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Motivation: Ambit stochastics

» Name for the theory and applications of ambit fields and ambit processes
>» Probabilistic framework for spatio-temporal modelling

» Introduced by O. E. Barndorff-Nielsen and J. Schmiegel in the context of
modelling turbulence in physics.

» In this talk, we focus on the null-spatial case of an ambit field:
A Brownian semistationary process.
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The Brownian semistationary (BSS) process

» The BSS process in its most basic form can be written as:

-t
Yt: / g(th)O'SdWS,

for a deterministic kernel function g, a stochastic volatility process ¢ and
a Brownian motion W.
> Areas of application:
w Turbulence (Barndorff-Nielsen & Schmiegel (2009)),
= (energy) finance (Barndorff-Nielsen, Benth, V. (2013)),
= (rough) volatility (Bennedsen, Lunde, Pakkanen (2017+)).
» Recent interest in inference on ¢ (and related quantities) in particular in
the case when Y is NOT a semimartingale.

» Related work: Power variation for Gaussian, BSS and LSS processes:
Barndorff-Nielsen, Corcuera, Podolskij, and Woerner (2009), Barndorff-Nielsen, Corcuera,
Podolskij (2011, 2013), Corcuera (2012), Corcuera, Hedevang, Pakkanen, and Podolskij
(2013), Basse-O’Connor, Heinrich and Podolskij (2017), Basse-O’Connor,Lachiéze-Rey and

Podolskij (2017), Basse-O’Connor and Podolskij (2017) etc.
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Aim of the project

> Consider a bivariate semimartingale Y = (Y, Y(2))T sampled at high
frequency with increments given by A7YU) = Y( >n — Y((,) 110, fOT
j€{1,2} andfor A, = n~" with n € N.

» Fort >0, wecall

Lt
Y ATYMANY @)
i=1

the realised covariation.

> It is well-known that the quadratic covariation denoted by [Y(1), Y(2)]
exists and that

Y APYAPy(@) P28 1y() y@)], asn — co.

» Aim: Derive the asymptotic properties of (the possibly scaled) realised
covariation for a bivariate BSS process Y outside the semimartingale

ework.
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General remarks

» Focus on the non-semimartingale case throughout the study.

» Aims: Derive both a weak law of large numbers and a central limit
theorem for (scaled) realised covariation.

» Method of proofs:

= Focus on the bivariate Gaussian core first, i.e. a bivariate Brownian
semistationary process without stochastic volatility.

= Derive all results in the absence of stochastic volatility.

= Extend all results to the general case with stochastic volatility using
Bernstein’s blocking technique, where the volatility is “frozen” on a coarser
time grid.

= The weak law of large numbers can be proven using classical techniques for
convergence of measures.

w For the central limit theorem we invoke the powerful fourth moment theorem
by Nualart and Peccati (2005).
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The setting

» Consider filtered, complete probability space (Q2, F, F;, IP) and a finite
time horizon [0, T| for some T > 0.

» Suppose that (Q), F, F;,IP) supports two independent F;-Brownian
measures W) W) on R.

Definition 1 (Brownian measure)

An Fi-adapted Brownian measure W: Q) x B(R) — R is a Gaussian
stochastic measure such that, if A € B(IR) with E[(W(A))?] < oo, then
W(A) ~ N(0O, Leb(A)), where Leb is the Lebesgue measure. Moreover, if
A C [t, +0), then W(A) is independent of F;.
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The Gaussian core

Definition 2 (The Gaussian core)

Consider two Brownian measures W(") and W(2) adapted to F; with
thdet(z) = pdt, for p € [—1, 1]. Further take two nonnegative
deterministic functions g''), g® < L2((0, o)) which are continuous on
R\ {0}. Define, for j € {1,2},

; t , .
GY := ng(f>(t—s) awl).

Then the vector process (G¢)i~o = (Gp), G§2>),T>O is called the (bivariate)
Gaussian core. B
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The bivariate Brownian semistationary process

Definition 3 (The bivariate Brownian semistationary process)

Consider two Brownian measures W(") and W(2) adapted to F; with
thdet(Z) = pdt, for p € [—1,1]. Further take two nonnegative
deterministic functions g("), g(2) € [2((0, o)) which are continuous on
R\ {0}. Let further ¢(1), o(2) be cadlag , F;-adapted stochastic processes
and assume that for j € {1,2}, and forall t € [0, T|:

[t g2(t— s)c{? ds < co. Define, for j € {1,2},

; t . . ’
Vi [ g0(t-s)ed awd.

Then the vector process (Y;)i~0 = (Y,m, Yt(2>)tT>0 is called a bivariate
Brownian semistationary process. -
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Technical assumptions

Assumption 1

Forj e {1,2}, we assume that g/): R — R+ are nonnegative functions and
co_ntinuous, except possibly at x = 0. Also, gl )( x) =0 forx < 0 and
g¥) € [2((0,40)). We further ask that g!/) be differentiable everywhere with

. 2
derivative (g(”)/ € L2((bY), c0)) for some bY) > 0 and ((g( ))’)
non-increasing in [bY), co).

