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1 Introduction

The present paper proposes a class of stochastic differential equations aimed at modelling
the timewise development of the main (longitudinal) component of the velocity vector, at
a single location, in a turbulent fluid field. It represents a step in a project to formulate
a fullfledged tempo-spatial stochastic process model for the three dimensional velocity field.
Previous parts of this project are discussed in Barndorff-Nielsen et al (2004) and Barndorff-
Nielsen and Schmiegel (2004). The full model should ideally accord with the theory of ho-
mogeneous and isotropic turbulence, due to Kolmogorov and Obhukov, and with further key
phenomenological features, stylised from detailed studies of major empirical data sets, such
as those discussed in Barndorff-Nielsen et al (2004).

In order to make the considerations in the paper more directly accessible for physicists,
our style of writing deviates somewhat from the traditional mathematical style of ‘TPA’.

We stress that the model type here presented is only for the timewise dynamics, at a single
location, of the velocity component in the mean flow direction. However, most of the reliable
and extensive data sets available are precisely for this component and, in fact, as concerns
measurements of spatial variations very little empirical evidence exists, due to the difficulty
of measuring this; see however, van de Water (1996) and Staicu and van de Water (2003).

On the other hand, the Kolmogorov hypotheses are formulated in terms of the spatial
variations. To connect to the timewise regime the generally adopted approach is to translate
results from the spatial setting to the temporal via Taylor’s Frozen Field Hypothesis, as will
be described in Section 4.1.

It is also important to underline that Kolmogorov’s theory concerns the asymptotic be-
haviour as the Reynolds number tends to infinity. But, with the ample empirical evidence
presently available it is clear that even for very large, but realistic, Reynolds numbers the
hypothesized asymptotic regime has not been reached. Thus Kolmogorov’s hypotheses give
only a rough guide to the statistical properties of the velocities, and it is pertinent to seek
extensions of his results that can cover a much wider spectrum of Reynolds numbers and time-
wise or spatial ranges. In fact, a universality result of the kind in question was established in
Barndorff-Nielsen et al (2004), and is briefly described in Section 2 below.

The outline of the paper is as follows. Section 2 provides some background on the phe-
nomenology of turbulent flows. In Section 3 we present our stochastic framework for the
timewise dynamics of turbulent velocities. Section 4 indicates the necessary mathematical
background on quadratic variation, (Brownian) semimartingales, infinitely divisible distri-
butions and Lévy processes, which are the main building blocks of the model. Quadratic
variation is proposed as a natural substitute for the usual definition of the integrated en-
ergy dissipation, which is not applicable for non-differentiable stochastic processes. Section
5 discusses the timewise dynamics of the model for the turbulent velocity. The focus is
on the evolution of the pdf of velocity increments across scales and on statistics related to
Kolmogorov’s refined similarity hypotheses. The theoretical results are illustrated and sup-
plemented in Section 6 through simulations. Section 7 concludes with an outlook.

2 Phenomenological background

Since the pioneering work of Kolmogorov (1962) and Obukhov (1962), intermittency of the
turbulent velocity field is of major interest in turbulence research. From a probabilistic point

2



of view, intermittency refers, in particular, to the increase of the non-Gaussian behaviour of
the probability density function (pdf) of velocity increments with decreasing scale. A typical
scenario is characterized by an approximately Gaussian shape for the large scales (larger than
scales at the so-called inertial range), turning to exponential tails within the inertial range
and stretched exponential tails for dissipation scales (below the inertial range) (Castaing et
al (1990) and Vincent and Meneguzzi (1991)).

It was reported in Barndorff-Nielsen et al (2004) that the evolution of the pdf of velocity
increments for all amplitudes and all scales can be described within one class of tractable dis-
tributions, the normal inverse Gaussian (NIG) distributions. Figure 1 shows, as an example,
the log densities of velocity increments ∆us = ut+s− ut measured in the atmospheric bound-
ary layer for various time spans s. The solid lines denote the approximation of these densities
within the class of NIG distributions. NIG distributions fit the empirical densities equally
well for all time scales s (for a more detailed verification, see Barndorff-Nielsen et al (2004)).
Furthermore, the subsequent analysis of the observed parameters of the NIG distributions
revealed that the pdf’s of different data sets with different Taylor based Reynolds numbers
(ranging from Rλ = 80 up to Rλ = 17000) all collapse after applying a scale transformation
that is related to one of the parameters of the estimated NIG distributions. As a consequence,
the collapse of pdf’s immediately resulted in a broader and more general reformulation of the
concept of Extended Self Similarity (Benzi et al (1993)) in terms of a stochastic equivalence
class.

The analysis in Barndorff-Nielsen et al (2004) is to a large extent based on key empirical
facts, without providing a theoretical model for the turbulent velocity field. In view of the
significance of the derived results, a theoretical basis is clearly asked for. In the present paper
we propose a stochastic differential equation framework for modelling the timewise dynamics
of the main component of the velocity, that is able to reproduce the observed evolution of the
pdf of turbulent velocity increments.

