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Abstract

In the present paper, we propose a class of continuous time spatio-temporal models
based on Lévy theory for growing planar objects. The focus is on modelling of the radial
function Rt(φ) at time t and angle φ of planar star-shaped objects. We study Lévy based
models for the time derivative of the radial function

∂

∂t
Rt(φ) = µt(φ) +

∫

At(φ)

ft(ξ; φ)Z(dξ), φ ∈ [−π, π),

where Z is a Lévy basis, At(φ) ⊆ [−π, π) × R is a so-called ambit set, ft(·; φ) is a de-
terministic weight function and µt a deterministic function. The induced model for the
radial function is of the same type. We also consider similar models for transformations of
the radial function. An important advantage of these models is that explicit expressions
for

Cov(Rt(φ), Rt′ (φ
′))

can be derived in terms of the components of the model. As a bi-product, our modelling
approach provides new flexible models for space-time covariance fucntions on the circle.
We also show that a particular version of our growth model can be regarded as a continuous
analogue of the famouns Richardson growth model. The flexibility of the appraoch is
exemplified by simulation of a variety of growth patterns. An application of the Lévy
based growth models to tumour growth is discussed.

KEYWORDS: growth models, Lévy basis, spatio-temporal modelling, tumour growth.

1 Introduction

Stochastic spatio-temporal modelling is of great importance in a variety of disciplines of
natural science, including biology (?, ?, ?, ?), image analysis (?), geophysics (?, ?, ?) and
turbulence (?), just to name a few. In particular, modelling of tumour growth dynamics has
been a very active research area in recent years (?, ?, ?). In most of the above cited works,
the model is given implicitly and the resulting dynamics are difficult to control explicitly.
However, for applications and for the theoretical understanding of the employed modelling
framework it is essential to connect the ingredients of the model with dynamical and spatial
properties of the system in focus. Furthermore, for a parsimonious description of systems,
different with respect to the dynamics and physical mechanisms underlying the dynamics,
it is desirable to have at hand a flexible and, at the same time, mathematically tractable
modelling framework.
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Lévy based models are a promising modeling framework to meet these requirements con-
cerning flexibility and dynamical control. Until now, Lévy based models have proven useful
for describing such widely different systems as turbulent flows (?, ?, ?) and spatio-temporal
Cox processes (?,?) The purpose of the present paper is to study growth modelling in a Lévy
based framework, i.e. stochastic spatio-temporal modelling based on the integration with
respect to a Lévy basis (an infinitely divisible and independently scattered random measure).
The paper is a natural continuation of the work initiated in ? which was mainly directed
towards an audience of physicists.

In the growth literature, there is a variety of growth models for objects in discrete space,
cf. e.g. ?, ?, ?, ? and references therein. An important early example is the Richardson
model, introduced in ?. Here, the growth is described by a Markov process. For a growing
object in the plane, the state at time t is a random subset Yt of Z

2 consisting of the ‘infected
sites’. An uninfected site is transferred to an infected site with a rate proportional to the
number of infected nearest neighbours. It can be shown that if Y0 consists of a single site,
Yt/t has a non random shape as t → ∞.

More recently, a growth model in continuous space has been discussed in ?. For planar
objects, the model is constructed from a spatio-temporal Poisson point process on R

3

Z = {(xi, ti)}.
The random growing object Yt ⊂ R

2 is a subset of

∪{i:ti≤t}B(xi, r),

constructed such that Yt is always connected. Here, B(x, r) is a circular disc with centre x
and radius r. In this model ti is thought of as a time point of outburst and xi is the location
of the outburst in the tumour, say. A closely related discrete time Markov growth model
has been discussed in detail in ?. This model can be characterised as a sequence of Boolean
models

Yt+1 = ∪{B(xi, r) : xi ∈ Yt},
where {xi} is a homogeneous Poisson point process in R

2.
In the present paper, we study instead how such a point process can be used to describe the

growing boundary of the object Yt ⊆ R
2. We consider a Poisson point process Z = {(θi, ti)}

on (−π, π] × R and let the rate of growth at time t in direction φ be

∂

∂t
Rt(φ) =

∑

ξ∈Z∩At(φ)

ft(ξ;φ), (1)

where
At(φ) ⊂ {(θ, s) : s ≤ t}

is a subset of the past of time t, a so-called ambit set1, and ft(·;φ) is a non-negative weight
function. We will always assume that (φ, t) ∈ At(φ). See Figure ?? for an illustration.

It turns out that the model (??) is closely related to the Richardson model. To see this,
let us consider for each φ ∈ (−π, π] the stochastic time transformation t → Rt(φ). We can
then represent the ambit set At(φ) as a subset of Yt

Ãt(φ) = {(Rs(θ) cos θ,Rs(θ) sin θ) : (θ, s) ∈ At(φ)}
1Latin: ambitus. 1. The bounds or limits of a place or district. 2. A sphere of action, expression or

influence.
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t−T

(φi, ti)

At(φ)

Figure 1: Illustration of the growth model (??). The growth rate at time t in direction φ
depends on the number of points from the point process Z = {(θi, ti)} falling in the ambit
set At(φ).

that touches the boundary of Yt at the point (Rt(φ) cos φ,Rt(φ) sin φ). Likewise we can
represent the part of the spatio-temporal point process Z, arrived before time t,

Zt = {(θi, ti) : ti ≤ t},

as a subset of Yt

Z̃t = {(Rti(θi) cos θi, Rti(θi) sin θi) : ti ≤ t}.
We can think of Z̃t as locations of outbursts at time points before t. Finally, if we let

f̃t((s cos θ, s sin θ);φ) = ft((θ, s);φ),

the fundamental equation (??) can be written as

∂

∂t
Rt(φ) =

∑

ξ̃∈Z̃t∩Ãt(φ)

f̃t(ξ̃;φ). (2)

According to (??), the growth rate at time t in direction φ is determined by the outbursts
at time points before t, lying in the stochastic neighbourhood Ãt(φ). Figure ?? illustrates
the set Ãt(φ). In this fashion our model may be regarded as a continuous analogue of the
Richardson model.