» Set b =max{b") b2},

N\ /
> ltis important to note that we are not assuming that <g(/)) € L2((0,))
in order to exclude the semlmartlngale case. In particular, we must have
that, for all ¢ > 0, sup,c (g ) (gm) (x) = 0.
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Technical assumptions cont'd

For i j e {1,2}, we write p;; = pfor i # jand p;; = 1 for i = j. Also, for
_ ; A
ije{1,2} set: RU(t) .= E {(Gﬁ” - Gé”) }

Assumption 2

Forallt € (0, T), there exist slowly varying functions Lé’ ) (t) and Lg’j ) (1)
which are continuous on (0, o) such that

ROD(1) = Cjj+pi 2" IV (1),  forije 1,2}, (1)

and
1

2
where 5(1) 52 ¢ (—% %) \ {0}.

(RODY'(8) = py ;0L (1), forije (1,2},
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Technical assumptions cont'd

Assumption 3 (Assumption 2 cont'd)

Also, if we denote léi’j ) (t) := Léi’i) (1) L(()j 4) (t), we ask that the functions

LU0 () and LY (1) are such that, for all A > 0, there exists a H'/) € R such
that:

LG (o B
lim f’..( D _ i < o0, 2)
t—0+ L(()I'/)(t)
and that there exists b € (0, 1), such that:
1 Gid)
limsup sup ~2i.(y) (3)
x—=0t  ye(x,xP) L(() ’j)(X)

In this situation, the restriction 6U) € (—1,0) U (0, }) ensures that the process
leaves the semimartingale class.
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Example of a relevant kernel function

Example 4

The Gamma kernel satisfies all our assumptions:
g(j) (X) _ X(su’) e,/\(DX’

for x > 0,AU) > 0and s¥) € (—0.5,0.5)\ {0} andj € {1,2}.
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The scaling factor

» Forj e {1,2}, set

(f) [(AHG()> }

¢/ )(s+ An) — gi(s))? ds+/fﬂ (g (s))? ds.

» The scaled realised covariation of the Gaussian core is given by

[ nt] A,f’G“) AIUG(Z)

i=1 Tr(,1 ) Tr()2)

» Let us now derive the central limit theorem!
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Weak Convergence of the Gaussian Core

Theorem 5 (Weak Convergence of the Gaussian Core)

Assume that Assumptions 1 and 2 hold with
6() e (=%, 1)\ {0},6® e (=%, 1)\ {0}. Then we obtain:

e e e I v e
vn 5 1) (2) T,(71) T,(72) €0.7] te[0,T]
(4)

T,(, T
where B; is a Brownian motion independent of the processes G''), G2, B is
a known constant and the convergence is in the Skorokhod space D|0, T]
equipped with the Skorokhod topology.
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Even more technical assumptions...

Assumption 4

We require that, for k € {1,2}, the quantity:

. 2
\/]E [(f_(’wm" ag®el dwi) }

Tn
) 2 k 2
\/fo (g (s+4n) — g®(s))"E [(‘7((/)1)Ans) } ds
= T,gk)
is uniformly bounded inn € N andi € {1,..., n}
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Technical assumptions cont'd

Assumption 5

The stochastic volatility process o) (resp. ¢'?)) has «\1)-Hélder (resp. «?))
continuous sample paths, for () € (% 1). Furthermore, both the kernel

functions g\') and g'?) satisfy the following property: Forj € {1,2}, write:

Ja (g(” X+ Ap) — gV (X))2 ds

7 (A) =
Jo7 (g (x+ An) — g (x))* ds

and note that n,g) are probability measures. We ask that there exists a
constant A < —1 such that for any ¢, = O(n~"), it holds that:

79 ((en,0)) = O (nMH)) .
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Central limit theorem

Theorem 6 (Central limit theorem)

Let G be the sigma algebra generated by the Gaussian core G, and let ¢!
and o?) be G—measurable. For the bivariate BSS process, provided that
Assumptions 1-4 are satisfied with 61, 5) (1, 1)\ {0}, the following
G-stable convergence holds:

< 1 Lnt] A,f’Y(”A,f’Y(Z)
VnE T @

MG AGE |t ) )
| fy oo o or

Tn Tn
2) )
1o aB , (B
n—o0 <\/7/ s s fE[O,T] ( )

in the Skorokhod space D|0, T|, where B is a known constant. Also, B is
Brownian motion, independent of 7 and defined on an extension of the
filtered probability space (Q), F, F;, P).
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A weak law of large numbers

» We set

= /Xg<1) S g(2) S ds

+/ )(s+x) g“)(s)) (g(z)(s+x) —g(z)(s)> ds.

Proposition 1

Assume that the conditions of the previous theorem hold. Then

Lnt] t
C(AA") Y. A7Yary@ B p [0V ds,  asn— oo
n 0

i=1
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Summary and outlook

» We derived a central limit theorem for the scaled realised covariation of a
bivariate Brownian semistationary process.

>» A weak law of large numbers is implied under the same assumptions.

» We have also extended the derivations of the weak law of large numbers
to another non-semimartingale scenario within the BSS class.
» Detailed results and derivations are available in
w Granelli & Veraart (2017), “A central limit theorem for the realised covariation
of a bivariate Brownian semistationary process”, eprint arXiv:1707.08507
w Granelli & Veraart (2017), “A weak law of large numbers for estimating the
correlation in bivariate Brownian semistationary processes”, eprint
arXiv:1707.08505

» Outlook: Asymptotic theory for general multivariate BSS processes;
feasible inference; relative co-volatility; realised betas etc. [Ongoing work
with Riccardo Passeggeri (Imperial College London)].
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