Tail probabilities of St. Petersburg sums, trimmed sums, and their limit

Péter Kevei

TU Munich
Conference on Ambit Fields and Related Topics Aarhus, Denmark

Outline

St. Petersburg game

Sum
Maximum

Conditioning on the maximum
 Number of maximum terms
 Conditional limit results

Trimmed sums
Finite number of summands
Properties of the r-trimmed limit

Outline

St. Petersburg game Sum
 Maximum

Conditioning on the maximum
 Number of maximum terms
 Conditional limit results

Trimmed sums
Finite number of summands
Properties of the r-trimmed limit

Outline

St. Petersburg game
 Sum
 Maximum

Conditioning on the maximum
 Number of maximum terms
 Conditional limit results

Trimmed sums
Finite number of summands
Properties of the r-trimmed limit

Outline

St. Petersburg game
 Sum
 Maximum

Conditioning on the maximum
Number of maximum terms
Conditional limit results
Trimmed sums
Finite number of summands
Properties of the r-trimmed limit

Outline

St. Petersburg game
 Sum
 Maximum

Conditioning on the maximum Number of maximum terms

Trimmed sums
Finite number of summands
Properties of the r-trimmed limit

Outline

St. Petersburg game
Sum
Maximum
Conditioning on the maximum Number of maximum terms
Conditional limit results

Outline

St. Petersburg game
Sum
Maximum
Conditioning on the maximum Number of maximum terms
Conditional limit results
Trimmed sums
Finite number of summands
Properties of the r-trimmed limit

Outline

St. Petersburg game
Sum
Maximum
Conditioning on the maximum
Number of maximum terms
Conditional limit results
Trimmed sums
Finite number of summands
Properties of the r-trimmed limit

Outline

St. Petersburg game
Sum
Maximum
Conditioning on the maximum
Number of maximum terms
Conditional limit results
Trimmed sums
Finite number of summands
Properties of the r-trimmed limit

Outline

St. Petersburg game Sum
 Maximum

Conditioning on the maximum Number of maximum terms Conditional limit results

Trimmed sums
Finite number of summands
Properties of the r-trimmed limit

St. Petersburg paradox

Nicolaus Bernoulli (1713): Paul's gain X, then

$$
\mathbf{P}\left\{X=2^{k}\right\}=\frac{1}{2^{k}}, \quad k=1,2, \ldots
$$

What is the fair price?
Paradox:

'there ought not be a sane man who would not happily sell his chance for forty ducats' - Nicolaus Bernoulli

St. Petersburg paradox

Nicolaus Bernoulli (1713): Paul's gain X, then

$$
\mathbf{P}\left\{X=2^{k}\right\}=\frac{1}{2^{k}}, \quad k=1,2, \ldots
$$

What is the fair price?

Paradox:

'there ought not be a sane man who would not happily sell his chance for forty ducats' - Nicolaus Bernoulli

St. Petersburg paradox

Nicolaus Bernoulli (1713): Paul's gain X, then

$$
\mathbf{P}\left\{X=2^{k}\right\}=\frac{1}{2^{k}}, \quad k=1,2, \ldots
$$

What is the fair price?
Paradox:
$\mathbf{E}(X)=\sum_{k=1}^{\infty} 2^{k} \frac{1}{2^{k}}=\sum_{k=1}^{\infty} 1=\infty$
but $P\{X>40\}=2^{-5}=0.03125$
'there ought not be a sane man who would not happily sell his chance for forty ducats' - Nicolaus Bernoulli

St. Petersburg paradox

Nicolaus Bernoulli (1713): Paul's gain X, then

$$
\mathbf{P}\left\{X=2^{k}\right\}=\frac{1}{2^{k}}, \quad k=1,2, \ldots
$$

What is the fair price?
Paradox:

$$
\begin{aligned}
& \mathbf{E}(X)=\sum_{k=1}^{\infty} 2^{k} \frac{1}{2^{k}}=\sum_{k=1}^{\infty} 1=\infty \\
& \text { but } \mathbf{P}\{X>40\}=2^{-5}=0.03125
\end{aligned}
$$