The model (??) is just one example of the models to be considered in the present paper.
More generally, we consider models of the type

∂

∂t
Rt(φ) = µt(φ) +

∫

At(φ)
ft(ξ;φ)Z(dξ). (3)

Here, µt is a deterministic function, contributing to the overall growth pattern, while the
stochastic integral determines the dependence structure in the growth process via the ambit
set At(φ) and the Lévy basis Z. The submodel class with µt ≡ 0 and Z a Poisson basis has
been presented above.
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Y t

Y s

Y t−T

Ãt(φ)

Figure 2: Illustration of the set Ãt(φ) as the union of the boundaries of the objects Ys within
the angular bandwith [φ− Θ(s), φ + Θ(s)] for t − T ≤ s ≤ t. As an example three profiles at
times t, t − T and s ∈ [t − T, t] are shown. The relevant parts of the profiles, contributing to
Ãt(φ), are shown bold.

The organisation of the paper is as follows. Section 2 provides some background on Lévy
bases which is the essential component in our approach. In Section 3, Lévy based growth
models are studied while Section 4 contains explicit results for the covariance functions. In
Section 5, an application of the Lévy based growth models to tumour growth is discussed
while problems for future resarch is collected in Section 6. Section 7 concludes the paper.
Basic results on moments of stochastic integrals with respect to a Lévy basis is summarized
in Appendix A while a specific subclass of spatio-temporal covariance functions is studied in
Appendix B.

2 Background

This section provides a brief overview of the theory of Lévy bases, in particular, the theory
of integration with respect to a Lévy basis.

We focus on results which are prerequisites for subsequent sections, without proofs. For a
more detailed study of infinitely divisible and independently scattered random measures and
their theory of integration, see ?, ?, ? and ?. We will use the following notation C(λ ‡ X) =
log E(eiλX) for the cumulant function of a random variable X and K(λ ‡X) = log E(eλX) for
the logarithm of the Laplace transform of X. The latter function will be called the kumulant
function.

Let (R,B) be a measurable space. For concreteness we shall assume that R = S × R

where S is a Borel subset of R
d. Furthermore, B is the Borel σ−algebra of R. A collection

of random variables Z = {Z(A) : A ∈ B} on (R,B) is said to be an independently scattered
random measure, if for every sequence {An} of disjoint sets in B, the random variables Z(An)
are independent and Z(

⋃

An) =
∑

Z(An) a.s. Moreover, if Z(A) is infinitely divisible for all
A ∈ B, Z is called a Lévy basis, cf. ?.

When Z is a Lévy basis, the cumulant function of Z(A) can, by the famous Lévy-
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Khintchine representation, be written as

C(λ ‡ Z(A)) = iλa(A) − 1

2
λ2b(A) +

∫

R

(eiλu − 1 − iλu1[−1,1](u))U(du,A), (4)

A ∈ B, where a is a signed measure on B, b is a positive measure on B, U(du,A) is a Lévy
measure on R for fixed A ∈ B and a measure on B for fixed du. The Lévy basis Z is said
to have characteristics (a, b, U). The measure U will be referred to as the generalised Lévy
measure.

Without loss of generality (for details, see ?) we can assume that there exists a measure
µ on B such that the generalised Lévy measure factorises as

U(du, dξ) = V (du, ξ)µ(dξ),

where V (du, ξ) is a Lévy measure for fixed ξ. Furthermore, the measures a and b are absolutely
continuous with respect to the measure µ, i.e.

a(dξ) = ã(ξ)µ(dξ), b(dξ) = b̃(ξ)µ(dξ).

Under these assumptions we may think of

iλã(ξ) − 1

2
λ2b̃(ξ) +

∫

R

{eiλu − 1 − iλu1[−1,1](u)}V (du, ξ)

as a cumulant function of a random variable Z ′(ξ) satisfying

C(λ ‡ Z(dξ)) = C(λ ‡ Z ′(ξ))µ(dξ). (5)

If ã(ξ), b̃(ξ) and the Lévy measure V (·; ξ) do not depend on ξ, we call Z a factorisable
Lévy basis and then Z ′(ξ) = Z ′ does also not depend on ξ. If, moreover, µ is proportional to
the Lebesgue measure, then Z is called a homogeneous Lévy basis and all finite dimensional
distributions of Z are translation invariant.

Let us now consider the integral of a measurable function f on R with respect to a Lévy
basis Z. For simplicity we denote this integral by f •Z. Important for many calculations are
the following equation for the cumulant function of the stochastic integral f • Z (subject to
minor regularity conditions, cf. ?)

C(λ ‡ f • Z) =

∫

C(λf(ξ) ‡ Z ′(ξ))µ(dξ). (6)

The result (??) can heuristically be derived from (??). A similar result holds for the logarithm
of the Laplace transform of f • Z (assumed to be finite),

K(λ ‡ f • Z) =

∫

K(λf(ξ) ‡ Z ′(ξ))µ(dξ). (7)

We will now give a few examples of Lévy bases.

Example 1. (Gaussian Lévy basis) If Z is a Lévy basis with Z(A) ∼ N(a(A), b(A)),
where a is a signed measure on B and b is a positive measure on B, we call Z a Gaussian Lévy
basis. The Gaussian Lévy basis has characteristics (a, b, 0) and the cumulant function is

C(λ ‡ Z(A)) = iλa(A) − 1

2
λ2b(A).
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We have that Z ′(ξ) ∼ N(ã(ξ), b̃(ξ)), i.e. C(λ ‡ Z ′(ξ)) = iλã(ξ) − 1
2λ2b̃(ξ). Furthermore,

C(λ ‡ f • Z) =

∫

C(λf(ξ) ‡ Z ′(ξ))µ(dξ) = iλ(f • a) − 1

2
λ2(f2 • b). (8)

Note that f • Z ∼ N(f • a, f2 • b). �

Example 2. (Lévy jump basis) A Lévy basis is called a Lévy jump basis if the characteris-
tics of the basis is (a, 0, U). In Table ?? we specify the functions V and ã for three important
examples of Lévy jump bases, the Poisson basis, the Gamma basis and the inverse Gaussian
basis. We also list the distribution of the random variable Z ′(ξ), its cumulant function, mean
and variance.

