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Abstract

A concept of Volatility Modulated Volterra Processes is introduced. Apart from some
brief discussion of generalities, the paper focusses on the special case of backward moving
average processes driven by Brownian motion. In this framework, a review is given of
some recent modelling of turbulent velocities and associated questions of time change and
universality. A discussion of similarities and differences to the dynamics of financial price
processes is included.
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1 Introduction

Change of time is an important concept in stochastic analysis and some of its applications,
especially in mathematical finance and financial econometrics, with quadratic variation and
its interpretation as integrated squared volatility playing a key role. (A rather comprehensive
treatment of this will be available in [BNShi08].) On the other hand there are well known
similarities, as well as important differences, between the dynamics of financial markets and
of turbulence. From these prospects, the present paper discusses some recent modelling in
turbulence and associated questions of time change.

To set the discussion in perspective, a general concept of Volatility Modulated Volterra
Processses is introduced. This would seem to be of some rather wide interest in mathematical
modelling. Here we focus on its relevance for stochastic modelling of turbulence. For a
masterly overview of the main approaches to modelling of turbulence see [Shi07], cf. also
[Shi06].

A summary comparison of main stylised features in finance and turbulence is given in the
next Section. Of central importance is the fact that volatility is a key concept in turbulence
as well as in finance, though in turbulence the phenomenon is referred to as intermittency.

The notion of change of time in mathematical finance and financial econometrics refers
to an increasing stochastic process as the time change while in turbulence we have in mind
a deterministic time change. We provide empirical and theoretical evidence for the existence
of an affine deterministic time change in turbulence in terms of which the main component
of the velocity vector in a turbulent flow behaves in a universal way over a wide range of
scales. We also discuss the limitations of this type of universality and briefly outline the
extension to a non-affine deterministic change of time and its relevance for universality of
velocity increments.

Section 2 provides some background on turbulence and the similarities and differences
between turbulence and finance, and recalls some features of the Normal inverse Gaussian
distribution. Section 3 discusses volatility modulated Volterra processes and their behaviour
under change of time. A more general discussion of change of time for stationary processes is
presented in Section 4. Section 5 provides empirical and theoretical evidence for the relevance
of change of time in turbulence. The potential of Volterra processes for modelling velocity
fields in turbulence is outlined in Sections 6 and 7. Section 8 relates the concept of change of
time to the particular setting of the proposed modelling frameworks in finance and turbulence.
This leads to a primitive and a refined universality statement for turbulence in Section 9.
Section 10 concludes.

2 Background

The statistics of turbulent flows and financial markets share a number of stylized features
([Gha96], [Pei04], [BNShi08] and [BN98a]). The counterpart of the velocity in turbulence is
the log price in finance, and velocity increments correspond to log returns. The equivalent
of the intermittency of the energy dissipation in turbulence is the strong variability of the
volatility in financial markets. Subsection 2.1 briefly summarizes some basic information on
turbulence, and subsection 2.2 lists the most important similarities and differences between
turbulence and finance. The normal inverse Gaussian laws constitute a useful tool in both
fields and some of the properties of these laws are recalled in the Appendix.
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2.1 Turbulence

There is no generally accepted definition of what should be called a turbulent flow. Turbulent
flows are characterized by low momentum diffusion, high momentum convection, and rapid
variation of pressure and velocity in space and time. Flow that is not turbulent is called
laminar flow. The non-dimensional Reynolds number R characterizes whether flow conditions
lead to laminar or turbulent flow. Increasing the Reynolds number increases the turbulent
character and the limit of infinite Reynolds number is called the fully developed turbulent
state.

The most prominent observable in a turbulent flow is the main component of the velocity
field Vt as a function of time t and at a fixed position in space. A derived quantity is the
temporal surrogate energy dissipation process describing the loss of kinetic energy due to
friction forces characterized by the viscosity ν

εt ≡
15ν

V
2

(

dVt
dt

)2

, (1)

where V denotes the mean velocity.
The temporal surrogate energy dissipation process takes into account the experimental

condition where only a time series of the main component of the velocity vector is accessi-
ble. The temporal surrogate energy dissipation is a substitute for the true energy dissipation
process (involving the spatial derivatives of all velocity components) for flows which are sta-
tionary, homogeneous and isotropic [Els96]. In the sequel we call such flows free turbulent
flows. We refer to the temporal surrogate energy dissipation as the energy dissipation unless
otherwise stated.

Since the pioneering work of Kolmogorov [Kol62] and Obukhov [Obu62], intermittency of
the turbulent velocity field is of major interest in turbulence research. From a probabilistic
point of view, intermittency refers, in particular, to the increase in the non-Gaussian behaviour
of the probability density function (pdf) of velocity increments

∆us = Vt+s − Vt
with decreasing time scale s. Here we adopt the notation ∆u for velocity increments which is
traditional in the turbulence literature. A typical scenario is characterized by an approximate
Gaussian shape for the large scales, turning to exponential tails for the intermediate scales
and stretched exponential tails for dissipation scales ([Cas90] and [Vin91], see also Figure 1).

