment theorem
by Nualart and Peccati (2005).
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The setting

ä Consider filtered, complete probability space (Ω,F ,Ft ,P) and a finite
time horizon [0,T ] for some T > 0.

ä Suppose that (Ω,F ,Ft ,P) supports two independent Ft -Brownian
measures W (1),W (2) on R.

Definition 1 (Brownian measure)

An Ft -adapted Brownian measure W : Ω×B(R)→ R is a Gaussian
stochastic measure such that, if A ∈ B(R) with E[(W (A))2] < ∞, then
W (A) ∼ N(0,Leb(A)), where Leb is the Lebesgue measure. Moreover, if
A ⊆ [t ,+∞), then W (A) is independent of Ft .

6 / 19



The Gaussian core

Definition 2 (The Gaussian core)

Consider two Brownian measures W (1) and W (2) adapted to Ft with
dW (1)

t dW (2)
t = ρdt , for ρ ∈ [−1,1]. Further take two nonnegative

deterministic functions g(1),g(2) ∈ L2((0,∞)) which are continuous on
R \ {0}. Define, for j ∈ {1,2},

G(j)
t :=

∫ t

−∞
g(j)(t − s) dW (j)

s .

Then the vector process (Gt )t≥0 = (G(1)
t ,G(2)

t )>t≥0 is called the (bivariate)
Gaussian core.
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The bivariate Brownian semistationary process

Definition 3 (The bivariate Brownian semistationary process)

Consider two Brownian measures W (1) and W (2) adapted to Ft with
dW (1)

t dW (2)
t = ρdt , for ρ ∈ [−1,1]. Further take two nonnegative

deterministic functions g(1),g(2) ∈ L2((0,∞)) which are continuous on
R \ {0}. Let further σ(1), σ(2) be càdlàg , Ft -adapted stochastic processes
and assume that for j ∈ {1,2}, and for all t ∈ [0,T ]:∫ t
−∞ g(j)2(t − s)σ(j)2

s ds < ∞. Define, for j ∈ {1,2},

Y (j)
t :=

∫ t

−∞
g(j)(t − s)σ(j)

s dW (j)
s .

Then the vector process (Yt )t≥0 = (Y (1)
t ,Y (2)

t )>t≥0 is called a bivariate
Brownian semistationary process.
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Technical assumptions

Assumption 1

For j ∈ {1,2}, we assume that g(j) : R→ R+ are nonnegative functions and
continuous, except possibly at x = 0. Also, g(j)(x) = 0 for x < 0 and
g(j) ∈ L2 ((0,+∞)). We further ask that g(j) be differentiable everywhere with

derivative
(

g(j)
)′
∈ L2((b(j),∞)) for some b(j) > 0 and

(
(g(j))′

)2

non-increasing in [b(j),∞).

ä Set b = max{b(1),b(2)}.

ä It is important to note that we are not assuming that
(

g(j)
)′
∈ L2((0,∞))

in order to exclude the semimartingale case. In particular, we must have

that, for all ε > 0, supx∈(0,ε)

(
g(j)
)′

(x) = ∞.
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Technical assumptions cont’d

For i , j ∈ {1,2}, we write ρi,j = ρ for i 6= j and ρi,j = 1 for i = j . Also, for

i , j ∈ {1,2} set: R̄(i,j)(t) := E

[(
G(j)

t −G(i)
0

)2
]
.

Assumption 2

For all t ∈ (0,T ), there exist slowly varying functions L(i,j)
0 (t) and L(i,j)

2 (t)
which are continuous on (0,∞) such that

R̄(i,j)(t) = Ci,j + ρi,j tδ(i)+δ(j)+1L(i,j)
0 (t), for i , j ∈ {1,2}, (1)

and
1
2
(R̄(i,j))′′(t) = ρi,j tδ(i)+δ(j)−1L(i,j)

2 (t), for i , j ∈ {1,2},

where δ(1), δ(2) ∈
(
− 1

2 ,
1
2

)
\ {0}.
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Technical assumptions cont’d

Assumption 3 (Assumption 2 cont’d)

Also, if we denote L̃(i,j)
0 (t) :=

√
L(i,i)

0 (t)L(j,j)
0 (t), we ask that the functions

L(i,j)
0 (t) and L(i,j)

2 (t) are such that, for all λ > 0, there exists a H(i,j) ∈ R such
that:

lim
t→0+

L(i,j)
0 (λt)

L̃(i,j)
0 (t)

= H(i,j) < ∞, (2)

and that there exists b ∈ (0,1), such that:

lim sup
x→0+

sup
y∈(x ,xb)

∣∣∣∣∣L
(i,j)
2 (y)

L̃(i,j)
0 (x)

∣∣∣∣∣ < ∞. (3)

In this situation, the restriction δ(j) ∈ (− 1
2 ,0) ∪ (0, 1

2 ) ensures that the process
leaves the semimartingale class.
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Example of a relevant kernel function

Example 4

The Gamma kernel satisfies all our assumptions:

g(j)(x) = xδ(j)e−λ(j)x ,

for x ≥ 0, λ(j) > 0 and δ(j) ∈ (−0.5,0.5) \ {0} and j ∈ {1,2}.
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The scaling factor

ä For j ∈ {1,2}, set

τ
(j)
n :=

√
E
[(

∆n
1G(j)

)2
]

=

√∫ ∞

0

(
g(j)(s + ∆n)− g(j)(s)

)2 ds +
∫ ∆n

0

(
g(j)(s)

)2 ds.