Poisson Gamma Inverse Gaussian

V (du, ξ) δ1(du) 1R+(u)βu−1e−α(ξ)udu η√
2π

1R+(u)u− 3
2 e−

1
2
γ2(ξ)udu

ã(ξ) 1 β
(

1−e−α(ξ)

α(ξ)

)

η√
2π

∫ 1
0 u− 1

2 e−
1
2
γ2(ξ)udu

Z ′(ξ) Po(1) Γ(β, α(ξ)) IG(η, γ(ξ))

C(λ ‡ Z ′(ξ)) eiλ − 1 −β log
(

1 − iλ
α(ξ)

)

ηγ(ξ)
(

1 −
√

1 − 2iλ
γ2(ξ)

)

E(Z ′(ξ)) 1 β
α(ξ)

η
γ(ξ)

V(Z ′(ξ)) 1 β
α2(ξ)

η
γ3(ξ)

Table 1: The definition of three Lévy jump bases, the Poisson basis, the Gamma basis and
the inverse Gaussian basis, and the distribution of Z ′(ξ), with the corresponding cumulant
function, mean and variance.

Note that if Z is a Poisson basis, Z(A) ∼ Po(µ(A)) with probability function

e−µ(A)µ(A)x

x!
, x = 0, 1, 2, . . . ,

for all A ∈ B. If α(ξ) ≡ α, γ(ξ) ≡ γ, then we have for all A ∈ B, that Z(A) ∼ Γ(βµ(A), α)
with density

αβµ(A)

Γ(βµ(A))
xβµ(A)−1e−αx, x > 0,

and Z(A) ∼ IG(ηµ(A), γ) with density

ηµ(A)eηµ(A)γ

√
2π

x−3/2 exp

{

−1

2

(

(ηµ(A))2 x−1 + γ2x
)

}

, x > 0,

respectively. �

It follows from (??) that any Lévy basis Z can be expressed as the sum of a Lévy jump
basis Z1 and an independent zero mean Gaussian basis Z2.
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3 Lévy based growth models

In this section we study how the Lévy setup can be used to construct flexible stochastic models
for growing objects. We focus on planar objects but generalisations to higher dimensions are
straightforward. We denote the planar object at time t by Yt ⊂ R

2 and we will assume that
Yt is compact and star-shaped with respect to a point z ∈ R

2 for all t. The boundary of the
star-shaped object Yt can be determined by its radial function Rt = {Rt(φ) : φ ∈ [−π, π)},
where

Rt(φ) = max{r : z + r(cos φ, sin φ) ∈ Yt}, φ ∈ [−π, π),

cf. Figure ??.

φ

Yt

z
R

t
(φ

)

Figure 3: The star-shaped object Yt is determined by its radial function Rt(φ) at time t and
angle φ.

The growth rate will be described by the equation

∂

∂t
Rt(φ) = µt(φ) +

∫

At(φ)
ft(ξ;φ)Z(dξ). (9)

Here, the deterministic function µt contributes to the overall growth pattern while the stochas-
tic integral determines the dependence structure in the growth process. The set At(φ) ⊆
[−π, π) × (−∞, t] relates to past events and is called an ambit set, ft(·;φ) is a deterministic
weight function (assumed to be suitable for the integral to exist) and Z is a Lévy basis on
[−π, π) × R. The weight functions and the ambit sets must be defined cyclically in the angle
such that the radial function Rt(φ) becomes cyclic. In the following, all angular calculations
are regarded as cyclic.

The mean growth rate becomes, cf. Appendix A,

E(
∂

∂t
Rt(φ)) = µt(φ) +

∫

At(φ)
ft(ξ;φ)E(Z ′(ξ))µ(dξ).

In the special case where Z is a zero mean Gaussian Lévy basis, µt(φ) is indeed the mean
growth rate at time t in direction φ. In other cases, µt(φ) must be chosen such that the
mean growth rate becomes as desired. There is a large literature on deterministic modelling
of growth. A classical example is Gompertz growth rate specified by

E(
∂

∂t
Rt(φ)) = µt = κ0 exp[

η

γ
(1 − exp(−γt))]η exp(−γt)

cf. e.g. ?
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The ambit set At(φ) plays a key role in this modelling approach and affects the degree
of dependence on the past. The extend of this dependence may be specified by the minimal
time lag T (t) such that

At(φ) ⊆ [−π, π) × [t − T (t), t], φ ∈ [−π, π).

For an illustration, see Figure ??. Note that it follows from the fact that Z is independently
scattered that the random growth rates at time t and t′ are independent if min(t, t′) <
max(t − T (t), t′ − T (t′)). The dependence of the ambit set At(φ) on time t and location φ
will depend on the specific growth process to be modelled. A number of examples are given
below. The induced correlation structure will be discussed in more detail in Section ??. A
discrete version of (??) with a Gaussian Lévy basis is discussed in ?.

φ φ′

t

t−T (t)

t′

At(φ)

At′(φ
′)

t′
−T (t′)

Figure 4: Two ambit sets At(φ) and At′(φ
′). Note the cyclic definition in the angle.

For the interpretation of (??) as a growth model it is important to represent the ambit set
as a stochastic subset Ãt(φ) of the object, as explained in the introduction for the particular
case of a Poisson Lévy basis. This is possible if the stochastic time transformation t → Rt(φ)
is non-decreasing for each φ ∈ [−π, π).

Under (??), the induced model for Rt(φ) will be of the same linear form since

Rt(φ) = R0(φ) + µ̄t(φ) +

∫ t

0

∫

As(φ)
fs(ξ;φ)Z(dξ)ds

= R0(φ) + µ̄t(φ) +

∫

Āt(φ)
f̄t(ξ;φ)Z(dξ), (10)

where R0 is the radial function at time t = 0,

µ̄t(φ) =

∫ t

0
µs(φ)ds,

Āt(φ) =
⋃

0≤s≤t

As(φ),

and

f̄t(ξ;φ) =

∫ t

0
1As(φ)(ξ)fs(ξ;φ)ds. (11)
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Note that the ambit sets associated with the radial function itself are increasing

t ≤ t′ ⇒ Āt(φ) ⊆ Āt′(φ).

Furthermore, if we use the following notation

R≤t = {Rt′(φ) : t′ ≤ t, φ ∈ [−π, π)}
R>t − Rt = {Rt′(φ) − Rt(φ) : t′ > t, φ ∈ [−π, π)}

then, because Z is independently scattered,

R≤t−T (t) and R>t − Rt are independent.

