Functional calculus and martingale representation formulas for on integer-valued random measures

Rama Cont \& Pierre Blacque-Florentin

Dept of Mathematics
Imperial College London

Workshop on Ambit Processes and Related Topics, Aarhus 2016

Overview

(1) Introduction
(2) Functional calculus for integer-valued measures
(3) Martingale representation formula, purely discontinuous case
4. Including a continuous component
(5) Example: Supremum of a Lévy process

Martingale representation theorem for jump processes

Let $J(d t d y)$ be an integer-valued random measure on $[0, T] \times \mathbb{R}_{0}^{d}$ with compensator $\mu(d t d y)$ on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.
The filtration $\left(\mathcal{F}_{t}\right)$ generated by J is said to have the predictable representation property if any \mathcal{F}_{t}-adapted square-integrable martingale is such that

$$
Y(t)=Y(0)+\int_{0}^{t} \int_{\mathbb{R}_{0}^{\psi}} \psi(s, y)(J-\mu)(d s d y)
$$

with $\psi:[0, T] \times \mathbb{R}_{0}^{d} \times \Omega \rightarrow \mathbb{R}_{0}^{d}, \mathcal{F}_{t}$-predictable.
The predictable representation property holds for Poisson random measures (Itô, Ikeda-Watanabe).
Conditions for measures with non-deterministic compensators are given in (Jacod 1987, Cohen 2013).

Martingale representation formulas

- Problem of finding an explicit representation appears in many applications like hedging, control of jump processes or BSDEs with jumps.
- Has been approached through Malliavin calculus for jump processes (Bismut 73, Jacod et al 1982, Lokka 05, Solé-Utzet-Vives 05,...) and Markovian techniques (Jacod-Méléard-Protter 00).
- In these results, ψ is represented in the form: $\psi(t, z)={ }^{p} E\left[D_{t, z} Y \mid \mathcal{F}_{t}\right]$, where D is an appropriate "Malliavin" derivative operator, for which many constructions have been proposed.

Outline

- We develop a calculus for functionals of integer-valued measures.
- For integer-valued random measure (IVRM) with the predictable representation property, we provide a pathwise construction of a 'stochastic derivative' operator, shown to be the adjoint of the compensated stochastic integral with respect to this IVRM.
- We provide an explicit version of the martingale representation formula for functionals of integer-valued random measures.
- These results extend the Functional Itô calculus to integer-valued random measures.

Canonical space of integer-valued random measures

Let $\mathbb{R}_{0}^{d}:=\mathbb{R}^{d}-\{0\}$ and $\mathcal{M}_{T}:=\mathcal{M}\left([0, T] \times \mathbb{R}_{0}^{d}\right)$ be space of integer-valued Radon measures on $[0, T] \times\left(\mathbb{R}_{0}^{d}\right)$:

$$
j: \mathcal{B}\left([0, T] \times \mathbb{R}_{0}^{d}\right) \rightarrow \mathbb{N}
$$

such that j is σ-finite and there exists a sequence of $\left(t_{i}, z_{i}\right) \in[0, T] \times \mathbb{R}_{0}^{d}$ such that

$$
j(.)=\sum_{i=0}^{\infty} \delta_{\left(t_{i}, z_{i}\right)}(.)
$$

$\mathcal{M}_{2}\left([0, T] \times \mathbb{R}_{0}^{d}\right)$ denotes the subset of measures with

$$
\int_{[0, T] \times \mathbb{R}^{d}}\|z\|^{2} j(d t d z)=\sum_{i \geq 0}\left\|z_{i}\right\|^{2}<\infty
$$

Non-anticipative functionals

Notation: for $j \in \mathcal{M}_{T}, t \in[0, T]$ denote j_{t} the restriction of j to $[0, t]$:

$$
\forall A \in \mathcal{B}\left(\mathbb{R}_{0}^{d}\right), \mathbf{j}_{\mathbf{t}}([0, T] \times A)=j([\mathbf{0}, \mathbf{t}] \times A)
$$

and $\mathbf{j}_{\mathbf{t}-}$ its restriction to $[0, t)$:

$$
\forall A \in \mathcal{B}\left(\mathbb{R}_{0}^{d}\right), \mathbf{j}_{\mathbf{t}-}([0, T] \times A)=j([\mathbf{0}, \mathbf{t}) \times A)
$$