'there ought not be a sane man who would not happily sell his chance for forty ducats' - Nicolaus Bernoulli
X_{1}, X_{2}, \ldots iid St. Petersburg rv's $S_{n}=\sum_{k=1}^{n} X_{k}$ Theorem (Feller (1945))

$$
\frac{S_{n}}{n \log _{2} n} \xrightarrow{\mathbf{P}} 1
$$

X_{1}, X_{2}, \ldots iid St. Petersburg rv's $S_{n}=\sum_{k=1}^{n} X_{k}$
Theorem (Feller (1945))

$$
\frac{S_{n}}{n \log _{2} n} \xrightarrow{\mathbf{P}} 1
$$

There are no strong laws!
Theorem (Adler (1990), Chow \& Robbins (1961))

$$
\liminf _{n \rightarrow \infty} \frac{S_{n}}{n \log _{2} n}=1 \text { a.s., } \limsup _{n \rightarrow \infty} \frac{S_{n}}{n \log _{2} n}=\infty \text { a.s. }
$$

CLT

$$
\frac{S_{n}-c_{n}}{a_{n}} \xrightarrow{\mathcal{D}} ?
$$

Doeblin-Gnedenko criterion:

$2^{\left\{\log _{2} x\right\}}$ is not slowly varying (\{.\} fractional part)

CLT

$$
\frac{S_{n}-c_{n}}{a_{n}} \xrightarrow{\mathcal{D}} ?
$$

Doeblin-Gnedenko criterion:

$$
\mathbf{P}\{X \leq x\}= \begin{cases}0, & \text { for } x<2 \\ 1-2^{-\left\lfloor\log _{2} x\right\rfloor}=1-\frac{2^{\left\{\log _{2} x\right\}}}{x}, & \text { for } x \geq 2\end{cases}
$$

$2^{\left\{\log _{2} x\right\}}$ is not slowly varying ($\{\cdot\}$ fractional part)

CLT

$$
\frac{S_{n}-c_{n}}{a_{n}} \xrightarrow{\mathcal{D}} ?
$$

Doeblin-Gnedenko criterion:

$$
\mathbf{P}\{X \leq x\}= \begin{cases}0, & \text { for } x<2, \\ 1-2^{-\left\lfloor\log _{2} x\right\rfloor}=1-\frac{2^{\left\{\log _{2} x\right\}}}{x}, & \text { for } x \geq 2,\end{cases}
$$

$2^{\left\{\log _{2} x\right\}}$ is not slowly varying ($\{\cdot\}$ fractional part) \Rightarrow there is no limit theorem for $\frac{S_{n}-c_{n}}{a_{n}}$ for any choice of a_{n}, c_{n}.

There is on subsequences!

Theorem (Martin-Löf (1985))

$$
\frac{S_{2^{n}}}{2^{n}}-n \xrightarrow{\mathcal{D}} W, \quad \text { as } n \rightarrow \infty .
$$

W semistable rv. Moreover, convergence holds on subsequences $n_{k}=\left\lfloor\gamma 2^{k}\right\rfloor, \gamma \in(1 / 2,1]$.

Theorem (Csörgő \& Dodunekova (1991))
$\frac{S_{n_{k}}}{n_{k}}-\log _{2} n_{k}$ converges in distribution if and only if

There is on subsequences!

Theorem (Martin-Löf (1985))

$$
\frac{S_{2^{n}}}{2^{n}}-n \xrightarrow{\mathcal{D}} W, \quad \text { as } n \rightarrow \infty .
$$

W semistable rv. Moreover, convergence holds on subsequences $n_{k}=\left\lfloor\gamma 2^{k}\right\rfloor, \gamma \in(1 / 2,1]$.