.
The representation (??) is, of course, not unique. If, in particular,

At(φ) = Bt ∩ Cφ (12)

then
Āt(φ) = B̄t ∩ Cφ,

where
B̄t =

⋃

0≤s≤t

Bs,

and we may choose, instead of (??),

f̄t(ξ;φ) =

∫ t

0
1Bs(ξ)fs(ξ;φ)ds.

In some cases it might be more natural to formulate the model in terms of the time
derivative of ln(Rt(φ)),

∂

∂t
(ln(Rt(φ)) = µt(φ) +

∫

At(φ)
ft(ξ;φ)Z(dξ).

In this case the induced model is a Lévy growth model of exponential form

Rt(φ) = R0(φ) exp

(

µ̄t(φ) +

∫

Āt(φ)
f̄t(ξ;φ)Z(dξ)

)

.

The choice of the Lévy basis Z, the ambit sets At(φ), the weight functions ft(ξ;φ) and
µt(φ) completely determines the growth dynamics. These four ingredients can be chosen
arbitrarily and independently which results in a great variety of different growth dynamics.
We will now give a number of examples.

Example 3. Consider a Lévy growth model for the time derivative of the radial function

∂

∂t
Rt(φ) = Z(At(φ)),

where Z is a Poisson Lévy basis with intensity measure concentrated on [−π, π) × R+ of the
form

µ(dξ) = g(s)dsdθ, ξ = (θ, s).
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Note that the corresponding point process in the Euclidean plane

{(s cos θ, s sin θ) : (θ, s) is a support point of Z}

constitutes a Poisson point process with intensity measure

µ̃(dx) =
g(‖x‖)
‖x‖ dx, x ∈ R

2.

In particular, if g(s) = as, a > 0, then Poisson point process in the plane is homogeneous.
The ambit sets are of the form

At(φ) = {(θ, s) : |θ − φ| ≤ Θ

s
,max(0, t − T ) ≤ s ≤ t}.

Represented as subsets of the Euclidean plane

{(s cos θ, s sin θ) : (θ, s) ∈ At(φ)}

they will as t → ∞ approach rectangles of side lengths 2Θ and T , cf. Figure ??

t−T t t′
−T t′

Figure 5: Planar illustrations of the ambit sets.

Note that we can write the ambit set as

At(φ) = Bt ∩ Cφ,

where
Bt = {(θ, s) : max(0, t − T ) ≤ s ≤ t},

and

Cφ =

{

(θ, s) : s ≥ Θ

π
, |θ − φ| ≤ Θ

s

}

∪
{

(θ, s) : 0 ≤ s ≤ Θ

π

}

.

The mean growth rate at time t and in direction φ is for t > T + Θ
π

µ(At(φ)) = 2Θ

∫ t

t−T

g(s)

s
ds.

If g(s) = as, a > 0, the mean growth rate is constant.
The simulations shown in Figure ?? have been performed with g(s) = 10s, T = 1 and

Θ = 1/2. �
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t = 20 t = 45 t = 80

Figure 6: Simulation of a Lévy growth model for the derivative of the radial function at times
t = 20, 45, 80. The underlying Lévy basis is Poisson.

Example 4. The size of the ambit sets plays an important role in the control of the local
and global fluctuations of the boundary of the object Yt. As an example, let us consider a
Lévy growth model of the form

Rt(φ) = µt + Z(At(φ)), (13)

where
At(φ) = {(θ, s) : |θ − φ| ≤ Θ(s), t − T (t) ≤ s ≤ t}.

In Figure ??, simulations are shown under this model, using a normal Lévy basis with

Z(A) ∼ N(0, σ2µ(A)), A ∈ B,

and µ equal to the Lebesgue measure on R. The simulations are based on a discretisation
of Z on a grid with ∆t = 1 and ∆φ = 2π

1000 . The upper and lower row of Figure ?? show
simulations for two choices of angular extension of the ambit set at three different time points.
The angular extension of the ambit set is Θ(s) = π

100 for the upper row, while Θ(s) = π
5 for the

lower row. For the smaller angular extension we observe localised fluctuations of the profiles,
but the global appearance is circular. For the larger angular extension the fluctuations are
on a much larger scale and the global appearance is more variable. �

Example 5. In this example, we study a model as the one described in Example ??, but
now with a Gamma Lévy basis. The model equation is

Rt(φ) = µ̃t + Z(At(φ)), (14)

where At(φ) is defined as in Example ??,

Z(A) ∼ Γ(βµ(A), α), A ∈ B,

and µ is the Lebesgue measure on R. Note that µ(At(φ)) does not depend on φ. The
parameters α, β and µ̃t are chosen such that E(Rt(φ)) and V(Rt(φ)) are the same as in the
previous example, cf. Appendix A. Accordingly, the parameters are chosen such that

µ̃t = µt − σ
√

βµ(At(0)),

α =

√

β

σ2
.
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t = 20 t = 45 t = 80

t = 20 t = 45 t = 80

Figure 7: Simulation of the linear Lévy growth model (??) at time points t = 20, 45, 80, using
a Gaussian Lévy basis. The upper row and lower row show simulations of two choices of the
angular extension of the ambit set Θ(s) = π

100 and Θ(s) = π
5 , respectively. Otherwise the

parameters of the simulation are µ20 = 16, µ45 = 24, µ80 = 32, σ2 = 1 and T (t) = t/5.

The only free parameter is β > 0, determining the skewness of the Gamma distribution of
Z(At(φ)). For large values of β, the distribution will resemble the Gaussian distribution.

The resulting simulations for β = 1 are shown in the upper and lower row of Figure ?? for
the two choices of angular extension of the ambit set, Θ(s) = π

100 and Θ(s) = π
5 , respectively.

Note that more sudden outbursts are seen compared to the previous example. �

Example 6. In Figure ??, we show simulations from the Lévy growth model

Rt(φ) = f(φ)
(

µt + Z(At(φ))
)

, (15)

where µt, At(φ) and Z are specified as in Example ?? and

ft(φ) = 0.35 exp

( |φ − π|
π

)

.