2.2 Stylised features of finance and turbulence

The most important similarities between financial markets and turbulent flows are semiheavy
tails for the distributions of log returns/velocity increments, the evolution of the densities of
log returns/velocity increments across time scales with the heaviness of the tails decreasing
as the time lag increases, and long range dependence of log returns/velocity increments. It
is important to note that in spite of the long range dependence the autocorrelation of the
log price process is essentially zero whereas the velocity field shows algebraic decay of the
autocorrelation function. Other important differences are the skewness of the densities of
velocity increments in contrast to the symmetry of the distribution of log returns in FX
markets1 and the different behaviour of bipower variation [BNS04; BNSchS07]. Table 1 gives

1For stocks, skewness of the distribution of log returns is observed. There, leverage is believed to be a key

mechanism.

4



an overview of the differences and similarities between turbulence and finance.

2.3 Normal inverse Gaussian distributions

Intermittency/volatility is related to the heaviness of the tails and the non-Gaussianity of the
distribution of velocity increments and log returns. In this respect, Normal inverse Gaussian
(NIG) distributions are a suitable class of probability distributions which fit the empirical
densities in both systems to high accuracy ([BN95; BN97], [RYD97], [FOR02], [BNBSch04],
[BNSch06b]).

Figure 1 shows, as an example, the log densities of velocity increments ∆us measured
in the atmospheric boundary layer for various time scales s. The solid lines denote the
approximation of these densities within the class of NIG distributions. NIG distributions fit
the empirical densities equally well for all time scales s.

A subsequent analysis of the observed parameters of the NIG distributions from many,
widely different data sets with Reynolds numbers ranging from Rλ = 80 up to Rλ = 17000
(where Rλ is the Taylor based Reynolds number) led to the formulation of a key universal-
ity law ([BNBSch04] and [BNSch07b]): The temporal development of a turbulent velocity
field has an intrinsic clock which depends on the experimental conditions but in terms of
which the one-dimensional marginal distributions of the normalized velocity differences be-
come independent of the experimental conditions. Figure 2 provides an empirical validation
of this.

3 Volatility modulated Volterra processes

This Section is divided into three subsections. The first briefly discusses Volterra type pro-
cesses, the second introduces the concept of volatility modulated Volterra processes, and the
third considers the behaviour of such processes under a change of time.

3.1 Volterra type processes

In this paper we shall be referring to processes of the form

Yt =

∫ ∞

−∞
K (t, s) dBs + χ

∫ ∞

−∞
Q (t, s) ds, (2)

as Browninan Volterra processes (BVP). HereK andQ are deterministic functions, sufficiently
regular to give suitable meaning to the integrals; Furthermore, χ is a constant and B denotes
standard Brownian motion.

Example 1 Fractional Brownian motion As is well known (cf, for instance [SaTa94]) frac-
tional Brownian motion can be written as

BH
t =

∫ ∞

−∞

[

(t− s)H−1/2
+ − (−s)H−1/2

+

]

dBs.

Of particular interest are the backward Volterra processes, i.e. where K(t, s) and Q(t, s) are
0 for s > t. In this case formula (2) takes the form

Yt =

∫ t

−∞
K (t, s) dBs + χ

∫ t

−∞
Q (t, s) ds. (3)
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Example 2 Fractional Brownian motion For B a Brownian motion, the fractional Brown-
ian motion with index H ∈ (0, 1) may alternatively, see [NoVaVir99], be represented as

BH
t =

∫ t

0
K (t, s) dBs (4)

where

K (t, s) = cH

{(

t

s

)

(t− s)H−1/2 −
(

H − 1

2

)

s1/2−H
∫ t

s
uH−3/2 (u− s)H−1/2 du

}

and

cH =

(

2Γ
(

3
2 −H

)

Γ
(

H + 1
2

)

Γ (2− 2H)

)1/2

.

A more general type of Volterra processes are the Lévy Volterra processes (LVP), which are
of the form

Yt =

∫ ∞

−∞
K (t, s) dLs + χ

∫ ∞

−∞
Q (t, s) ds

where L denotes a Lévy process on R and K and Q are deterministic kernels, satisfying certain
regularity conditions.

Example 3 Fractional Lévy motion [Mar06] introduces Fractional Lévy motion LH for
H ∈

(

1
2 , 1
)

by the formula

LHt =

∫ ∞

−∞

[

(t− s)H−1/2
+ − (−s)H−1/2

+

]

dLs

where L is a Lévy process.

Stochastic integration in these general settings is discussed for BVP in [Hu03], [Dec05],
[DecSa06], cf. also [NoVaVir99], and for LVP in [BeMar07].

For Brownian Volterra processes we shall refer to the following three conditions: For all
s, t ∈ R

C1

K (t, ·) ∈ L2(R) and Q (t, ·) ∈ L2(R)

C2

K (s, s) = K0 > 0 and K (t, s) = 0 for s > t

Q (s, s) = Q0 > 0 and Q (t, s) = 0 for s > t

C3 K and Q are differentiable with respect to their first arguments and, denoting the
derivatives by K̇ and Q̇, we have

K̇ (t, ·) ∈ L2(R) and Q̇ (t, ·) ∈ L2(R).
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Under these conditions the covariance function of (3) exists and is, for s ≤ t, given by

R (s, t) = Cov{Ys, Yt} =

∫ s

−∞
K (t, u)K (s, u) du

and the autocorrelation function may be written as

r (s, t) =

∫ s

−∞
K̄ (t, u) K̄ (s, u) du

where
K̄ (t, u) = K (t, u) / ‖K (t, ·)‖

and ‖‖ denotes the L2 norm.