ä The scaled realised covariation of the Gaussian core is given by

bntc

∑
i=1

∆n
i G(1)

τ
(1)
n

∆n
i G(2)

τ
(2)
n

.

ä Let us now derive the central limit theorem!
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Weak Convergence of the Gaussian Core

Theorem 5 (Weak Convergence of the Gaussian Core)

Assume that Assumptions 1 and 2 hold with
δ(1) ∈ (− 1

2 ,
1
4 ) \ {0}, δ(2) ∈ (− 1

2 ,
1
4 ) \ {0}. Then we obtain:(

1√
n

bntc

∑
i=1

(
∆n

i G(1)

τ
(1)
n

∆n
i G(2)

τ
(2)
n

−E

[
∆n

i G(1)

τ
(1)
n

∆n
i G(2)

τ
(2)
n

]))
t∈[0,T ]

⇒
(√

βBt

)
t∈[0,T ]

,

(4)
where Bt is a Brownian motion independent of the processes G(1), G(2), β is
a known constant and the convergence is in the Skorokhod space D[0,T ]
equipped with the Skorokhod topology.
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Even more technical assumptions...

Assumption 4

We require that, for k ∈ {1,2}, the quantity:√
E

[(∫ (i−1)∆n
−∞ ∆g(k)σ

(k)
s dW (k)

s

)2
]

τ
(k)
n

=

√∫ ∞
0

(
g(k)(s + ∆n)− g(k)(s)

)2
E

[(
σ
(k)
(i−1)∆n−s

)2
]

ds

τ
(k)
n

is uniformly bounded in n ∈N and i ∈ {1, . . . ,n}.
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Technical assumptions cont’d

Assumption 5

The stochastic volatility process σ(1) (resp. σ(2)) has α(1)-Hölder (resp. α(2))
continuous sample paths, for α(1) ∈

(
1
2 ,1
)

. Furthermore, both the kernel

functions g(1) and g(2) satisfy the following property: For j ∈ {1,2}, write:

π
(j)
n (A) :=

∫
A

(
g(j)(x + ∆n)− g(j)(x)

)2
ds∫ ∞

0

(
g(j)(x + ∆n)− g(j)(x)

)2 ds

and note that π
(j)
n are probability measures. We ask that there exists a

constant λ < −1 such that for any εn = O(n−κ), it holds that:

π
(j)
n ((εn,∞)) = O

(
nλ(1−κ)

)
.
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Central limit theorem

Theorem 6 (Central limit theorem)

Let G be the sigma algebra generated by the Gaussian core G, and let σ(1)

and σ(2) be G−measurable. For the bivariate BSS process, provided that
Assumptions 1-4 are satisfied with δ(1), δ(2) ∈ (− 1

2 ,
1
4 ) \ {0}, the following

G-stable convergence holds:(
1√
n

bntc

∑
i=1

∆n
i Y (1)

τ
(1)
n

∆n
i Y (2)

τ
(2)
n

−
√

n E

[
∆n

1G(1)

τ
(1)
n

∆n
1G(2)

τ
(2)
n

] ∫ t

0
σ
(1)
s σ

(2)
s ds

)
t∈[0,T ]

st.
=⇒
n→∞

(√
β
∫ t

0
σ
(1)
s σ

(2)
s dBs

)
t∈[0,T ]

, (5)

in the Skorokhod space D[0,T ], where β is a known constant. Also, B is
Brownian motion, independent of F and defined on an extension of the
filtered probability space (Ω,F ,Ft ,P).
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A weak law of large numbers

ä We set

c(x) :=
∫ x

0
g(1)(s)g(2)(s) ds

+
∫ ∞

0

(
g(1)(s + x)− g(1)(s)

) (
g(2)(s + x)− g(2)(s)

)
ds.

Proposition 1

Assume that the conditions of the previous theorem hold. Then

∆n

c(∆n)

bntc

∑
i=1

∆n
i Y (1)∆n

i Y (2) P→ ρ
∫ t

0
σ
(1)
s σ

(2)
s ds, as n→ ∞.
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Summary and outlook

ä We derived a central limit theorem for the scaled realised covariation of a
bivariate Brownian semistationary process.

ä A weak law of large numbers is implied under the same assumptions.
ä We have also extended the derivations of the weak law of large numbers

to another non-semimartingale scenario within the BSS class.
ä Detailed results and derivations are available in

à Granelli & Veraart (2017), “A central limit theorem for the realised covariation
of a bivariate Brownian semistationary process”, eprint arXiv:1707.08507

à Granelli & Veraart (2017), “A weak law of large numbers for estimating the
correlation in bivariate Brownian semistationary processes”, eprint
arXiv:1707.08505

ä Outlook: Asymptotic theory for general multivariate BSS processes;
feasible inference; relative co-volatility; realised betas etc. [Ongoing work
with Riccardo Passeggeri (Imperial College London)].
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