Clearly the growth of the object is asymmetric. The weight function ft(φ) puts more weight
on the angle φ0 = 0. �

4 The induced covariance structure

The Lévy based growth models induce new flexible models for space-time covariance func-
tions on the circle, as we shall see in this section where we will derive expressions for
Cov(Rt(φ), Rt′(φ

′)) under various assumptions on the Lévy basis Z, the ambit sets At(φ)
and the weight functions ft(ξ;φ). We will concentrate on the Lévy growth model (??) of lin-
ear form for Rt. Since we now are interested in covariances it suffices to look at the following
model equation

Rt(φ) =

∫

At(φ)
ft(ξ;φ)Z(dξ),

12



t = 20 t = 45 t = 80

t = 20 t = 45 t = 80

Figure 8: Simulation of the linear Lévy growth model (??) at time points t = 20, 45, 80, using
a Gamma Lévy basis. The upper row and lower row show simulations of two choices of the
angular extension of the ambit set Θ(s) = π

100 and Θ(s) = π
5 , respectively. Otherwise, β = 1

and the remaining parameters are determined by the parameters used in Example ??.

t = 20 t = 45 t = 80

Figure 9: Simulation of the model (??) at time points t = 20, 45, 80, using a Gaussian
Lévy basis, with parameters as specified in Example ??. The weight function is given by
ft(φ) = 0.35 exp( |φ−π|

π ).
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where we, for simplicity, have omitted the bar on the ambit set and weight function. The
covariance structure of Rt(φ) is then given by, cf. Appendix A,

Cov(Rt(φ), Rt′(φ
′)) =

∫

At(φ)∩At′ (φ
′)

ft(ξ;φ)ft′(ξ;φ
′)V(Z ′(ξ))µ(dξ). (16)

For growth models of exponential form, (??) holds for the log-transformed radial function.
Throughout this section, we will assume that

At(φ) = (φ, 0) + At(0),

ft(ξ;φ) = ft(|(θ − φ|, s); 0), (17)

V(Z ′(ξ))µ(dξ) = g(s)dsdθ

for all ξ = (θ, s) ∈ R and (φ, t) ∈ R. These conditions ensure that Cov(Rt(φ), Rt′(φ
′)) only

depends on the cyclic difference between φ and φ′. Accordingly, the spatio-temporal process

{Rt(φ) : t ∈ R, φ ∈ [−π, π)}

is second-order stationary in the space coordinate but not necessarily in the time coordinate.
We will first consider the case where the angular extension of the ambit set is the full

angular space but the weight functions are arbitrary. Secondly, we consider the case of
constant weight functions but quite arbitrary ambit sets.

4.1 Ambit sets with full angular range

In this subsection we consider ambit sets of the form

At(φ) = [−π, π) × [t − T (t), t].

In order to express the formulae as compact as possible, we use in the proposition below the
notation t ∩ t′ for the time points shared by At(·) and At′(·), i.e.

t ∩ t′ =

{

[t̃1, t̃2] if t̃1 ≤ t̃2
∅ otherwise,

where
t̃1 = max(t − T (t), t′ − T (t′)) and t̃2 = min(t, t′).

Using this notation we can derive the following convenient and general expression for the
covariances.

Proposition 7. Let us assume that the ambit set is of the form At(φ) = [−π, π)× [t−T (t), t]
for all (φ, t) ∈ R and let

ft(ξ;φ) = at
0(s) +

∞
∑

k=1

at
k(s) cos(k(θ − φ)), (18)

ξ = (θ, s), be the Fourier expansion of the weight function. Then, the spatio-temporal
covariances are

Cov(Rt(φ), Rt′ (φ
′)) = 2τ0(t, t

′) +

∞
∑

k=1

τk(t, t
′) cos(k(φ − φ′)), (19)
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where

τk(t, t
′) = π

∫

t∩t′
at

k(s)a
t′

k (s)g(s)ds.

�

Proof. The proof is straightforward. First note that the actual form (??) of the Fourier
expansion of the weight function is a consequence of (??). We get that

Cov(Rt(φ), Rt′(φ
′))

=

∫

At(φ)∩At′ (φ
′)

ft(ξ;φ)ft′(ξ;φ
′)V(Z ′(ξ))µ(dξ)

= π

[

2

∫

t∩t′
at

0(s)a
t′

0 (s)g(s)ds +
∞
∑

k=1

(∫

t∩t′
at

k(s)a
t′

k (s)g(s)ds

)

cos(k(φ − φ′))

]

.

Example 8. Suppose that the weight function is of the form (??) with at
k(s) ≡ 0 if k 6= 1.

Then,

Cov(Rt(φ), Rt′ (φ
′)) = π cos(φ − φ′)

∫

t∩t′
at

1(s)a
t′
1 (s)g(s)ds.

Since the covariance is a product of a spatial term and a temporal term, this model is sepa-
rable, cf. ? and references therein. The sign of the covariance may be positive or negative.
�

Note that according to (??) the covariance Cov(Rt(φ), Rt′ (φ
′)) depends on φ and φ′ only

via |φ − φ′|. For some choices of model parameters, the covariance also becomes stationary
in the time coordinate. For instance, if g(s) = 1, T (t) = T and at

k(s) = bk(t − s), we have

τk(t, t
′) = π

∫ T+min(t−t′,0)

max(t−t′,0)
bk(u)bk(t

′ − t + u)du.

The induced model (??) for the covariance function is not in general separable in the
sense that the covariance function can be written as a product of a term depending only on
t and t′ and a term depending only on φ and φ′. This may be regarded as a strength of
the model because separable covariance functions are often believed to give a too simplistic
description of spatio-temporal data, cf. e.g. ?. The corollary below contains results under
such simplifying assumptions.

Corollary 9. Let the assumptions be as in Proposition ??. Assume that at
k(s) = at

k. Then,
the spatial correlations are determined by the weight function f

ρ(Rt(φ), Rt(φ
′)) :=

Cov(Rt(φ), Rt(φ
′))

√

V(Rt(φ))V(Rt(φ′))
=

2(at
0)

2 +
∑∞

k=1(a
t
k)

2 cos(k(φ − φ′))

2(at
0)

2 +
∑∞

k=1(a
t
k)

2
.

If, in addition, at
k = btck, then the covariance model (??) is separable. Furthemore, the

spatial correlations ρ(Rt(φ), Rt(φ
′)) do not depend on t, while the temporal correlations are

determined by T (t) and the function g,

ρ(Rt(φ), Rt′(φ)) =

∫

t∩t′ g(s)ds
[

∫ t
t−T (t) g(s)ds ·

∫ t′

t′−T (t′) g(s)ds
]1/2

.