3.2 Volatility modulated Volterra processes

For modelling purposes it is of interest to consider Volatility modulated Volterra processes
(VMVP) which we define (backward case) by

Yt =

∫ t

−∞
K (t, s)σsdBs + χ

∫ t

−∞
Q (t, s)σ2

sds (5)

where σ > 0 is a stationary cadlag process on R, embodying the volatility/intermittency.
On the further assumptions that the deterministic kernels K and Q satisfy conditions

C1-C3, we have that Y is a semimartingale, satisfying the stochastic differential equation

dYt = K0σtdBt + χQ0σ
2
t dt+

∫ t

−∞
K̇ (t, s) σsdBs + χ

∫ t

−∞
Q̇ (t, s)σ2

sds.

The quadratic variation of Y is then, for t ≥ 0,

[Y ]t = K2
0τt (6)

where

τt =

∫ t

0
σ2
sds (7)

is the integrated squared volatility process. For t < 0 we define [Y ]t and τt by the same
formulae (6) and (7). Then [Y ] is a continuous increasing stochastic process with [Y ]0 = 0.

Finally, we introduce the inverse process θ of τ by

θt = inf {s : τs ≥ t} . (8)

3.3 Time change and VMVP

We say that a process T on R is a time change provided T is increasing with T0 = 0. The
time changes on R we shall be considering are in fact continuous and strictly increasing, with
T → ±∞ as t→ ±∞. (This is the case in particular for the processes τ and θ defined above.)

For T a time change process on R and given a Volterra kernel K we define a new Volterra
kernel K ◦ T by

K ◦ T (t, s) = K (Tt, Ts) . (9)
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Taking T = θ as given by (8) we may now rewrite Y of ( 5) as

Yt =

∫ t

−∞
K (t, s) dBτs + χ

∫ t

−∞
Q (t, s) dτs

=

∫ τt

−∞
K (t, θu) dBu + χ

∫ τt

−∞
Q (t, θu) du

implying

Yθt
=

∫ t

−∞
K ◦ θ (t, s) dBs + χ

∫ t

−∞
Q ◦ θ (t, s) ds. (10)

In particular, if the volatility process σ is independent of B then, conditional on [Y ], Yθ is
a Volterra process with kernels (K ◦ θ,Q ◦ θ) and the same driving Brownian motion as the
VMVP Y .

Later in this paper we shall, in the context of turbulence, be concerned with affine time
changes.

Remark 4 Affine time change Suppose Tt = ct + c0 for some c > 0 and a constant c0.
Applying this to (5) gives

Yct+c0 =

∫ ct+c0

−∞
K (ct+ c0, s)σsdBs + χ

∫ ct+c0

−∞
Q (ct+ c0, s) σ

2
sds

=

∫ t

−∞
K (ct+ c0, cu+ c0) σcu+c0dBcu+c0 + cχ

∫ t

−∞
Q (ct+ c0, cu+ c0) σ

2
cu+c0du

i.e.

Yct+c0 =

∫ t

−∞
Kc,c0 (t, s) σcs+c0dB̃s + χ

∫ t

−∞
Qc,c0 (t, s)σ2

cs+c0ds (11)

with Kc,c0 (t, s) =
√
cK (ct+ c0, cs + c0), Qc,c0 (t, s) = cQ (ct+ c0, cs + c0) and where B̃s =

c−1/2Bcs is a Brownian motion. Thus the transformed process follows again a VMVP but
now with volatility process σc·+c0 (and kernels Kc,c0 and Qc,c0).

4 Time change in stationary processes

Let Y and Y ∗ be stationary stochastic processes on R and let X and X∗ be the corresponding
increment processes given by Xt = Yt−Y0 and X∗t = Y ∗t − Y ∗0 . The present Section discusses
distributional relations between X and X∗ under various assumptions. Note first, however,
that only affine time changes preserve stationarity in a stationary process.

Assuming Var{Yt} = Var{Y ∗t } = ω2, say, and denoting the autocorrelation functions of
Y and Y ∗ respectively by r and r∗ we have

Var{Xt} = 2ω2r̄ (t) and Var{X∗t } = 2ω2r̄∗ (t) (12)

where r̄ (t) = 1− r (t) and r̄∗ (t) = 1− r∗ (t).
Let ψ(t) be a a time change, and suppose that

Xt
law
= X∗ψ(t) for every t ∈ R. (13)

As discussed in Section 2.3 this type of behaviour has been found in free turbulence.
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Assumption (13) and the relation (12) imply

r (t) = r∗ (ψ (t)) ,

and provided both r and r∗ are strictly decreasing and continuous functions we have that the
time change ψ is expressible as

ψ (t) = ρ∗ (r (t)) , (14)

ρ∗ denoting the inverse function of r∗

In case the statistical analysis of observations from X and X∗ has shown good agreement
with the Ansatz (13), it is then natural to ask whether (13) is simply a reflection of the more
sweeping Ansatz

X·
law
= X∗ψ(·), (15)

saying that X and X∗ are equal in law as processes and not just pointwise as in (13). This
Ansatz implies, in particular, that ψ must be affine since, as mentioned earlier, only affine
time changes preserve stationarity.

In fact, the weaker assumption of second order agreement of X and X∗ already implies
that ψ is affine, as we show now.