Theorem (Csörgő \& Dodunekova (1991))
$\frac{S_{n_{k}}}{n_{k}}-\log _{2} n_{k}$ converges in distribution if and only if

$$
\gamma_{n_{k}}=\frac{n_{k}}{2^{\left\lceil\log _{2} n_{k}\right\rceil}} \longrightarrow \gamma \in(1 / 2,1] .
$$

Merging

Theorem (Csörgő (2002))

$$
\sup _{x \in \mathbb{R}}\left|\mathbf{P}\left\{\frac{S_{n}}{n}-\log _{2} n \leq x\right\}-G_{\gamma_{n}}(x)\right| \rightarrow 0, \quad \text { as } n \rightarrow \infty
$$

The limit

Characteristic function of $W_{\gamma}, \gamma \in(1 / 2,1]$,

$$
\mathbf{E}\left(e^{\mathrm{i} t W_{\gamma}}\right)=\exp \left(\mathrm{ita}+\int_{0}^{\infty}\left(e^{\mathrm{i} t x}-1-\frac{\mathrm{i} t x}{1+x^{2}}\right) \mathrm{d} R_{\gamma}(x)\right),
$$

with right-hand-side Lévy function

$$
R_{\gamma}(x)=-\frac{\gamma}{2^{\left[\log _{2}(\gamma x)\right\rfloor}}=-\frac{2^{\left\{\log _{2}(\gamma x)\right\}}}{x}, \quad x>0 .
$$

(semistable laws)

Outline

St. Petersburg game

Sum

Maximum

Conditioning on the maximum
 Number of maximum terms
 Conditional limit results

Trimmed sums
Finite number of summands
Properties of the r-trimmed limit

Trimmed LLN

X_{1}, X_{2}, \ldots iid St. Petersburg rv's,

$$
S_{n}=X_{1}+\ldots+X_{n} \quad \text { and } \quad X_{n}^{*}=\max _{1<i<n} X_{i}
$$

Theorem (Csörgő and Simons (1996))

Trimmed LLN

X_{1}, X_{2}, \ldots iid St. Petersburg rv's,

$$
S_{n}=X_{1}+\ldots+X_{n} \quad \text { and } \quad X_{n}^{*}=\max _{1<i<n} X_{i}
$$

Theorem (Csörgő and Simons (1996))

$$
\lim _{n \rightarrow \infty} \frac{S_{n}-X_{n}^{*}}{n \log _{2} n}=1 \quad \text { a.s. }
$$

Merging again

For $\gamma \in(1 / 2,1]$ (\approx Fréchet)

$$
H_{\gamma}(x)= \begin{cases}0, & \text { for } x \leq 0, \\ \exp \left(-\gamma 2^{-\left\lfloor\log _{2}(\gamma x)\right\rfloor}\right), & \text { for } x>0 .\end{cases}
$$

Theorem (Berkes, Csáki \& Csörgő (1999))

$$
\sup _{x \in \mathbb{R}}\left|\mathbf{P}\left\{\frac{X_{n}^{*}}{n} \leq x\right\}-H_{\gamma_{n}}(x)\right|=O\left(n^{-1}\right), \quad \text { as } n \rightarrow \infty .
$$

Typical value: $X_{n}^{*} \approx 2^{\left\lceil\log _{2} n\right\rceil+j}, j \in \mathbb{Z}$.

Merging again

For $\gamma \in(1 / 2,1]$ (\approx Fréchet)

$$
H_{\gamma}(x)= \begin{cases}0, & \text { for } x \leq 0, \\ \exp \left(-\gamma 2^{-\left\lfloor\log _{2}(\gamma x)\right\rfloor}\right), & \text { for } x>0 .\end{cases}
$$

Theorem (Berkes, Csáki \& Csörgő (1999))

$$
\sup _{x \in \mathbb{R}}\left|\mathbf{P}\left\{\frac{X_{n}^{*}}{n} \leq x\right\}-H_{\gamma_{n}}(x)\right|=O\left(n^{-1}\right), \quad \text { as } n \rightarrow \infty .
$$

Typical value: $X_{n}^{*} \approx 2^{\left[\log _{2} n\right]+j}, j \in \mathbb{Z}$.