The second point we want to make in this paper is to show that our model is, to a large
extent, in accordance with the experimental verification of Kolmogorov’s refined similarity
hypotheses (K62) (Kolmogorov (1962)). In essence, Kolmogorov refined his 1941 theory (Kol-
mogorov (1941a)) by taking into account the strong variability of the local energy dissipation.

The first refined hypothesis states that the pdf of the stochastic variable

Vr =
∆u(r)

(rεr)1/3
(1)

depends, for r ≪ L, only on the local Reynolds number Rer = r(rεr)
1/3/ν. Here, ∆u(r)

denotes a spatial velocity increment at scale r, ν is the viscosity, L the integral scale and rεr
is the integrated energy dissipation over a spatial domain of linear size r.

The second refined hypothesis states that, for Rer ≫ 1, the pdf of Vr does not depend on
Rer, either, and is therefore universal. Although, for small r, an additional r dependence of
the pdf of Vr has been observed (Stolovitzky et al (1992)), the validity of several aspects of
K62 has been verified experimentally and by numerical simulation of turbulence (Stolovitzky
et al (1992), Zhu et al (1995), Hosokawa et al (1994) and Stolovitzky and Sreenivasan (1994)).

3 Modelling framework

The present Section introduces the general type of stochastic process we have in mind for
the description of turbulent velocities. The mathematical tools needed for the more detailed
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specifications made later are outlined in the next Section.
We propose to model the dynamics of the main component of the velocity (i.e. the

component in the direction of the mean flow) as a stochastic integral

ut = ū+

∫ t

−∞

g(t− s)dYs, (2)

where ū is a constant, g is a deterministic kernel and the process Y satisfies a stochastic
differential equation

dYt = βεtdt+
√
εtdBt (3)

where β is a constant, ε denotes a positive stationary process and B is a Brownian motion.
This type of process Y is often encountered in other areas of application. In particular, a
modelling framework rather similar to the one proposed here has been demonstrated to allow
for a model specification that captures the key stylised features of the time evolution of stock
prices and exchange rates and is very tractable analytically and numerically, see Barndorff-
Nielsen and Shephard (2001,2006) and references given there. The aim here is to show that
suitable choices of g and ε can reproduce key stylized features of the time-wise behaviour of
the velocity.

Combining (2) and (3) we get

ut = ū+ β

∫ t

−∞

g(t− s)εsds+

∫ t

−∞

g(t− s)
√
εsdBs. (4)

In the present context of turbulence we conceive of ε as expressing the time varying intermit-
tency while B generates independent innovation impulses.

The decomposition of the velocity ut in (4) is reminiscent of the Reynolds decomposi-
tion (Monin and Yaglom (1975)), with

∫

g(t − s)εsds playing the role of the slowly varying
component and

∫

g(t−s)√εsdBs reflecting the strongly varying component (with mean zero).
A strength of the modelling framework (4) lies in the fact that the intermittency gener-

ating term ε and the function g can, to a large extent, be chosen arbitrarily. In the next
Section we identify ε with the local energy dissipation. Therefore, the model (4) establishes a
framework that derives the model for the velocity field directly from the presumed model for
the local energy dissipation. The calculations in Section 5 show that a considerable part of
the statistics of the velocity field are independent of the specific choice of the model for the
energy dissipation. In particular, both the evolution of the pdf of velocity increments from
heavy tails to an approximate Gaussian shape with increasing scale and the statistics related
to K62 are predominantly mediated by the structure of (4).

Remark 1 The framework (2) can be generalized to a model for the full velocity vector ut(σ)
at time t and position σ

ut(σ) = ū+

∫ t

−∞

∫

S
g(t− s; |ρ− σ|)dMs(dρ) (5)

where M is a random measure on R × S, S denoting the space of possible locations. For an
initial discussion of this more general framework we refer to Barndorff-Nielsen and Schmiegel
(2006).
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4 Mathematical background

This Section outlines the mathematical tools we require for the more detailed modelling of
the turbulent velocity process ut. The basic notions are semimartingales, Lévy processes and
quadratic variation. For later purposes we also provide the definitions and basic properties of
normal inverse Gaussian distributions and inverse Gaussian distributions. While the former
approximates the distribution of temporal velocity increments for all time scales and all
amplitudes, the latter will be used to explicitely model the intermittency of the velocity.

The stochastic processes we propose as a model for the turbulent velocity are nowhere
differentiable, thus the definition of the energy-dissipation as the square of velocity derivatives
does not make sense in this context. As an alternative definition of the energy-dissipation we
propose to use the concept of quadratic variation, as outlined below.

4.1 Semimartingales and quadratic variation

In the language of stochastic analysis the process u, as given by (4), is – subject to minor
regularity conditions on g and ε – a Brownian semimartingale. Specifically we assume that ε
is càdlàg, i.e. it is a stochastic process whose sample paths at all time points are continuous
from the right and have limits from the left. Furthermore, we require that ε has finite mean
and that the deterministic function g is nonnegative and bounded by 1 with g(0) = 1 and
that it is differentiable and square integrable on [0,∞).

