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In Principal Component Analysis one studies the sample covariance or sample
correlation matrix, both of which often lead to the same result. In this talk,
we first analyze the joint distributional convergence of the largest eigenvalues of
the sample covariance matrix of a p-dimensional heavy-tailed time series when
p converges to infinity together with the sample size n. Assuming a regular
variation condition with tail index α < 4, we employ a large deviations approach
to show that the extreme eigenvalues are essentially determined by the extreme
order statistics from an array of iid random variables. The asymptotic behavior
of the extreme eigenvalues is then derived routinely from classical extreme value
theory. The resulting approximations are strikingly simple considering the high
dimension of the problem at hand.

Then we compare the behavior of the eigenvalues of the sample covariance
and sample correlation matrices and argue that the latter seems more robust,
in particular in the case of infinite fourth moment.

We show that the largest and smallest eigenvalues of a sample correlation
matrix stemming from n independent observations of a p-dimensional time se-
ries with iid components converge almost surely to (1 +

√
γ)2 and (1 − √γ)2,

respectively, as n→∞, if p/n→ γ ∈ (0, 1] and the truncated variance of the en-
try distribution is “almost slowly varying”, a condition we describe via moment
properties of self-normalized sums. Moreover, the empirical spectral distribu-
tions of these sample correlation matrices converge weakly, with probability 1,
to the Marčenko–Pastur law.
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