A map $F:[0, T] \times \mathcal{M}_{T} \rightarrow \mathbb{R}$ is said to be non-anticipative if

$$
\forall j \in \mathcal{M}_{T}, \forall t \in[0, T], F(t, j)=F\left(t, j_{t}\right)
$$

A map $F:[0, T] \times \mathcal{M}_{T} \rightarrow \mathbb{R}$ is said to be predictable if

$$
\forall j \in \mathcal{M}_{T}, \forall t \in[0, T], F(t, j)=F\left(t, j_{t-}\right)
$$

Integral functionals of integer-valued measures

Fundamental example: integral functionals
Let $F:[0, T] \times \mathcal{M}_{T} \rightarrow \mathbb{R}$ defined by

$$
F(t, j)=\int_{0}^{t} \int_{\mathbb{R}^{d} \backslash\{0\}} \psi(s, y)(j-\mu)(d s d y)
$$

where $\psi:[0, T] \times \mathbb{R}^{d} \backslash\{0\} \rightarrow \mathbb{R}$ is a kernel with support bounded away from 0.
Then F is a non-anticipative functional.

A finite difference operator on functionals

For $z \in \mathbb{R}^{d}$, define

$$
\begin{equation*}
\nabla_{J, z} F(t, j)=F\left(t, j_{t-}+\delta_{(t, z)}\right)-F\left(t, j_{t-}\right) \tag{FD}
\end{equation*}
$$

The operator

$$
\begin{aligned}
\nabla_{J} F:[0, T] \times \mathcal{M}_{T} \times\left(\mathbb{R}^{d}-\{0\}\right) & \mapsto \mathbb{R} \\
(t, j, z) & \rightarrow \nabla_{J, z} F(t, j)
\end{aligned}
$$

maps non-anticipative functionals into predictable functionals.

Integral functionals of integer-valued measures

Proposition: integral functionals

Let $F_{\psi}:[0, T] \times \mathcal{M}_{T} \rightarrow \mathbb{R}$ defined by

$$
F_{\psi}(t, j)=\int_{0}^{t} \int_{\mathbb{R}^{d} \backslash\{0\}} \psi(s, y)(j-\mu)(d s d y)
$$

where

- $\psi:[0, T] \times \mathbb{R}^{d} \backslash\{0\} \rightarrow \mathbb{R}$ is a kernel with support bounded away from 0 , and
- $\mu: \mathcal{B}\left([0, T] \times \mathbb{R}_{0}^{d}\right) \times \mathcal{M}\left([0, T] \times \mathbb{R}_{0}^{d}\right) \rightarrow \mathbb{R}^{+}$is predictable in j and σ-finite.
Then F is a non-anticipative functional and $\nabla_{J} F_{\psi}=\psi$, i.e.

$$
\forall(t, z) \in[0, T] \times \mathbb{R}_{0}^{d}, \quad \nabla_{J, z} F_{\psi}(t, j)=\psi(t, z)
$$

Integer-valued random measures

We now consider $\mathcal{M}_{T}=\mathcal{M}\left([0, T] \times \mathbb{R}_{0}^{d}\right)$ endowed with the filtration \mathbb{F}^{0} generated by the canonical process

$$
\begin{aligned}
J:[0, T] \times \mathcal{B}\left([0, T] \times \mathbb{R}_{0}^{d}\right) \times \mathcal{M}_{T} & \rightarrow \mathbb{R} \\
(t, A, j) & \rightarrow j_{t}(A)=j([0, t] \cap A)
\end{aligned}
$$

We endow $\left(\Omega, \mathcal{F}_{T}\right)$ with a probability measure \mathbb{P} such that the canonical process is an integer-valued random measure with \mathbb{P}-compensator $\mu(d t d z)$.
Let \mathbb{F} be the \mathbb{P}-completed version of \mathbb{F}_{+}^{0}.