A key result of stochastic analysis states that for any semimartingale u, whether Brownian
or not, the limit

[u]t = lim
n→∞

n
∑

j=1

(

utj/n − ut(j−1)/n

)2
(6)

exists, as a limit in probability. The derived process [u] expresses the cumulative variation
exhibited by u and is called the quadratic variation (QV). The monograph Protter (2004) is a
comprehensive account of basic parts of stochastic analysis. For further properties, see Jacod
and Shiryaev (2003).

We may calculate [u] from (4) using Ito algebra. Specifically, the stochastic differential of
u is

dut = atdt+
√
εtdBt (7)

where

at = βεt + β

∫ t

−∞

g′(t− s) (εsds+
√
εsdBs) (8)

and At =
∫ t
0 asds is of finite variation. Thus

(dut)
2 = a2

t (dt)
2 + 2at

√
εtdtdBt + εt(dBt)

2. (9)

By Ito algebra (dt)2 = 0, dtdBt = 0 while (dBt)
2 = dt. All in all, we obtain

(dut)
2 = εtdt (10)

and

[u]t =

∫ t

0
(dut)

2 =

∫ t

0
εsds. (11)
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In the setting of stochastic differential equations of the Brownian semimartingale type the
quantity (dut)

2/dt is the natural analogue of the squared first order derivative of the ve-
locity, which in the classical formulation is taken to express the local energy dissipation.
Consequently, the quadratic variation [u]t is the stochastic analogue of the integrated energy
dissipation and εt can be identified with the local energy dissipation.

It is to note that the quadratic variation [u]t is independent of β, i.e. independent of the
second term in (4). That term is responsible for the skewness of velocity increments. The
skewness of the distribution of ut − u0 has a relatively complicated expression, and in this
paper we restrict attention to the infinitesimal skewness E{(dut)3}, noting that E{dut} = 0
due to the stationarity of ut. Here, E{} denotes the expectation.

For simplicity, from now on we assume that the processes ε and B are independent.
In particular, we then, using (7), obtain the following formula for the infinitesimal skew-

ness. From the differential of u (7) we then get

E{(dut)3} = 3β

[

E{ε20} +

∫

∞

0
g′(t)E{ε0εt}dt

]

(dt)2. (12)

Under the additional simplifying (weak) assumptions

∫

∞

0
|g′(t)|dt = 1 (13)

and
E{ε20} − E{ε0εt} > 0 (14)

and g monotonically decreasing, we finally get

E{(dut)3} = 3β(dt)2
∫

∞

0
|g′(t)|

[

E{ε20} − E{ε0εt}
]

dt > 0. (15)

This result is in accordance with the positive skewness of temporal turbulent velocity incre-
ments as follows from the famous 4/5-law of Kolmogorov (Kolmogorov (1941b)), invoking
Taylor’s Frozen Flow Hypothesis (Taylor (1938)). In our stochastic framework (4), the posi-
tive skewness of temporal velocity increments is directly related to the positive autocorrelation
(14) of the local energy dissipation.

Remark 2 Kolmogorov’s 4/5-law predicts a negative skewness for the distribution of spatial
velocity increments u(x + r) − u(x) where r is a spatial distance along the direction of the
mean flow. Timewise velocity increments ut+s − ut, where s is a positive time lag, show a
positive skewness (Barndorff-Nielsen et al (2004) and Frisch (1995)). This change of sign
of the skewness by going from spatial to temporal statistics can be explained using Taylor’s
Frozen Flow hypothesis stating that the temporal variation ut+s−ut at a fixed spatial location
can be interpreted as a spatial variation u(x)−u(x+r) at a fixed time by setting r = Us where
U denotes the mean velocity. Here it is important to note that ut+s corresponds to u(x) and
ut to u(x+ r) (for positive r in the direction of the mean flow), which is the correspondance
responsible for the change of sign of the skewness.
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4.2 Lévy processes and OU processes

Besides the Brownian semimartingales two other basic types of semimartingales are Lévy
processes and Ornstein-Uhlenbeck (OU) processes. These are also central to our general
modelling approach.

A Lévy process is a stochastic process with càdlàg sample paths and independent and
identically distributed increments. The Poisson process and the stable processes (Lévy flights)
as well as Brownian motion are of this type. But the class of Lévy processes is much wider than
this, the inverse Gaussian and the normal inverse Gaussian Lévy processes being important
examples; these are Lévy processes for which the laws of the increments are, respectively,
inverse Gaussian and normal inverse Gaussian (For definition and properties of these laws,
which are denoted IG and NIG, respectively, see subsection 4.3 below).

The Lévy processes, other than Brownian motion, enter our modelling framework only
indirectly via the concept of OU processes. An OU process is a stationary process Z satisfying
a stochastic differential equation of the form

dZt = −λZtdt+ dLλt (16)

where L is a Lévy processes, called the background driving Lévy process (BDLP). This
equation has a stationary solution for any Lévy process L such that E {log(1 + |L1|)} < ∞.
In particular, taking L to be an inverse Gaussian Lévy process we obtain as solution Z the so
called OU-IG process, which will be applied in the sequel, as a model for the intermittency.