Suppose that for all 0 ≤ s ≤ t

E
{

X∗2ψ(t)

}

= E
{

X2
t

}

(16)

E
{

X∗ψ(s)X
∗
ψ(t)

}

= E {XsXt} . (17)

(Note that since we have assumed that Y and Y ∗ are stationary, necessarily E {Xt} = 0 =

E
{

X∗ψ(t)

}

.) We will then have

E

{

(

X∗ψ(t) −X∗ψ(s)

)2
}

= E
{

(Xt −Xs)
2
}

.

Further, by (12), on the one hand

E

{

(

X∗ψ(t) −X∗ψ(s)

)2
}

= E

{

(

Y ∗ψ(t) − Y ∗ψ(s)

)2
}

= 2ω2r̄∗ (ψ (t)− ψ (s))

while on the other

E
{

(Xt −Xs)
2
}

= E
{

(Yt − Ys)2
}

= 2ω2r̄ (t− s) .

This implies
r̄∗ (ψ (t)− ψ (s)) = r̄ (t− s)

or, equivalently, by (14),
ψ (t)− ψ (s) = ψ (t− s)

which can only hold for ψ affine,
ψ (t) = ct+ c0

for some c > 0 and a constant c0.

9



5 Universality in Turbulence

In this Section we discuss the empirical support for the existence of affine, intrinsic (one
for each experiment), time changes such that for a wide range of time scales the densities
of turbulent velocity increments obtained from different experiments collapse. This leads to
the formulation of a primitive universality model for turbulence (see subection 9.1). At very
small or very large time scales, deviations from affinity are observed. This then leads to the
formulation of a refined universality model (see subsection 9.2). The dynamical aspects of
this refined universality model are briefly discussed in the concluding Section 10.

In comparing the equivalence under time change to existing theory of turbulence and to
empirical evidence it is illuminating to relate the discussion to the well established fact (cf.
Section 2.3) that in free turbulence the distributions of velocity differences over fixed time
spans are closely describable by the NIG law.

5.1 Empirics

The statistical analysis of a large number of different turbulent data sets revealed the existence
of a type of universality which states that the densities of velocity increments are well described
within the class of NIG distributions and, moreover, the densities of the increments of the
normalized velocity field obtained from different experiments collapse as long as the intrinsic
time scales are measured in terms of the scale parameter of the approximate NIG distributions.
Here, the velocity field is normalized by its standard deviation. We denote the normalized
velocity component by Ṽ = V/

√

Var(V ). Then we have the empirical result, denoting the
corresponding velocity increments by ∆ũ,

∆ũt
law
= ∆ũ∗ψ(t)

where
ψ(t) =

←
δ
∗

(δ(t))

and where δ(t) and δ∗(t) are the scale parameters of the approximate NIG distributions of
∆ũt and ∆ũ∗t , respectively. Here ∆ũt refers to the velocity increments for a given turbulent
experiment and the superscript ∗ refers to a different independent turbulent experiment,
different in Reynolds number and/or experimental set-up. The superscript ← denotes the
inverse function.

Figure 3 shows the estimated time change ψ for a number of independent turbulent ex-
periments. For a wide range of time lags, ψ is essentially affine in a first approximation. The
degree of non-affinity increases with increasing difference of the Reynolds numbers.

Remark 5 The collapse of the densities of velocity increments implies that the variances
Var{∆ũt} and Var{∆ũ∗t } at the corresponding time scales are the same. Denoting the vari-
ances by c2(t) = Var{∆ũt} and c∗2(t) = Var{∆ũ∗t }, the time change ψ can, alternatively be
expressed as (c.f. (14))

ψ(t) =
←
c
∗

2 (c2(t)).

Remark 6 It is important to note that the quality of the collapse of the densities of velocity
increments does not depend on the degree of non-affinity of the time change ψ. Velocity
increments of widely different experiments collapse for all amplitudes at time lags at which
they have the same variance [BNSch06b; BNSchS06].
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5.2 Theoretical considerations

The empirically observed approximate affinity of the time change ψ for a range of intermediate
time scales can be motivated theoretically for turbulent experiments where a clear Kolmogorov
scaling is observed. Such a Kolmogorov scaling is expected for large Reynolds numbers and for
a certain range of scales, called the inertial range [KOL41]. In the limit of very large Reynolds
numbers, the variance of velocity increments is expected to show a scaling behaviour of the
form

c2(t) = at2/3 (18)

where a is a flow dependent constant and the time scale t is within the inertial range. (In
practice, one defines the inertial range as the range of time scales for which (18) holds.) For
such flows the expected time change is affine (within the inertial range).

For small and moderate Reynolds numbers, the inertial range is absent or very small.
For instance, the examples shown in Figure 3 do not show a clear Kolmogorov scaling for an
extended range of time scales. However, the empirically estimated time change appears to
be affine for a wide range of time scales. This gives the possibility to define a non-scaling
counterpart of Kolmogorov scaling and an associated generalized inertial range where the
variances are universal in the sense that

ψ(t) =
←
c
∗

2 (c2(t)) = ct+ ψ0,

where ψ0 is a constant. A particular example are variances of the form

c2(t) = a (t+ t0)
2/3 ,

where t0 is a constant. In view of Kolmogorov scaling, we then expect t0 → 0 as the Reynolds
number gets very large.