Multivariate point processes

Let us first consider the case of a multivariate point process for which $\mathbb{P}\left(J\left([0, T] \times \mathbb{R}_{0}^{d}\right)<\infty\right)=1$. Then the the martingale representation property for $(J, \mathbb{F}, \mathbb{P})$ always holds (Jacod 1975):
a right continuous process Z is a (\mathbb{P}, \mathbb{F}) l-ocal martingale if and only if there exists a predictable map $\psi:[0, T] \times \mathbb{R}_{0}^{d} \times \mathcal{M}_{T} \rightarrow \mathbb{R}$ such that
$M(t)=M(0)+\int_{0}^{t} \int_{E} \psi(s, z)(J-\mu)(d s d z)=M(0)+\int_{0}^{t} \int_{E} \psi(s, z) \widetilde{J}(d s d z)$

Martingale representation formula for point processes (Blacque-Florent, R.C 2015)
The integrand ψ has the following explicit representation:

$$
\begin{equation*}
\forall j \in \mathcal{M}_{T}, \quad \psi(t, z, j)=\nabla_{J} M(t, z, j)=M\left(j_{t-}+\delta_{(t, z)}\right)-M\left(j_{t-}\right) \tag{1}
\end{equation*}
$$

Extension to square-integrable IVRM

We now assume that the compensator μ of J satisfies

$$
\mu(d s d y)=\nu(\{s\} \times d y) d s \text { and } E^{\mathbb{P}}\left[\int_{0}^{T} \int_{\mathbb{R}_{0}^{d}}\left(|z|^{2} \wedge 1\right) \mu(d s d z)\right]<\infty
$$

and define $\mathcal{L}_{\mathbb{P}}^{2}(\mu):\left\{\right.$ space of predictable random fields $\psi:[0, T] \times R^{d} \rightarrow \mathbb{R}$ such that

$$
\left.\|\psi\|_{\mathcal{L}_{\mathbb{P}}^{2}(\mu)}^{2}:=E\left[\int_{[0, T] \times \mathbb{R}_{0}^{d}}|\psi(s, y)|^{2} \mu(d s d y)\right]<\infty\right\}
$$

$\mathcal{I}_{\mathbb{P}}^{2}(\mu):=$
$\left\{Y:[0, T] \times \Omega \rightarrow \mathbb{R} \mid Y(t)=\int_{[0, t] \times \mathbb{R}_{0}^{d}} \psi(s, y)(J-\mu)(d s d y), \psi \in \mathcal{L}_{\mathbb{P}}^{2}(\mu)\right\}$

$$
\|Y\|_{\mathcal{I}_{\mathbb{P}}^{2}(\mu)}^{2}:=E\left[|Y(T)|^{2}\right]
$$

Set \mathcal{S} of cylindrical simple predictable fields

A predictable map $\psi:[0, T] \times \mathbb{R}^{d} \times \mathcal{M}\left([0, T] \times \mathbb{R}_{0}^{d}\right) \rightarrow \mathbb{R}^{d}$ belongs to \mathcal{S} if has a representation

$$
\psi\left(t, z, j_{t}\right)=\sum_{\substack{i=0 \\ k=1}}^{I, K} \psi_{i k}\left(j_{t_{i}}\right) 1_{\left(t_{i}, t_{i+1}\right]}(t) 1_{A_{k}}(z)
$$

where

- $A_{k} \in \mathcal{B}\left([0, T] \times \mathbb{R}^{d} \backslash\{0\}\right), 0 \notin \overline{A_{k}}$ and
- $\psi_{i k}$ are bounded cylindrical functionals with support bounded away from zero.

Then for any $\psi \in \mathcal{S}$ and any $j \in \mathcal{M}_{T}$, the integral $\int \psi(s, z) j(d s d z)$ may be defined pathwise.

Stochastic operators

The compensated stochastic integral w.r.t J is defined as

$$
\begin{aligned}
I: \mathcal{L}_{\mathbb{P}}^{2}(\mu) & \rightarrow \mathcal{I}_{\mathbb{P}}^{2}(\mu) \\
\psi & \mapsto \int_{0} \int_{\mathbb{R}_{0}^{d}} \psi(s, y)(J-\mu)(d s d y)
\end{aligned}
$$

Proposition: The operator

$$
\nabla_{J}: I(\mathcal{S}) \rightarrow \mathcal{L}_{\mathbb{P}}^{2}(\mu)
$$

is defined (pathwise) on $I(\mathcal{S})$ and for
$F(t, J)=\int_{0} \int_{\mathbb{R}_{0}^{d}} \psi(s, y)(J-\mu)(d s d y)$, we have

$$
\nabla_{J, z} F(t, J)=F\left(t, J_{t-}+\delta_{t, z}\right)-F\left(t, J_{t-}\right)=\psi(t, z)
$$