OU-IG processes have positive sample paths. Integrated with respect to Brownian motion,
they have the property to show a pronounced NIG-shape with heavy tails for the increments
at small scales. For the large scales, the pdf of increments tends to a Gaussian-like shape.
This is the property we want to model for the turbulent velocity.

4.3 Normal inverse Gaussian and inverse Gaussian distributions

The normal inverse Gaussian law, with parameters α, β, µ and δ, is the distribution on the
real axis R having probability density function

p(x;α, β, µ, δ) = a(α, β, µ, δ)q

(

x− µ

δ

)

−1

K1

{

δαq

(

x− µ

δ

)}

eβx (17)

where q(x) =
√

1 + x2 and

a(α, β, µ, δ) = π−1α exp
{

δ
√

α2 − β2 − βµ
}

(18)

and where K1 is the modified Bessel function of the third kind and index 1. The domain of
variation of the parameters is given by µ ∈ R, δ ∈ R+, and 0 ≤ |β| < α. The distribution is
denoted by NIG(α, β, µ, δ).

The standardised third and fourth order cumulants are

c̄3 =
c3

c
3/2
2

= 3
ρ

(δα(1 − ρ2)1/2)1/2

c̄4 =
c4
c22

= 3
1 + 4ρ2

δα(1 − ρ2)1/2
(19)
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where ρ = β/α. We note that the NIG distribution (17) has semiheavy tails; specifically,

p(x;α, β, µ, δ) ∼ const. |x|−3/2 exp (−α |x| + βx) , x→ ±∞. (20)

NIG shape triangle For some purposes it is useful, instead of the classical skewness and
kurtosis quantities (19), to work with the alternative asymmetry and steepness parameters χ
and ξ defined by

χ = ρξ (21)

and
ξ = (1 + γ̄)−1/2 (22)

where γ̄ = δ
√

α2 − β2. Like c̄3 and c̄4, these parameters are invariant under location-scale
changes and the domain of variation for (χ, ξ) is the normal inverse Gaussian shape triangle

{(χ, ξ) : −1 < χ < 1, 0 < ξ < 1}. (23)

The distributions with χ = 0 are symmetric, and the normal law occurs as limiting case for
(χ, ξ) near to (0, 0). Figure 2 gives an impression of the shape of the NIG distributions for
various values of (χ, ξ). The dashed line in Figure 2 corresponds to ρ = 0.1 and represents
the approximate location of the pdf of temporal turbulent velocity increments, as reported in
Barndorff-Nielsen et al (2004).

As discussed in the papers cited in Barndorff-Nielsen et al (2004), the class of NIG
distributions and processes have been found to provide accurate modelling of a great variety
of empirical findings in the physical sciences and in financial econometrics.

As a second infinitely divisible distribution we need the inverse Gaussian distribution
(IG). This distribution will be used to model the intermittency of the velocity field. The
inverse Gaussian law, with parameters δ and γ, is the distribution on the positive real axis
R+ having probability density function

p(x; δ, γ) =
δ√
2π
eδγx−3/2 exp{−[δ2x−1 + γ2x]/2} (24)

where the parameters δ and γ satisfy δ > 0 and γ ≥ 0.

5 Temporal model for the turbulent velocity field

Section 3 introduced the modelling framework for the turbulent velocity in its full generality.
Here, we focus on two specific properties of the turbulent velocity, namely the evolution of
the pdf of velocity increments across time scales, and statistics related to K62.

For mathematical convenience we neglect the skewness of the velocity field, setting β = 0
in (4). The skewness of the velocity field is not essential for the evolution of the pdf of
velocity increments from heavy tails at small scales to an approximate Gaussian shape at
large scales. We also expect that neglecting the skewness of the velocity field does not alter
the basic statistical properties of the Kolmogorov variable (1), in particular its conditional
distributions. A more detailed discussion of the influence of the skewness term will be given
elsewhere.
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5.1 Evolution of the pdf of velocity increments

We discuss the pdf of velocity increments ut − u0, where t > 0, in terms of cumulants. In
our non-skewed set-up, i.e. (4) with β = 0, the third order cumulant is zero for all scales t.
Therefore, the fourth order cumulant is the first order that distinguishes between a Gaussian
like shape for the large scales and heavy tails for small scales. Without specifying the function
g and the local energy dissipation process ε in detail, the large scale limit of ut−u0 approaches
a Gaussian shape. Note however that under model (4) the limit law of ut−u0 for t→ ∞ can
never be Gaussian unless the intermittency process ε is deterministic. In general, ut−u0 will
tend in law to a random variable of the form v0 − u0 where v0 is an independent copy of u0,
and the law of v0 − u0 is mixed Gaussian when ε is independent of the Brownian motion B.
In addition, we are able to show analytically, for specific choices of g and εt, that the small
scale limit has pronounced heavy tails.