6 Modelling frameworks in finance and turbulence

Volatility modulated Volterra processes of the form (5) have found applications in finance
as well as for the modelling of the turbulent velocity field. In the turbulence context, these
processes capture the main idea of the Reynolds decomposition of the velocity field into a
slowly varying component (the second term in Equation (5)) and a rapidly varying component
(the first term in Equation (5)) [BNSch06a; BNSch07a].

In the following subsections, we discuss the application of volatility modulated Volterra
processes in finance and turbulence with emphasis on the empirical findings concerning time
change and universality.

6.1 Finance

The basic framework for stochastic volatility modelling in finance is that of Brownian semi-
martingales

Yt =

∫ t

0
σsdBs +

∫ t

0
asds (19)

where σ and a are caglad processes and B is Brownian motion, with σ expressing the volatil-
ity. In general, Y , σ, B and a will be multidimensional but in the present paper we shall
only consider one-dimensional processes. Importantly, whatever the process a, the quadratic
variation of Y satisfies [Y ] = τ with τ given by (7).
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6.2 Turbulence

Whereas Brownian semimartingales are ’cumulative’ in nature, for free turbulence it is phys-
ically natural to model timewise velocity dynamics by stationary processes. In analogy to
(19), the following framework for the latter type of dynamics has recently ([BNSch06a]) been
proposed.

At time t and at a fixed position in the turbulent field, the velocity of the main component
of the velocity vector (i.e. the component in the mean wind direction) is specified as Vt = µ+Yt
with

Yt =

∫ t

−∞
g(t− s)σsdBs + χ

∫ t

−∞
q(t− s)σ2

sds. (20)

Here B and σ are as above, µ and χ are constants and g and q are nonnegative real functions
on (0,∞) satisfying g (0+) > 0, q (0+) > 0,

||g||2 =

∫ ∞

0
g2 (t) dt = 1

and
∫ ∞

0
q (t) dt = 1.

Furthermore, g and q are assumed to be sufficiently regular to make the integrals in (20)
exist, and we require that the derivative ġ of g is square integrable.

Under these conditions, the stationary process Y is a semimartingale and we have

[Y ] = g2 (0+) τ

where τ is given by (7).

Remark 7 Ambit processes The model type (20) is a one-dimensional limit of a spatio-
temporal modelling framework introduced under the name of Ambit processes in [BNSch07a].
In that more general context, the role of the Brownian motion is taken over by a Gaussian
white noise field (or Brownian sheet) and the volatility is expressed as a random field, which
may, for instance, be generated from a Lévy basis as in [BNSch04]. The paper [BNSch07a]
gives a first discussion of the theoretical properties of such processes and describes some
applications to turbulence and cancer growth.

7 Increment processes

Both type of processes (19) and (20) have stationary increments. In the latter case, letting
Xt = Yt − Y0 we have

Xt =

∫ t

−∞

{

g (t− s)− 1(−∞,0) (s) g (−s)
}

σsdBs

+ χ

∫ t

−∞

{

q (t− s)− 1(−∞,0) (s) q (−s)
}

σ2
sds (21)

which we also write, on VMVP form, as

Xt =

∫ t

−∞
j (t, s)σsdBs + χ

∫ t

−∞
k (t, s)σ2

sds (22)
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where
j (t, s) = g (t− s)− 1(−∞,0) (s) g (−s)
k (t, s) = q (t− s)− 1(−∞,0) (s) q (−s) .

Suppose now that B and σ are independent. Clearly, X|σ is then a Gaussian process with

E {Xt|σ} = χ

∫ t

−∞
k (t, s)σ2

sds

Var{Xt|σ} =

∫ t

−∞
j2 (t, s)σ2

sds

and, for 0 ≤ s ≤ t,
Cov{XsXt|σ} =

∫ s

−∞
j (s, u) j (t, u)σ2

udu.

We proceed to discuss the conditional law of X given σ and its limit behaviour for t→ 0 and
t→∞.

Considering first the conditional mean we note that

∫ t

−∞
k (t, s)σ2

sds =

∫ t

0
q (t− s)σ2

sds+

∫ 0

−∞
{q (t− s)− q (−s)}σ2

sds

=

∫ t

0
q (s) σ2

t−sds+

∫ 0

−∞
{q (t− s)− q (−s)}σ2

sds.

From this we find that

∫ t

−∞
k (t, s) σ2

sds ∼ q (0+) σ2
0t+ t

∫ ∞

0
q′(s)σ2

−sds as t ↓ 0

and, under a mild mixing condition on σ, that

∫ t

−∞
k (t, s)σ2

sds ∼ K −K ′ as t→∞

where K and K ′ are independent and identically distributed with

K ′ =

∫ ∞

0
q (s)σ2

−sds.

Similarly, for the conditional variance we have

∫ t

−∞
j2 (t, s) σ2

sds =

∫ t

0
g2 (t− s)σ2

sds+

∫ 0

−∞
{g (t− s)− g (−s)}2 σ2

sds

=

∫ t

0
g2 (s)σ2

t−sds+

∫ 0

−∞
{g (t− s)− g (−s)}2 σ2

sds.