�
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The covariance model (??) provides a possibility for extending stationary covariance func-
tions on the circle (spatial covariance functions) to a spatio-temporal context. When Rt is a
stationary process on the circle, its covariance function can be expressed as

Cov(Rt(φ), Rt(φ
′)) = 2λt

0 +

∞
∑

k=1

λt
k cos(k(φ − φ′)). (20)

Such a covariance function can be obtained by choosing the Fourier coefficients of the weight
function as

at
k(s) = at

k =

[

λt
k/

∫ t

t−T (t)
g(s)ds

]1/2

.

Note that there is still freedom in the modelling by choosing an arbitrary time lag T (t) and
function g.

Example 10. The p-order model for a stationary covariance function on the circle, described
in ?, has

λt
0 = λt

1 = 0, λt
k =

[

αt + βt

(

k2p − 22p
)]−1

, k = 2, 3, . . . .

The model is called a p−order model because it can be derived as a limit of discrete p−order
Markov models defined on a finite, systematic set of angles, cf. ?. This covariance structure
is obtained by choosing

at
0(s) = at

1(s) = 0, at
k(s) =

[

π

∫ t

t−T (t)
g(s)ds

]−1/2
[

αt + βt

(

k2p − 22p
)]−1/2

, k = 2, 3, . . . .

If αt and βt are proportional, the simplifying assumptions of Corollary ?? are fulfilled. In
?, this model has been used for the time derivative of the radial function. Only Gaussian
Lévy bases are considered and neighbour time points are assumed to be so far apart that the
increments can be regarded as independent. The more general approach of the present paper
allows for temporal correlations. Under the assumption at

k = btck, the temporal correlations
are particularly simple. For instance, suppose that T (t) ≡ 1 and t′− 1 ≤ t ≤ t′. Then, we get
for g(s) = ae−bs, a, b > 0,

ρ(Rt(φ), Rt′(φ)) =
1

eb − 1

[

e
1
2
b(t−t′)+b − e−

1
2
b(t−t′)

]

,

while for g(s) = asα, a > 0, α ≥ 1,

ρ(Rt(φ), Rt′(φ)) =
tα+1 − (t′ − 1)α+1

[(tα+1 − (t − 1)α+1)((t′)α+1 − (t′ − 1)α+1)]1/2
.

Only in the first case, the temporal correlations are always stationary. �

4.2 Constant weight functions

In this subsection, we consider the case of constant weight functions. Without loss of gener-
ality, we assume that ft(ξ;φ) ≡ 1 and (??) reduces to

Cov(Rt(φ), Rt′(φ
′)) =

∫

At(φ)∩At′ (φ
′)

V(Z ′(ξ))µ(dξ) = V(Z ′)µ(At(φ) ∩ At′(φ
′)), (21)
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where the last equality holds if the Lévy basis is factorisable.
It is not difficult (but sometimes tedious) to find explicit expressions for Cov(Rt(φ), Rt′(φ

′))
for specific choices of ambit sets. In Appendix B, ambit sets of the form

At(φ) = Bt ∩ Cφ,

where

Bt = {(θ, s) : max(0, t − T (t)) ≤ s ≤ t},
Cφ = {(θ, s) : |φ − θ| ≤ Θ(s)},

are considered. From Appendix B, it is seen that simpler expressions are obtained for the
temporal covariances than for the spatial covariances.

Evidently, (??) implies that Cov(Rt(φ), Rt′(φ
′)) ≥ 0 which may be a severe restriction

for the spatial covariances. In the proposition below, the spatial covariances are expressed in
terms of the function deliminating the ambit set. The proposition gives insight into the class
of spatial covariances that can be modelled using this approach.

Proposition 11. Let µ(dξ) = g(s)dsdθ for ξ = (θ, s). Let us suppose that there exists a
continuous function ht : [−π, π) → R+ with the properties

ht(φ) = ht(−φ)

ht is decreasing on [0, π] (22)

ht(0) = t

such that
At(0) = {(θ, s) : ht(π) ≤ s ≤ ht(θ)},

cf. Figure ??. Let

h̄t(φ) =

∫ ht(φ)

0
g(s)ds.

Then, if the Fourier expansion of h̄t is (h̄t(φ) = h̄t(−φ))

h̄t(φ) =
∞
∑

k=0

γt
k cos(kφ), (23)

then

µ(At(0) ∩ At(φ)) =
∞
∑

k=0

λt
k cos(kφ), (24)

where

λt
0 =

∑

k odd

[π − 8

πk2
]γt

k − π
∑

k even

γt
k

λt
j =

16

π

∑

k odd

1

(2j)2 − k2
γt

k, j = 1, 2, . . . .

�
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θ

s
t

ht(π)

At(0)

ht(θ)

π−π

Figure 10: Illustration of the ambit set At(0) bounded by the function ht, cf. (??).

Proof. It is not difficult to show that

µ(At(0) ∩ At(φ)) = 2

∫ −π+ φ

2

−π
h̄t(θ)dθ + 2

∫ π

φ

2

h̄t(θ)dθ − 2πh̄t(π), φ ∈ [0, π). (25)

Using (??), we find

µ(At(0) ∩ At(φ)) =

{

−4
∑

k odd
γt

k

k sin(k φ
2 ) + 2π

∑

k odd γt
k − 2π

∑

k even γt
k if φ ∈ [0, π]

4
∑

k odd
γt

k

k sin(k φ
2 ) + 2π

∑

k odd γt
k − 2π

∑

k even γt
k if φ ∈ [−π, 0].

The result is now obtained by deriving a Fourier expansion of the latter expression and
comparing with (??).

Example 12. In the particular case where g(s) = 1 and

f̄t(φ) = ft(φ) = γt
0 + γt

1 cos φ

we find

λt
0 = [π − 8

π
]γt

1 − πγt
0

λt
j =

16

π

1

(2j)2 − 1
γt
1, j = 1, 2, . . . .

It follows that
(λt

j)
−1 = αt + βtj

2, j = 1, 2, . . . , (26)

where αt = −π/(16γt
1) and βt = π/(4γt

1). Under the assumption of a normal Lévy basis, (??)
is a special case of the p−order model considered in ? with p = 1 and α proportional to β.
Note that the requirements (??) implies that γt

0 = t − γt
1 and γt

1 > 0. It does not seem to be
possible to obtain p-order models with p > 1, using this approach. �
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t = 21 t = 25 t = 55

Figure 11: Profiles of a growing brain tumour in vitro at time points t = 21, 25, 55.