We shall denote the m-th order cumulant of an arbitrary random variable u by cm(u) and
write the cumulant function of u as

C{ζ ‡ u} = log E
{

eiζu
}

. (25)

Furthermore, for any positive random variable X we define the kumulant function K̄ of X by

K̄{θ ‡X} = log E
{

e−θX
}

. (26)

To get some insight into the statistical properties of the stationary increments ut − u0, we
first calculate the cumulant function. We have

ut − u0 =

∫ t

−∞

[

g(t− s) − 1(−∞,0](s)g(−s)
]√

εsdBs, (27)

where 1I denotes the indicator function on an interval I. Since, conditionally on ε, the process
u is Gaussian, we get for the cumulant function of ut − u0 the form

C{ζ ‡ ut − u0} = K̄{1

2
ζ2 ‡Q(t)} (28)

where

Q(t) = c2 (ut − u0|ε) =

∫ t

−∞

[

g(t− s) − 1(−∞,0](s)g(−s)
]2
εsds (29)

is the conditional variance of ut − u0 given ε.
Differentiating the cumulant function (28) gives

c2(ut − u0) = E {Q(t)} = c1(ε0)G(t) (30)

where

G(t) =

∫ t

−∞

[

g(t− s) − 1(−∞,0](s)g(−s)
]2

ds. (31)

Furthermore,
1

3
c4(ut − u0) = c2 (Q(t)) = c2 (ε0) 〈g, τ〉(t) (32)
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where

〈g, τ〉(t) =

∫ t

−∞

∫ t

−∞

[(

g(t− s) − 1(−∞,0](s)g(−s)
) (

g(t− s′) − 1(−∞,0](s
′)g(−s′)

)]2

τ(
∣

∣s− s′
∣

∣)dsds′ (33)

and where τ is the autocorrelation function of ε.
It follows that

c̄4(ut − u0) =
c4(ut − u0)

c2(ut − u0)2
= 3

c2(ε0)

c1(ε0)2
D(t) (34)

where

D(t) =
〈g, τ〉(t)
G(t)2

. (35)

For the small scale limit we get from (31), (33) and (35)

lim
t→0

D(t) = τ(0) = 1. (36)

For the large scale limit we get

lim
t→∞

D(t) =

∫

∞

0

∫

∞

0
ḡ2(s)ḡ2(s′)τ(

∣

∣s− s′
∣

∣)dsds′ ≤ 1 (37)

where

ḡ2(t) =
g2(t)

∫

∞

0 g2(s)ds
. (38)

Consequently, c̄4(ut − u0) will be small for large t if either c2(ε0)/c1(ε0)
2 is small or if the

interplay between the decrease of g and τ results in limt→∞D(t) ≪ 1. In both cases we may
expect the law of ut−u0 to be close to Gaussian for large t (without being strictly Gaussian).

In the case where c2(ε0)/c1(ε0)
2 is not small, but g or τ decrease fast enough for

limt→∞D(t) ≪ c1(ε0)
2/(3c2(ε0)) we may expect our model (4) to show the evolution of

the pdf of temporal velocity increments from heavy tails at small scales to an approximate
Gaussian shape at large scales.

5.2 Statistics of the Kolmogorov variable

We now turn to the discussion of the statistics of the Kolmogorov variable V of (1) within
our stochastic framework (4) with β = 0. In particular, we show that the Kolmogorov
variable V can be represented as the product of two independent variates, namely a standard
normal random variable and a process that completely contains the dependence of V on the
integrated energy dissipation. Based on this decomposition, some analytical results concerning
the conditional pdf of V for the small and large scale limits can be derived.

Following the discussion in Section 4.1 we replace the integrated energy dissipation in (1)
by the quadratic variation and define the stochastic analogue of the classical Kolmogorov
(1962) variable V as

Vt =
ut − u0

{ū [u]t}
1/3

. (39)

The introduction of the mean velocity ū turns Vt into a non-dimensional stochastic process.
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To reveal the basic statistical properties of the process Vt we note that (39) may be
rewritten as

Vt =
ut − u0

Q(t)1/2
Q(t)1/2

{ū [u]t}
1/3

= URt (40)

where

U =
ut − u0

Q(t)1/2
(41)

and

Rt =
Q(t)1/2

{ū [u]t}
1/3

. (42)

The variable U is a standard normal random variable and independent of Rt. The dependence
of Vt on [u]t - or, equivalently, εt - is thus completely contained in the process Rt.