Hence
∫ t

−∞
j2 (t, s)σ2

sds ∼ g2 (0+)σ2
0t as t ↓ 0
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while
∫ t

−∞
j2 (t, s)σ2

sds ∼ G+G′ as t→∞

with

G′ =

∫ ∞

0
g2 (s)σ2

sds

and G and G′ independent and identical in law.
All in all we therefore have, conditionally on the volatility process σ,

Xt

g (0+)
√
t
∼ N

(

0, σ2
0

)

as t ↓ 0

while
Xt ∼ N

(

χ
(

K −K ′
)

, G+G′
)

as t→∞.
In particular, the law of the increment process Xt will not be normal in the large time scale
limit unless the volatility σ is constant. In the case of σ2

t following an inverse Gaussian law we
get for the small time scale limit of Xt a Normal inverse Gaussian distribution. It has been
shown in [BNSch06a] that for an inverse Gaussian volatility process, the increment process
is well fitted by a Normal inverse Gaussian law for all time scales. Moreover, the resulting
increment process also reproduces the experimentally observed statistics of the Kolmogorov
variable [Kol62].

8 Time change in finance and turbulence

The specification, in Section 6, of the modelling frameworks in finance and turbulence as
specific types of VMVP now allows to discuss the idea of a time change in more detail.

8.1 Finance

Of particular interest are cases where the process a in (19) is of the form a = βσ2 for some
constant β, i.e.

Yt =

∫ t

0
σsdBs + βτt. (23)

For suitable choice of σ this type of process is generally capable of modelling the basic dy-
namics of stock prices and foreign exchange rates while, at the same time, being analytically
tractable. More specifically, this is the case when σ2 is of supOU type with σ2

t following the
inverse Gaussian law; see for instance [BNS01b], [BNS08].

Under the specification (23) Y may, by the Dambis-Dubins-Schwartz Theorem, be rewrit-
ten as

Yt = B′τt + χτt

where B′ is a Brownian motion, which is a functional of Y itself. Equivalently,

Yθt
= B′t + χt. (24)
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In the finance context, θt is thought of as ‘operational’ or ‘business’ time. This time is, in
principle, known from the quadratic variation process [Y ], and that in turn can be estimated
by the realised quadratic variation

[Yδ]t =

⌊t/δ⌋
∑

j=1

(

Yjδ − Y(j−1)δ

)2

which satisfies
[Yδ]

p→ [Y ]

for t → ∞. Equation (24) is interpreted as saying that under (23), log price returns are
Gaussian when recorded in operational time. At least as a first approximation this is close
to reality, see for instance [ABDE01]. Recent, more refined, empirical analysis takes the
possibilities of jumps and of microstructure noise, which are not covered by (23), into account;
see [ABFN06].

8.2 Turbulence

In this case, i.e. (20), formula (10) takes the form

Yθt
=

∫ t

−∞
g(θt − θs)dBs + χ

∫ t

−∞
q(θt − θs)ds.

Furthermore, (11) specialises to

Yct+c0 =

∫ t

−∞
gc (t− u)σcu+c0dB

′
u + χ

∫ t

−∞
qc (t− u)σ2

cu+c0du

where
gc (t) =

√
cg (ct) and qc (t) = cq (ct) .

9 Universality: Modelling

Let V = {Vt}t∈R
denote the time-wise behaviour of the mean component of the velocity

vector at a fixed position in an arbitrary free turbulent field and let U = {Ut}t∈R
denote the

time-wise behaviour of the increment process of V .

9.1 Primitive Universality Model

We propose to consider the following as a theoretical model for the empirically observed
approximate affinity of the intrinsic time change ψ that results in the collapse of the densities
of turbulent velocity increments.

Primitive Universality Model (PUM) Except for a change of location, scale
and affine time change Tt = ct + c0 (with c > 0 and c0 is a constant), V is
equivalent in law to a process Y of the form

Yt =

∫ t

−∞
g (t− s)σsdBs + χ

∫ t

−∞
q (t− s) σ2

sds

with g, q, σ and χ as specified in connection to formula (20) and with these four
quantities being universal, i.e. the same for all processes of the type V .
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Remark 8 In this framework, once (20) is specified, an arbitrary process V is characterised
by η = E {V0}, ω2 = Var{Y0} and the time change constants c and c0.

9.2 Refined Universality Model

The empirically observed deviations from affinity of the time change ψ at small and large
time lags are inconsistent with the stationarity of V in free turbulence. To account for this
non-affine behaviour, we propose a refined universality model.

Refined Universality Model (RUM) Except for a change of scale and deter-
ministic time change T , U is equivalent in law to a process X of the form

Xt =

∫ t

−∞
j (t, s)σsdBs + χ

∫ t

−∞
k (t, s)σ2

sds (25)

with j, k, σ and χ as specified in connection to formulae (20) and (22) and with
these four quantities being universal, i.e. the same for all increment processes U .

Remark 9 In this framework, once (25) is specified, an arbitrary increment process U is

characterised by ω2 =
1

2
lim
t→∞

Var{Yt} and the time change T .

Remark 10 The empirical findings reported here only concern the collapse of the marginal
distributions of velocity increments after applying a deterministic time change. The refined
universality model goes beyond this equivalence in distribution as it states an equivalence in
law of the processes.

10 Concluding remarks

In this paper, we presented a review of some recent modelling of turbulent velocities and
financial price processes and associated questions of time change. As a preliminary hypothesis,
we proposed the existence of an affine time change in terms of which the velocity process is
universal in law, except for change of location and scale.