5 An application to tumour growth

In ?, snapshots of a growing brain tumour in vitro have been analysed, using the approach
described in this paper, see Figure ??. The data were first studied in ?.

A detailed initial analysis I will insert some more details showed negative spatial covari-
ances and a need for modelling both small and large scale fluctuations in the growth process.
The model used was an exponential Lévy growth model of the form

Rt(φ) = exp

{

µt + α(t)

∫ t−t0(t)

t−T (t)

∫ π

−π
cos(φ − θ)Z(dsdθ)

+β(t)

∫ t

t−t0(t)

∫ φ+ht(s−t+t0(t))

φ−ht(s−t+t0(t))
Z(dsdθ)

}

. (27)

Here ht is a deterministic and monotonically decreasing function defined on [0, t0(t)], satisfying
ht(t0(t)) = 0. Accordingly, the weight function is on the form

ft(ξ;φ) = α(t) cos(φ − θ)1[t−T (t),t−t0(t)](s) + β(t)1[t−t0(t),t](s)1[0,ht(s−t+t0(t))](|φ − θ|).

The associated ambit set is shown in Figure ??. In ?, a Gaussian Lévy basis has been used

t

s

t − t0(t)

t − T (t)

φφ−π φ+πφ−φ0(t)/2 φ+φ0(t)/2 θ

-

6

β(t)

α(t) cos(φ − θ)

•��

��
φ + ht(s − t + t0(t))

Rt(φ)

Figure 12: The ambit set At(φ) for the model defined by (??).

and the function ht was assumed to be of the form

ht(s) =
φ0(t)

2
− φ0(t)

2t0(t)
s, s ∈ [0, t0(t)].
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The parameters of the model (??) were estimated by the method of moments, using the
results given in Appendix B. could be expanded a bit, what about estimation of to(t) and T(t)
The estimated parameters are given in Table ?? and a simulation under the model is shown
in Figure ??.

t T (t) t0(t) α(t) β(t) φ0(t)

21 21 19 0.04 −0.033 0.19

25 25 17 0.02 −0.033 0.19

55 18 4 0.01 −0.067 0.23

Table 2: The estimated parameters for the model (??), using a Gaussian Lévy basis.

t = 21 t = 25 t = 55

Figure 13: Simulation of the model (??) for time points t = 21, 25, 55, using a Gaussian Lévy
basis.

Here we have studied the use of Gamma and inverse Gaussian Lévy bases. Simulations
under the latter basis are shown in Figure ??. The inverse Gaussian Lévy basis is chosen such
that E(Rt(φ)) and V(Rt(φ) are the same as in the case where a Gaussian basis is used. This
means that if Z(A) ∼ IG(ηµ(A), γ), where µ is the Lebesgue measure, we get that η = γ3.
The upper row of Figure ?? shows simulations where η = 316 and the lower row shows a
simulation where η = 5. For η = 316 the inverse Gaussian Lévy basis provides fits of a similar
quality as the normal basis but for η = 5, more outburst are observed as is the case for the
data. The difference is due to the fact that the inverse Gaussian distribution has heavier right
tails for the latter choice of parameters.

6 Discussion

6.1 Estimation of model parameters

Estimation of a set, moment estimation, MLE?, t0(t) og T(t) are difficult to determine
A Fourier expansion of the radial function is useful when studying the shape of the growing

object, cf. e.g. ? and ?. Let us consider the Fourier coefficients of Rt(φ),

At
k =

1

π

∫ π

−π
Rt(φ) cos(kφ)dφ, Bt

k =
1

π

∫ π

−π
Rt(φ) sin(kφ)dφ

k = 0, 1, . . . . Under the assumptions of Proposition ?? it can be shown that

At
k =

∫ π

−π

∫ t

t−T (t)
at

k(s) cos(kθ)Z(dθds), Bt
k =

∫ π

−π

∫ t

t−T (t)
at

k(s) sin(kθ)Z(dθds),
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t = 21 t = 25 t = 55

t = 21 t = 25 t = 55

Figure 14: Simulations of the model (??) for time points t = 21, 25, 55, using an Inverse
Gaussian Lévy basis with η = 316 (upper row) and η = 5 (lower row).

so the Fourier coefficients also follow a linear Lévy growth model. It can also be shown that
for k 6= j, t, t′ ≥ 0,

Cov(At
k, At′

j ) = Cov(Bt
k, B

t′

j ) = Cov(At
k, B

t′

j ) = 0,

and
Cov(At

k, A
t′

k ) = Cov(Bt
k, B

t′

k ) = τk(t, t
′),

where τk(t, t
′) is given in Proposition ??.

In the case where Z is a Gaussian Lévy basis, this means that {At
k}t∈R+ and {Bt

k}t∈R+

k = 0, 1, . . . , are independent Gaussian stochastic processes with covariance functions τk(t, t
′).

If one observes At
k and Bt

k, for some time points t = t1, . . . , tn, and some orders k = 1, . . . ,Kt,
the likelihood function is very tractable.

6.2 Related models

Analogies to MA-processes, Autoregressive analogue?

6.3 The quality of the fit

It should be noted that all the profiles simulated under the model (??) using the Lévy basis
mentioned in this section show somewhat more fluctuations on a local scale than the observed
profiles. At present, we do not know whether this feature is caused by non-perfect model
selection and estimation of parameters or artefacts due to the discretisation in the simulation
procedure.

6.4 Asymptotics

asymptotic shapes

6.5 New models for covariance functions

insert a number of relevant references, for instance stein and ma(2005)
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7 Conclusion

will follow soon

8 Acknowledgements
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9 Appendix A

In this appendix, we summarise formulae for mean values and higher order moments for a
random variable expressible in terms of an integral with respect to a Lévy basis.

More specifically, we consider a random variable Xt(σ), depending on time t and position
σ. In the following, we will assume that (σ, t) ∈ R = S × R, where S ⊂ R

d. The random
variable Xt(σ) is given by

Xt(σ) =

∫

At(σ)
ft(ξ;σ)Z(dξ).

We let
X̃t(σ) = exp(Xt(σ)).

Using the key relation (??), we find

E(Xt(σ)) =

∫

At(σ)
ft(ξ;σ)E(Z ′(ξ))µ(dξ) (28)

V(Xt(σ)) =

∫

At(σ)
f2

t (ξ;σ)V(Z ′(ξ))µ(dξ).