To proceed further, we specify the function g to be of the form

g(t) = e−ψt (43)

We gain some insight into the properties of the process Rt for t→ 0 noting the decomposition
of the conditional variance of velocity increments

Q(t) =
[

1 − e−ψt
]2

∫ 0

−∞

e2ψsεsds+

[
∫ t

0
e−2ψ(t−s)εsds− [u]t

]

+ [u]t. (44)

Focusing on the first term on the right hand side of (44) we get in leading order for t→ 0

E

{

[

1 − e−ψt
]2

∫ 0

−∞

e2ψsεsds

}

= c1(ε0)[2ψ]−1
[

1 − e−ψt
]2

∼ c1(ε0)ψ

2
t2. (45)

For the second term in (44) we have, by (11)

∫ t

0
e−2ψ(t−s)εsds− [u]t = −

∫ t

0

[

1 − e−2ψ(t−s)
]

εsds (46)

and in the limit t→ 0, to leading order

E

{
∫ t

0

[

1 − e−2ψ(t−s)
]

εsds

}

= c1(ε0)
[

t− (2ψ)−1
(

1 − e−2ψt
)]

∼ 2c1(ε0)ψt
2. (47)

Since the first term in (44) is strictly positive and the second one is strictly negative we
conclude that they are both predominantly of order t2 for small t. Therefore, since the mean
of [u]t is linear in t, we conclude that the quadratic variation dominates in (44) for small t
and consequently

Vt ∼ U [u]
1/6
t . (48)

The small scale dependence of Vt on the integrated energy dissipation is in conformity with the
corresponding result for the turbulent velocity field that follows from kinematic considerations
at scales smaller than dissipation scales.

We can also draw a conclusion for the large scale limit t→ ∞. If we assume the intermit-
tency process εt to be ergodic, we get [u]t ∼ tc1(ε0). Furthermore, since

E {Q(t)} = c1(ε0)ψ
−1

[

1 − e−ψt
]

(49)
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we get for t → ∞
E {|Vt|} ∼ t−1/3. (50)

The behaviour E{|Vt|} ∝ t−0.4 is reported for high Reynolds number atmospheric data in
Stolovitzky et al (1992). In their analysis the range of t where the exponent 0.4 holds is
small. For larger t an exponent of 1/3 seems to better fit their data.

The small scale limit (48) and the large scale limit (50) are both in accordance with the
corresponding experimental results. For the time being we are not able to analytically treat
the case of moderate t which is the most interesting in view of K62. For these scales we have
to refer to the simulation in the next Section.

6 Simulation

The analytical results in the last Section mainly concern the statistics of velocity increments
and the statistics of the Kolmogorov variable for the small and large scale limits. The corre-
sponding results for moderate scales are only accessible through numerical simulation.

For the simulations we use a discretised version of the non-skewed model (4) with β = 0.
For the weight function we set

g(t) = e−ψt1[0,T ]. (51)

where ψ and T are positive numbers. The introduction of T associates a finite decorrelation
time to the velocity field u. We further specify the process ε as a truncated OU-IG process,
i.e.

εt =

∫ t

t−T̄
e−λ(t−s)dLλs, (52)

where L is an IG(δ, γ)-Lévy process. The assumption (52) coincides for T̄ → ∞ with the
definition of an ordinary OU-IG process.

The values for the parameters of the simulation of u are ū = 1, λ = 1, T̄ = 100, ψ = 0.1,
δ = 1, γ = 1 and T = 40 and we discretised all stochastic integrals with a finite step size
∆t = 1. Hence we simulated, for t = 0, 1, . . . , N with N = 2 · 106,

εt =

t−1
∑

j=t−T̄

e−λ(t−j) (Lj+1 − Lj) (53)

and

ut =
t−1
∑

j=t−T

e−ψ(t−j)√εj (Bj+1 −Bj) . (54)

For the quadratic variation we used the approximation

[u]t =

t−1
∑

j=0

(uj+1 − uj)
2 (55)

which coincides with the usual definition of the energy dissipation for the temporal resolution
∆t = 1.

Figure 3 shows the evolution of the probability densities of the simulated increments ut−u0

for various scales t. We clearly observe heavy tails for the small scales and an approximately
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Gaussian shape for the large scales. The solid lines denote the approximation of the densities
within the class of NIG-distributions. The densities of ut − u0 qualitatively display the
empirical findings about the evolution across time scales of turbulent velocity increments
reported in Barndorff-Nielsen et al (2004).

We further substantiate the scale dependence in Figure 4 which shows the NIG shapes
for the densities as displayed in Figure 3. The parameter χ is zero for all scales reflecting
the symmetry of the densities. The steepness parameter ξ decreases with increasing scale.
Noting the expression ξ = [1+3/c4]

−1/2 for symmetric NIG-distributions, Figure 4 visualizes
the evolution from heavy tails (large ξ) to an approximately Gaussian shape (in the limit
(ξ, χ) → (0, 0)). These findings are very similar to the corresponding results for the turbulent
velocity field as reported in Barndorff-Nielsen et al (2004) (see also Figure 2).

We now turn to the investigation of the Kolmogorov variable Vt. Figure 5 shows the
unconditional densities of Vt. We first note that the unconditional densities at moderate and
large scales are approximately Gaussian, in accordance with the findings in Stolovitzky and
Sreenivasan (1994), Stolovitzky et al (1992), Zhu et al (1995) and Hosokawa et al (1994). For
not too large scales, the densities collapse for small amplitudes while for large amplitudes, the
densities are scale dependent. For the very small scales, a bimodal distribution is observed.
The bimodality is related to the heavy tails of the pdf of velocity increments at small scales
(in this connection see the mathematical study Logan et al (1973)).