The subsequent empirical findings about the non-affinity of the deterministic time change
at very small and very large time scales led to us to propose the existence of a refined univer-
sality model for turbulent velocity increments and related to that an intrinsic deterministic
time change, capturing the individual characteristics of each turbulent experiment. It is
important to note that the empirical verification of the collapse of the densities of the time
changed velocity increments is in fact independent of any model specification. Without model
specification, the refined universality model can be stated as the equivalence of the law of U ,
except for change of location and scale and the time change.

A natural extension of the empirical results reported here concerns the dynamical aspect
of the refined universality model, i.e. whether the empirically observed equivalence in one-
dimensional marginal distribution can indeed be extended to an equivalence of the processes.

A first empirical result to clarify this point shows that the conditional distributions p(∆ũt−
∆ũs|∆ũs) and p(∆ũ∗ψ(t) − ∆ũ∗ψ(s)|∆ũ∗ψ(s)) collapse after an appropriate change of scale, for

c2(∆ũs) = c2(∆ũ
∗
ψ(s)) and for a range of time lags at which the time change ψ is essentially

affine. For time lags at which the time change ψ is essentially non-affine, i.e. at very small
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and very large time scales, the conditional densities do not collapse; however, they are only
shifted by the conditional means E{∆ũt−∆ũs|∆ũs} and E{∆ũ∗ψ(t)−∆ũ∗ψ(s)|∆ũ∗ψ(s)}. A further
clarification of this point is outside the scope of the present paper, but will be discussed in
an upcoming publication.

The definition of volatility modulated Volterra processes as given by (5) is readily gener-
alised to the multivariate setting, with B being d-dimensional Brownian motion and σ being
a matrix process. It is further of interest to consider cases where processes expressing possible
jumps or noise in the dynamics are added.

A central issue in these settings is how to draw inference on the volatility process σ.
In cases where the processes are semimartingales, the theory of multipower variations (see
[BNGJPS07], [BNGJS06] and references given there) provides effective tools for this.

However, VMVP processes are generally not of semimartingale type and the question
of how to proceed then is largely unsolved and poses mathematically challenging problems.
Some of these problems are presently under study in joint work with José-Manuel Corcuera,
Mark Podolski and Neil Shephard.

A The Normal inverse Gaussian Law

The class of NIG distributions equals the family of possible distributions at time t = 1 of
the NIG Lévy process, which is defined as Brownian motion with drift subordinated by the
inverse Gaussian Lévy process, i.e. the Lévy process of first passage times to constant levels
of (another, independent) Brownian motion.

The normal inverse Gaussian law, with parameters α, β, µ and δ, is the distribution on
the real axis R having probability density function

p(x;α, β, µ, δ) = a(α, β, µ, δ)q

(

x− µ
δ

)−1

×K1

{

δαq

(

x− µ
δ

)}

eβx (26)

where q(x) =
√

1 + x2 and

a(α, β, µ, δ) = π−1α exp
{

δ
√

α2 − β2 − βµ
}

(27)

and where K1 is the modified Bessel function of the third kind and index 1. The domain of
variation of the parameters is given by µ ∈ R, δ ∈ R+, and 0 ≤ |β| < α. The distribution is
denoted by NIG(α, β, µ, δ).

If X is a random variable with distribution NIG(α, β, µ, δ) then the cumulant generating
function of X, i.e. K(θ;α, β, µ, δ) = log E{eθX}, has the form

K(θ;α, β, µ, δ) = δ{
√

α2 − β2 −
√

α2 − (β + θ)2}+ µθ. (28)

It follows immediately from this that if x1, ..., xm are independent normal inverse Gaussian
random variables with common parameters α and β but individual location-scale parameters
µi and δi (i = 1, ...,m) then x+ = x1 + ... + xm is again distributed according to a normal
inverse Gaussian law, with parameters (α, β, µ+, δ+).
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Furthermore, the first four cumulants of NIG(α, β, µ, δ), obtained by differentiation of
(28), are found to be

κ1 = µ+
δρ

√

1− ρ2
, κ2 =

δ

α(1− ρ2)3/2
(29)

and

κ3 =
3δρ

α2(1− ρ2)5/2
, κ4 =

3δ(1 + 4ρ2)

α3(1− ρ2)7/2
, (30)

where ρ = β/α. Hence, the standardised third and fourth cumulants are

κ̄3 =
κ3

κ
3/2
2

= 3
ρ

{δα(1 − ρ2)1/2}1/2

κ̄4 =
κ4

κ2
2

= 3
1 + 4ρ2

δα(1 − ρ2)1/2
. (31)

We note that the NIG distribution (26) has semiheavy tails; specifically,

p(x;α, β, µ, δ) ∼ const. |x|−3/2 exp (−α |x|+ βx) , x→ ±∞ (32)

as follows from the asymptotic relation

Kν(x) ∼
√

2/πx−1/2e−x as x→∞. (33)

It is often of interest to consider alternative parametrisations of the normal inverse Gaus-
sian laws. In particular, letting ᾱ = δα and β̄ = δβ, we have that ᾱ and β̄ are invariant under
location—scale changes. Note that ρ = β̄/ᾱ.