Density of regular integral functionals

Proposition

The set $I(\mathcal{S})$ integral processes Y having a regular functional representation

$$
\begin{equation*}
Y(.)=F(., J)=\int_{0} \int_{\mathbb{R}^{d} \backslash\{0\}} \psi(s, y)(J-\mu)(d s d y) \tag{2}
\end{equation*}
$$

with $\psi \in \mathcal{S}$, is dense in $\mathcal{I}_{\mathbb{P}}^{2}(\mu)$.
Then

$$
\nabla_{J}: I(\mathcal{S}) \rightarrow \mathcal{S}
$$

is defined pathwise and for $Y \in I(\mathcal{S})$ with the above representation,

$$
\nabla_{J} Y(t, z)=\psi(t, z)
$$

We now show that ∇_{J} is closable on $\overline{I(S)}=\mathcal{L}_{\mathbb{P}}^{2}(\mu)$.

∇J as the adjoint of the stochastic integral

Theorem

The operator $\nabla_{J}: I(\mathcal{S}) \rightarrow \mathcal{L}_{\mathbb{P}}^{2}(\mu)$ is closable in $\mathcal{I}_{\mathbb{P}}^{2}(\mu)$, and is the adjoint of the stochastic integral in the sense of the following integration by parts.

$$
\begin{aligned}
<Y, I(\phi)>_{\mathcal{I}_{\mathbb{P}}^{2}(\mu)} & :=E\left[Y(T) \int_{0}^{T} \int_{\mathbb{R}^{d} \backslash\{0\}} \phi(s, y)(J-\mu)(d s d y)\right] \\
& =E\left[\int_{0}^{T} \int_{\mathbb{R}_{0}^{d}} \nabla_{J} Y(s, y) \phi(s, y) \mu(d s d y)\right] \\
& =:<\nabla J Y, \phi>_{\mathcal{L}_{\mathbb{P}}^{2}(\mu)}
\end{aligned}
$$

Representation theorem for square-integrable martingales

The following result shows the link between the operator ∇_{J} and the martingale representation formula:

Martingale representation formula [R.C- Blacque-Florentin 2015]

Assume that the integer-valued random measure $(J, \mathbb{F}, \mathbb{P})$ has the predictable representation property. Then for any square integrable (\mathbb{F}, \mathbb{P})-martingale M,

$$
M(t)=M(0)+\int_{0}^{t} \int_{\mathbb{R}^{d} \backslash\{0\}} \nabla_{J} M(s, y)(J-\mu)(d s d y) \quad \mathbb{P} \text {-a.s. }
$$

So ∇_{J} may be seen as a 'stochastic derivative' with respect to the compensated random measure $\tilde{J}=J-\mu$.

Comparison with Malliavin calculus on Poisson space

Comparing with representation formulae obtained through Malliavin calculus on Poisson space we obtain:
Proposition: Assume J is a Poisson random measure under \mathbb{P} and let $\mathbb{D}: \boldsymbol{\Pi}^{1,2}(\mathbb{P}) \rightarrow L^{2}([0, T] \times \Omega)$ be the Malliavin derivative on Poisson space. Then

$$
\forall H i n \Pi^{1,2}(\mathbb{P}), E\left[\mathbb{D}_{t, z} H \mid \mathcal{F}_{t}\right]=\nabla_{J} E\left[H \mid \mathcal{F}_{t}\right](t, z) \quad d t \mathbb{P} \text { - a.e. }
$$

and the following diagram is commutative, in the sense of $d t \times d \mathbb{P}$ almost everywhere equality:

$$
\begin{array}{ccc}
\mathcal{I}^{2}(\mu) & \nabla_{f} & \mathcal{L}^{2}(\mathbb{F}) \\
\uparrow\left(E\left[\mid \cdot \mathcal{F}_{t}\right]\right)_{t \in[0, T]} & & \uparrow\left(E\left[\mid \cdot \mathcal{F}_{t}\right]\right)_{t \in[0, T]} \\
\boldsymbol{\Pi}^{1,2} & \xrightarrow{\mathbb{D}} & L^{2}([0, T] \times \Omega)
\end{array}
$$

Note however that our construction works for more general integer-valued random measures and does not involve the Poisson /independence properties of the Poisson space.