Comparable results are reported in Zhu et al (1995). The authors discuss the evolution of
the second order empirical moments of Vt across scales, showing an increase with increasing
scale, reaching a plateau at intermediate scales and finally a decrease with further increasing
scale. The same behaviour holds for the simulation of our model. Figure 6 shows the second
order moments of Vt as a function of scale t.

Figures 7-9 show the conditional densities p(Vt|[u]t) for various scales t and various values

of [u]
1/3
t . For small t, the conditional densities strongly depend on [u]t. With decreasing values

of [u]
1/3
t , the dependence gets smaller and for large enough t (t ≈ 16 in our simulation), the

conditional densities do not depend on [u]t. This independence also holds for the larger
scales 16 ≤ t < T̄ (not shown here). These findings agree well with results reported for the
turbulent velocity field (Stolovitzky and Sreenivasan (1994), Stolovitzky et al (1992) and Zhu
et al (1995)) and embody the gist of K62.

7 Conclusion

Summarizing the main results, we state that our proposed semimartingale framework allows
modelling in conformity with the observed evolution of the pdf of temporal velocity increments
across time scales and with the experimental verification of Kolmogorov’s refined similarity
hypotheses. The relation between general stochastic processes and K62 is also discussed in
Stolovitzky and Sreenivasan (1994). These authors propose fractional Brownian motion (fBm)
as a stochastic process that diplays the main properties of K62. However, the use of fBm
there is accompanied with a mathematical inconsistency, connected to the fact that for fBm
(except Brownian motion itself) the quadratic variation is either identically 0 or ∞. (This,
incidentally, implies that fBm is not a semimartingale.) Furthermore, fBm is a non-stationary
Gaussian process and does not capture the heavy tails for the pdf of velocity increments at
small time scales. Thus, to our knowledge, the model (4) seems to be the first approach to the
turbulent velocity field that comprises both, the evolution of the density of temporal velocity
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increments across time scales and the statistics of the Kolmogorov variable V .
For the simulation we restricted to a very simple form of the intermittency term εt as

an OU-IG process which is easy to implement but not realistic for the turbulent energy
dissipation field. A realistic approach would be to use a more advanced model for the energy
dissipation. In particular we think of Lévy based models that allow to explicitely control the
correlation structure of the energy dissipation field (Barndorff-Nielsen et al (2003), Barndorff-
Nielsen and Schmiegel (2004), Schmiegel et al (2004) and Schmiegel (2005)). Controlling the
correlation structure of the energy dissipation seems to enable to model the evolution of
the density of velocity increments in a way that displays the detailed behaviour reported in
Barndorff-Nielsen et al (2004). A detailed discussion of this will be given elsewhere.

The fact that using an OU-IG process for εt works so surprisingly well indicates that
models of the form (4) are the appropriate framework in the turbulence context. In particular,
the calculations in Section 4.1 and Section 5 show that main parts of the turbulence statistics
can be reproduced without specifying the intermittency term ε and the weight function g. In
this respect, only a more detailed modelling of the correlation structure of the intermittency
can narrow these degrees of freedom.
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based tempo-spatial modelling; with applications to multiscaling and multifractality.
MAPHYSTO Research Report 2003-33, University of Aarhus. (Submitted.)

[3] Barndorff-Nielsen, O.E. and Schmiegel, J. (2004): Lévy based tempo-spatial modelling;
with applications to turbulence. Uspekhi Mat. Nauk 159, 63-90.

[4] Barndorff-Nielsen, O.E. and Schmiegel, J. (2006): Ambit processes; with applications to
turbulence and tumour growth. To appear in Proceedings of the Abel symposium 2005,
Springer.

[5] Barndorff-Nielsen, O.E. and Shephard, N. (2001): Non-Gaussian Ornstein-Uhlenbeck-
based models and some of their uses in financial economics (with Discussion). J. R.
Statist. Soc. B 63, 167-241.

[6] Barndorff-Nielsen, O.E. and Shephard, N. (2006): Continuous Time Approach to Finan-
cial Econometrics. Cambridge University Press. (To appear.)

[7] Benzi, R., Ciliberto, S., Tripiccione, R., Baudet, C., Massaioli, F. and Succi, S. (1993):
Extended self-similarity in turbulent flows. Phys. Rev. E 48, R29-R32.

[8] Castaing, B., Gagne, Y. and Hopfinger, E.J. (1990): Velocity probability density func-
tions of high Reynolds number turbulence. Physica D 46, 177-200.

[9] Frisch, U. (1995): Turbulence. The Legacy of A.N. Kolmogorov. Cambridge University
Press.

14



[10] Hosokawa, I., Van Atta, C.W. and Thoroddsen, S.T. (1994): Experimental study of the
Kolmogorov refined similarity variable. Fluid Dyn. Res. 13, 329-333.