NIG shape triangle For some purposes it is useful, instead of the classical skewness and
kurtosis quantities (31), to work with the alternative asymmetry and steepness parameters χ
and ξ defined by

χ = ρξ (34)

and
ξ = (1 + γ̄)−1/2 (35)

where ρ = β/α = β̄/ᾱ and γ̄ = δγ = δ
√

α2 − β2. Like κ̄3 and κ̄4, these parameters are
invariant under location-scale changes and the domain of variation for (χ, ξ) is the normal
inverse Gaussian shape triangle

{(χ, ξ) : −1 < χ < 1, 0 < ξ < 1}.

The distributions with χ = 0 are symmetric, and the normal and Cauchy laws occur as
limiting cases for (χ, ξ) near to (0, 0) and (0, 1), respectively. Figure 4 gives an impression of
the shape of the NIG distributions for various values of (χ, ξ).

Note in this connection that κ̄3 and κ̄4 may be reexpressed as

κ̄3 = 3γ̄−1 ρ

{(1 + ρ2)(1− ρ2)1/2}1/2

and

κ̄4 = 3γ̄−1 1 + 4ρ2

(1− ρ4)1/2
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from which it follows that for small ρ we have approximately ξ
.
= (1+3/κ̄4)

−1/2 and κ̄3
.
= ρκ̄4

(compare to (34)); Thus the roles of χ and ξ are rather similar to those of the classical
quantities κ̄3 and κ̄4.

A systematic study of the class of normal inverse Gaussian distributions, and of associated
stochastic processes, was begun in [BN95; BN97; BN98a; BN98b; BN98c]. Further theoret-
ical developments and applications are discussed in [RYD97; RYD99; PR99; EB00; RAI00;
BNS01a; BNS01b; BNS02; BNP01; BNL01; ASR01; CONT04; FOR02; MC05]. As discussed
in the papers cited and in references given there, the class of NIG distributions and processes
have been found to provide accurate modelling of a great variety of empirical findings in the
physical sciences and in financial econometrics. (The wider class of generalised hyperbolic
distributions, introduced in [BN77], provides additional possibilities for realistic modelling of
dynamical processes, see references in the papers cited above.)
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Finance Turbulence

varying activity volatility intermittency

semiheavy tails + +

asymmetry + +

aggregational Gaussianity + +

0 autocorrelation + −
quasi long range dependence + +

scaling/selfsimilarity [+] [+]

leverage + −
operational time + +

trend cumulative stationary

jumps + −

Table 1: Stylised features of turbulence and finance.
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Figure 1: Approximation of the pdf of velocity increments within the class of NIG distri-
butions (solid lines, fitting by maximum likelihood) for data from the atmospheric bound-
ary layer (kindly provided by K.R. Sreenivasan) with Rλ = 17000 and time scales s =
4, 8, 20, 52, 148, 300, 600, 2000, 8000 (in units of the finest resolution).
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Figure 2: Collapse of the densities of velocity increments at time scale s for various fixed values
of the scale parameter δ(s) of the approximating NIG-distributions. The data are from the
atmospheric boundary layer (data set (at) with Rλ = 17000, kindly provided by K.R. Sreeni-
vasan), from a free jet experiment (data set (j) with Rλ = 190, kindly provided by J. Peinke),
from a wind tunnel experiment (data set (w) with Rλ = 80, kindly provided by B.R. Pearson)
and from a gaseous helium jet flow (data sets (h85), (h124), (h208), (h283), (h352), (h703),
(h885), (h929), (h985) and (h1181) with Rλ = 85, 124, 208, 283, 352, 703, 885, 929, 985, 1181,
respectively, kindly provided by B. Chabaud). The corresponding values of the time scales
s (in units of the finest resolution of the corresponding data set) and the codes for the data
sets are (a) (s = 116, (at)) (◦), (s = 4, (h352)) (⊞), (b) (s = 440, (at)) (◦), (s = 8, (j)) (△),
(s = 8, (h929)) (▽), (c) (s = 192, (h885)) (�), (s = 88, (h352)) (⊞), (s = 10, (w)) (+), (d)
(s = 380, (h885)) (�), (s = 410, (h929)) (▽), (s = 350, (h703)) (×), (s = 340, (h985)) (•), (e)
(s = 420, (h703)) (×), (s = 440, (h929)) (▽), (s = 180, (h352)) (⊞), (s = 270, (h283)) (•),
(s = 108, (h124)) (∗), (s = 56, (h85)) (⊠), (f) (s = 470, (h929)) (▽), (s = 116, (h124)) (∗),
(s = 60, (h85)) (⊠), (s = 188, (h352)) (⊞), (s = 470, (h1181)) (N), (s = 140, (h208)) (�).
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Figure 3: Estimated time change ψ (in units of the finest resolution of the respective data
sets) resulting in a collapse of the densities of velocity increments (see Figure 2).
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Figure 4: The shape triangle of the NIG distributions with the log density functions of
the standardized distributions, i.e. with mean 0 and variance 1, corresponding to the values
(χ, ξ) = (±0.8,0.999), (±0.4,0.999), (0.0,0.999), (±0.6,0.75), (±0.2,0.75), (±0.4,0.5), (0.0,0.5),
(±0.2,0.25) and (0.0,0.0). The coordinate system of the log densities is placed at the corre-
sponding value of (χ, ξ).
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