Including the continuous component

On a filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$ constructed similarly as before, and \mathbb{F} generated by an integer valued random measure J with compensator

$$
\mu(d s d y)=\nu(\{s\} \times d y) d s \text { and } \int_{0}^{T} \int_{\mathbb{R}_{0}^{d}}|z|^{2} \mu(d s d z)<\infty, \mathbb{P} \text {-a.s. }
$$

and a continuous martingale X, any square-integrable martingale writes, \mathbb{P}-a.s.

$$
Y(T)=Y(0)+\int_{0}^{T} \nabla_{X} Y(s) d X(s)+\int_{0}^{T} \int_{\mathbb{R}_{0}^{d}} \nabla_{J} Y(s, z) \tilde{J}(d s d z)
$$

with $\nabla_{X} Y$ defined as follows.

Defining \mathcal{S}_{c} as:

Set \mathcal{S}_{c} of regular simple predictable processes

$\psi:[0, T] \times \times \mathcal{D}([0, T]) \times \mathcal{M}\left([0, T] \times \mathbb{R}_{0}^{d}\right) \rightarrow \mathbb{R}^{d}$ belongs to \mathcal{S}_{c} if

- ϕ is predictable: $\psi(t, z, x, j)=\psi\left(t, z, x_{t-}, j_{t-}\right)$
- and

$$
\phi\left(t, x_{t}, j_{t}\right)=\sum_{\substack{i=0 \\ k=1}}^{\prime} \phi_{i}\left(x_{t_{i}}, j_{t_{i}}\right) 1_{\left(t_{i}, t_{i+1}\right]}(t)
$$

with

$$
\phi_{i}=g_{i}\left(x\left(\tau_{1}\right), \cdots, x\left(\tau_{n}\right), S_{\tau_{1}}^{\frac{1}{n}}, \ldots, S_{\tau_{n}}^{\frac{1}{n}}\right),
$$

$g_{i k} \in C_{c}^{\infty}\left(\mathbb{R}^{2 n}, \mathbb{R}^{n}\right)$ and $0 \leq \tau_{1} \leq \tau_{n} \leq t_{i}$,

$$
S_{t}^{\epsilon}:=j\left([0, t] \times(\epsilon, \infty)^{d}\right)
$$

Define $\mathcal{L}_{\mathbb{P}}^{2}([X]):=\{$ space of predictable processes $\psi:[0, T] \times \Omega \rightarrow \mathbb{R}$ such that

$$
\left.\|\psi\|_{\mathcal{L}_{\mathrm{P}}^{2}([X])}^{2}:=E\left[\int_{[0, T] \times \mathbb{R}_{0}^{\mathbb{d}}}|\psi(s, y)|^{2}[X](d s d y)\right]<\infty\right\}
$$

and

$$
\begin{aligned}
& \mathcal{I}_{\mathbb{P}}^{2}([X]):= \\
& \left\{Y:[0, T] \times \Omega \rightarrow \mathbb{R} \mid Y(t)=\int_{[0, t] \times \mathbb{R}_{0}^{d}} \phi(s) d X(s), \psi \in \mathcal{L}_{\mathbb{P}}^{2}([X])\right\} \\
& \\
& \quad\|Y\|_{\mathcal{I}_{\mathbb{P}}^{2}([X])}^{2}:=E\left[|Y(T)|^{2}\right]
\end{aligned}
$$

Defining:

$$
\begin{aligned}
I_{X} & : \mathcal{L}_{\mathbb{P}}^{2}([X]) \rightarrow \mathcal{I}_{\mathbb{P}}^{2}([X]) \\
\phi & \mapsto \int_{0} \phi(s) d X(s)
\end{aligned}
$$

The operator

$$
\begin{aligned}
\nabla_{X} & : I_{X}\left(\mathcal{S}_{C}\right) \rightarrow \mathcal{I}_{\mathbb{P}}^{2}([X]) \\
& F\left(t, x_{t}, j_{t}\right) \mapsto \lim _{h \rightarrow 0} \frac{F\left(t, x_{t}+h 1_{[t, \infty)}, j_{t}\right)-F\left(t, x_{t}, j_{t}\right)}{h} \\
& =\phi(t)
\end{aligned}
$$

can be closed in $\mathcal{I}_{\mathbb{P}}^{2}([X])$ in the same fashion as in the jump case, and the closure is $\mathcal{I}_{\mathbb{P}}^{2}([X])$ itself.