[11] Jacod, J. and Shiryaev, A.N. (2003): Limit Theorems for Stochastic Processes. (Sec. Ed.)
Heidelberg: Springer.

[12] Kolmogorov, A.N. (1941a): The local structure of turbulence in incompressible viscous
fluid for very large Reynolds numbers. Dokl. Akad. Nauk. SSSR 30, 299-303.

[13] Kolmogorov, A.N. (1941b): Dissipation of energy in locally isotropic turbulence. Dokl.
Akad. Nauk. SSSR 32, 16-18.

[14] Kolmogorov, A.N. (1962): A refinement of previous hypotheses concerning the local
structure of turbulence in a viscous incompressible fluid at high Reynolds number, J.
Fluid Mech 13, 82-85.

[15] Logan, B.F., Mallows, C.L., Rice, S.O. and Shepp, L.A. (1973): Limit Distributions of
Self-normalized Sums. The Annals of Probability 1, 788-809.

[16] Monin, A.S. and Yaglom, A.M. (1975): Statistical Fluid Mechanics, Vols 1 and 2. Cam-
bridge, MS: MIT Press.

[17] Obukhov, A.M. (1962): Some specific features of atmospheric turbulence. J. Fluid Mech.
13, 77-81.

[18] Protter, P.E. (2004): Stochastic Integration and Differential Equations. (Sec. Ed.) Hei-
delberg: Springer.

[19] Schmiegel, J. (2005a): Self-scaling of turbulent energy dissipation correlators. Phys. Lett.
A 337, 342-353.

[20] Schmiegel, J., Cleve, J., Eggers, H.C., Pearson, B.R. and Greiner, M. (2004): Stochastic
energy-cascade model for (1+1)-dimensional fully developed turbulence. Phys. Lett. A
320, 247-253.

[21] Staicu, A. and van de Water, W. (2003): Small scale velocity jumps in shear turbulence.
Phys. Rev. Lett. 90, 094501.

[22] Stolovitzky, G., Kailasnath, P. and Sreenivasan, K.R. (1992): Kolmogorov’s refined sim-
ilarity hypothesis. Phys. Rev. Lett. 69, 1178-1181.

[23] Stolovitzky, G. and Sreenivasan, K.R. (1994): Kolmogorov’s refined similarity hypotheses
for turbulence and general stochastic processes. Rev. Mod. Phys. 66, 229-239.

[24] Taylor, G.I. (1938): The spectrum of turbulence. Proc. R. Soc. Lond. A 164, 476-490.

[25] van de Water, W. (1996): Anomalous scaling and anisotropy in turbulence. Physica B
228, 185-191.

[26] Vincent, A. and Meneguzzi, M. (1991): The spatial structure and statistical properties
of homogeneous turbulence. J. Fluid Mech. 225, 1-25.

[27] Zhu, Y., Antonia, R.A. and Hosokawa, I. (1995): Refined similarity hypotheses for tur-
bulent velocity and temperature fields. Phys. Fluids 7, 1637-1648.

15



lo
g

p
(∆

u
s
)

lo
g

p
(∆

u
s
)

lo
g

p
(∆

u
s
)

lo
g

p
(∆

u
s
)

∆us ∆us

∆us ∆us

s = 4 s = 52

s = 600 s = 8000

Figure 1: Approximation of the pdf of velocity increments within the class of NIG distribu-
tions (solid lines, fitting by maximum likelihood) for data from the atmospheric boundary layer
(kindly provided by K.R. Sreenivasan) with Rλ = 17000 and time scales s = 4, 52, 600, 8000
(in units of the finest resolution).
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Figure 2: The shape triangle of the NIG distributions with the log density functions of
the standardized distributions, i.e. with mean 0 and variance 1, corresponding to the values
(χ, ξ) = (±0.8,0.999), (±0.4,0.999), (0.0,0.999), (±0.6,0.75), (±0.2,0.75), (±0.4,0.5), (0.0,0.5),
(±0.2,0.25) and (0.0,0.0). The coordinate system of the log densities is placed at the corre-
sponding value of (χ, ξ). Furthermore, the line corresponding to ρ = 0.1, i.e. χ = 0.1ξ, is
shown.
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Figure 3: Logarithm of the probability densities of the simulated increments ut−u0 (arbitrary
units) with t = 1, 2, 8, 16, 32, 98 (in units of the finite step size ∆t). The solid lines denote
the approximation within the class of NIG distributions (fitting by maximum likelihood).
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Figure 4: NIG shapes for the densities of the simulated increments ut − u0, with t =
1, 2, 4, 8, 16, 32, 64, 98 (from top to bottom, in units of the finite step size ∆t).
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Figure 5: (a) Logarithm of the simulated unconditional densities p(Vt) of the Kolmogorov
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Figure 6: Estimated variance Var(Vt) of the simulated Kolmogorov variable Vt with t =
1, 2, 4, 8, 16, 32, 64, 98 (in units of the finite step size ∆t).
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