The covariances are of the form

Cov(Xt(σ),Xt′ (σ
′)) =

∫

At(σ)∩At′ (σ
′)

ft(ξ;σ)ft′(ξ;σ
′)V(Z ′(ξ))µ(dξ). (29)

If the weight function is constant, ft(ξ;σ) ≡ f , and if the Lévy basis Z is factorisable, then
(??) reduces to

Cov(Xt(σ),Xt′(σ
′)) = f2

V(Z ′)µ(At(σ) ∩ At′(σ
′)). (30)

In this case, the covariance structure only depends on the µ-measure of the intersection of
the two ambit sets.

Equation (??) enables us to calculate arbitrary mixed n-order moments of X̃t(σ). If the
moments are finite, then

E

(

X̃t1(σ1) · . . . · X̃tn(σn)
)

= exp





∫

R
K





n
∑

j=1

ftj (ξ;σj)1Atj
(σj)(ξ) ‡ Z ′(ξ)



 µ(dξ)



 . (31)

The corresponding expressions for the mixed n-order moments of Xt(σ) are obtained from

E(Xt1(σ1) · . . . · Xtn(σn)) =
∂n

∂λ1 · . . . · ∂λn
E

(

X̃λ1
t1 (σ1) · . . . · X̃λn

tn (σn)
)

∣

∣

∣

∣

λ1=...=λn=0

(32)
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where

E

(

X̃λ1
t1

(σ1) · . . . · X̃λn
tn (σn)

)

= exp





∫

R
K





n
∑

j=1

λjftj (ξ;σj)1Atj
(σj)(ξ) ‡ Z ′(ξ)



 µ(dξ)



 . (33)

The relative second order moments of X̃t(σ) has a particularly attractive form

E(X̃t(σ)X̃t′ (σ
′))

E(X̃t(σ))E(X̃t′(σ′))
= exp

(

∫

At(σ)∩At′ (σ
′)

g(ξ; t, t′, σ, σ′)µ(dξ)

)

, (34)

where

g(ξ; t, t′, σ, σ′)

= K((ft(ξ;σ) + ft′(ξ;σ
′)) ‡ Z ′(ξ)) − K(ft(ξ;σ) ‡ Z ′(ξ)) − K(ft′(ξ;σ

′) ‡ Z ′(ξ)).

In the simple case where the weight functions are constant, i.e. ft(ξ;σ) ≡ f for all (σ, t) ∈ R
and ξ ∈ R, and where the underlying Lévy basis is factorisable, Z ′(ξ) = Z ′, (??) reduces to

exp
(

Cµ(At(σ) ∩ At′(σ
′))
)

, (35)

where C = K(2f ‡ Z ′) − 2K(f ‡ Z ′). For a factorisable Lévy basis Z and a constant weight
function, one can express

E

(

X̃λ1
t1 (σ1) · . . . · X̃λn

tn (σn)
)

E

(

X̃λ1
t1 (σ1)

)

· . . . · E
(

X̃λn
tn (σn)

) (36)

in terms of different overlaps of the corresponding ambit sets (?).

10 Appendix B

In this Appendix we will assume that the measure µ is on the form

µ(dθ, ds) = g(s)dsdθ.

We will study intersections of ambit sets

At(φ) = Bt ∩ Cφ,

where

Bt = {(θ, s) : max(0, t − T (t)) ≤ s ≤ t},
Cφ = {(θ, s) : |φ − θ| ≤ Θ(s)},

so the size and shape of At(φ) does not depend on φ. This implies that the measure of the
intersection µ(At(φ)∩At′(φ

′)) only depends on the angles φ and φ′ via their cyclic difference.
We therefore focus on studying

µ(At(0) ∩ At(φ)) and µ(At(0) ∩ At+u(0)),
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where u ≥ 0, concentrating on the spatial and temporal covariances/correlations, respectively.
Let t, u ≥ 0 and assume that T (t + u) − T (t) ≤ u, then

µ(At(0) ∩ At+u(0)) =

{

2
∫ t
t∗ Θ(s)g(s)ds if u ≤ T (t + u),

0 otherwise

where t∗ = max(0, t + u − T (t + u)). In this case one can get various temporal covari-
ance/correlation structures, depending on the choise of T , Θ and g. A few examples are given
in Table ??.

Parameters 2Θ(s)g(s) µ(At(0) ∩ At+u(0)

c > 0 c c(T (t + u) − u)

a, b > 0 ae−bs ae−bt

b (e−b(u−T (t+u)) − 1)

a > 0, α > 1 asα (α − 1)−1(tα+1 − (t + u − T (t + u))α+1)

Table 3: Explicit expressions for the integral µ(At(0)∩At+u(0)) for various choises of Θ(s)g(s).

Let us now study the covariance related to angular displacements. We get that

µ(At(0) ∩ At(φ)) =

∫ t

t∗
1[0,2Θ(s)](|φ|) (2Θ(s) − min(|φ|, 2π − 2Θ(s))) g(s)ds, (37)

where t∗ = max(0, t − T (t)). Here, the integral depends on the seperate choices of Θ and g.
Note that in the simple case where Θ(s) ≡ Θ, we have

µ(At(0) ∩ At(φ)) = 0, for |φ| ≥ 2Θ,

which e.g. implies that for a Lévy growth model of linear or exponential form, the values of the
radial function at a fixed time t and different angles φ and φ′ are uncorrelated if |φ−φ′| ≥ 2Θ.
If instead Θ(s) = Θ/s, we get for T (t) = t and g(s) = s

µ(At(0) ∩ At(φ)) =

{

1
2

(2Θ)2

2π−|φ| +
(

2Θ − |φ|t
2

)

t, if |φ| ≤ 2Θ
t

(2Θ)2 π
|φ|(2π−|φ|) , if 2Θ

t < |φ| ≤ π,

if t ≥ 2Θ/π.
Note that for a Lévy growth model of linear form with E(Rt(φ)) ∝ 2Θt, the covariance

Cov(Rt(0), Rt(φ)) depends for fixed t on |φ| via |φ|t for small |φ|t, which is proportional to
the distance between two points in directions 0 and φ on the boundary of a disc with radius
E(Rt(φ)).
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