Define the martingale-generating measure

$$
M(d s d z):=1_{\{z=0\}} d X(s)+z \tilde{J}(d s d z)
$$

Then the martingale representation formula rewrites, \mathbb{P}-a.s. as:

$$
Y(t)=Y(0)+\int_{0}^{t} \int_{\mathbb{R}^{d}} \nabla Y(s, z) M(d s d z) \quad \mathbb{P} \text {-a.s. }
$$

where

$$
\nabla Y(s, z):=\left\{\begin{array}{l}
\nabla x Y(s, y) \text { if } z=0 \\
\frac{\nabla \jmath Y(s, z)}{z} \text { otherwise }
\end{array}\right.
$$

The continuous component is the limit operator of the operator appearing in the jump case.

Example: representation of the supremum of a Lévy process

The representation formula for the supremum \bar{X} of a Lévy process X
(1) was proved by Shiryaev and Yor (2004) using Itô's formula.
(2) was reproved more recently by Rémillard-Renaud(2011) using Malliavin calculus.
Main challenges in the functional Itô case:
(1) Infinite variation: infinite variation, induced by a continuous component and/or an infinite jump activity destroys the pathwise characterisation of the quantities.
(2) In case the Lévy process has a continuous component: the supremum is not a vertically differentiable functional.
\hookrightarrow we need to truncate the jumps and smoothen the functional.

Functional approximation

Define the Lévy process

$$
X(t)=X(0)+\mu t+\sigma W(t)+\int_{0}^{t} \int_{|z|<1} z \widetilde{J}(d s d z)+\int_{0}^{t} \int_{|z| \geq 1} z J(d s d z)
$$

and its approximation
$X^{n}(t)=X(0)+\mu t+\sigma W(t)+\int_{0}^{t} \int_{\left(-1,-\frac{1}{n}\right) \cup\left(\frac{1}{n}, 1\right)} z \tilde{J}(d s d z)+\int_{0}^{t} \int_{|z| \geq 1} z J(d s d z)$
It can be shown that

$$
E\left[\bar{X}(T) \mid \mathcal{F}_{t}\right]=\bar{X}(t)+\int_{\bar{X}(t)-X(t)}^{\infty} F_{T-t}(u) d u
$$

with $F_{T-t}(u)=\mathbb{P}(\bar{X}(T-t) \leq u)$.

Furthermore, consider the approximation of the supremum functional,

$$
L^{a}(f, t)=\frac{1}{a} \log \left(\int_{0}^{t} e^{a f(s)} d s\right)
$$

Define the approximation:

$$
Y^{a, n}(t)=L^{a}\left(X^{n}, t\right)+\int_{L^{a}\left(X^{n}, t\right)-X^{n}(t)}^{\infty} F_{T-t}(u) d u
$$

Since $X^{n} \xrightarrow[n \rightarrow \infty]{\stackrel{L^{2}}{\longrightarrow}} X$ and $L^{a}(f, T) \xrightarrow[a \rightarrow 0]{\longrightarrow} \sup _{s \in[0, T]} f(s)$, one can show:

$$
\lim _{n \rightarrow \infty} \lim _{a \rightarrow \infty} E\left[\left|Y^{a, n}(T)-\bar{X}(T)\right|^{2}\right]=0
$$

We can now compute

$$
\begin{aligned}
\nabla_{J} Y^{a, n}(t, z) & =\int_{L^{a}\left(X^{n}, t\right)-X^{n}(t)-z}^{L^{a}\left(X^{n}, t\right)-X^{n}(t)} F_{T-t}(u) d u \\
& \xrightarrow[\substack{a \rightarrow \infty \\
n \rightarrow \infty}]{\longrightarrow} \int_{\bar{X}(t)-X(t)-z}^{\bar{X}(t)-X(t)} F_{T-t}(u) d u=\nabla_{J} \bar{X}(t, z)
\end{aligned}
$$

and

$$
\begin{aligned}
\nabla_{W} Y^{a, n}(t) & =\lim _{h \rightarrow 0} \frac{1}{h} \int_{L^{a}\left(X^{n}, t\right)-X^{n}(t)-\sigma h}^{L^{a}\left(X^{n}, t\right)-X^{n}(t)} F_{T-t}(u) d u \\
& =F_{T-t}\left(L^{a}\left(X^{n}, t\right)-X^{n}(t)\right) \\
& \underset{\substack{a \rightarrow \infty \\
n \rightarrow \infty}}{ } \sigma F_{T-t}(\bar{X}(T)-X(t))=\nabla_{W} \bar{X}(t)
\end{aligned}
$$

References

R. Blacque-Florentin and R. Cont (2015):

Functional calculus and martingale representation formula for integer-valued random measures
http://arxiv.org/abs/1508.00048