Maximum and sum

Theorem (Darling (1952), Breiman (1965))
Y, Y_{1}, Y_{2}, \ldots iid ≥ 0.

$$
\frac{\max _{i \leq n} Y_{i}}{\sum_{i=1}^{n} Y_{i}} \xrightarrow{\mathcal{D}} Z
$$

with Z nondegenerate, iff $Y \in D(\alpha), \alpha \in(0,1) ; Z=1$ iff $\mathbf{P}\{Y>y\}$ is slowly varying, and $Z=0$ iff $\sqrt{Y} \in D(2)$.
St.Petersburg case:

Maximum and sum

Theorem (Darling (1952), Breiman (1965))
Y, Y_{1}, Y_{2}, \ldots iid ≥ 0.

$$
\frac{\max _{i \leq n} Y_{i}}{\sum_{i=1}^{n} Y_{i}} \xrightarrow{\mathcal{D}} Z
$$

with Z nondegenerate, iff $Y \in D(\alpha), \alpha \in(0,1) ; Z=1$ iff
$\mathbf{P}\{Y>y\}$ is slowly varying, and $Z=0$ iff $\sqrt{Y} \in D(2)$.
St.Petersburg case:

$$
\frac{X_{n}^{*}}{S_{n}} \xrightarrow{\mathbf{P}} 0 .
$$

Outline

St. Petersburg game
 Sum
 Maximum

Conditioning on the maximum Number of maximum terms
Conditional limit results
Trimmed sums
Finite number of summands
Properties of the r-trimmed limit

Joint with Gábor Fukker and László Györfi.

For $j \in \mathbb{Z}$ and $\gamma \in[1 / 2,1]$ introduce the notation

$$
p_{j, \gamma}=e^{-\gamma 2^{-j}}\left(1-e^{-\gamma 2^{-j}}\right), \quad \gamma_{n}=\frac{n}{2^{\left\lceil\log _{2} n\right\rceil}}
$$

Lemma

In particular for any $j \in \mathbb{Z}$, as $n \rightarrow \infty$

For $j \in \mathbb{Z}$ and $\gamma \in[1 / 2,1]$ introduce the notation

$$
p_{j, \gamma}=e^{-\gamma 2^{-j}}\left(1-e^{-\gamma 2^{-j}}\right), \quad \gamma_{n}=\frac{n}{2^{\left[\log _{2} n\right\rceil}}
$$

Lemma

$$
\sup _{j \in \mathbb{Z}}\left|\mathbf{P}\left\{X_{n}^{*}=2^{[\log 2 n]+j}\right\}-p_{j, \gamma_{n}}\right|=O\left(n^{-1}\right) .
$$

In particular for any $j \in \mathbb{Z}$, as $n \rightarrow \infty$

$$
\mathbf{P}\left\{X_{n}^{*}=2^{\left[\log _{2} n\right]+j}\right\} \sim e^{-\gamma_{n} 2^{-j}}\left(1-e^{-\gamma_{n} 2^{-j}}\right) .
$$

Small maximum

Put $N_{n}=\left|\left\{k: 1 \leq k \leq n, X_{k}=X_{n}^{*}\right\}\right|$.
Proposition
Conditionally on $X_{n}^{*}=2^{k_{n}}$, where $\log _{2} n-k_{n} \rightarrow \infty$

Small maximum

Put $N_{n}=\left|\left\{k: 1 \leq k \leq n, X_{k}=X_{n}^{*}\right\}\right|$.
Proposition
Conditionally on $X_{n}^{*}=2^{k_{n}}$, where $\log _{2} n-k_{n} \rightarrow \infty$

$$
\frac{N_{n}-\mathbf{E}\left[N_{n} \mid X_{n}^{*}=2^{k_{n}}\right]}{\sqrt{\operatorname{Var}\left(N_{n} \mid X_{n}^{*}=2^{k_{n}}\right)}} \xrightarrow{\mathcal{D}} N(0,1), \quad \text { as } n \rightarrow \infty .
$$

Typical maximum

Proposition (Gut \& Martin-Löf (2016))
Conditionally on $X_{n}^{*}=2^{\left[\log _{2} n\right\rceil+j}, j \in \mathbb{Z}$,

$$
N_{n} \xrightarrow{\mathcal{D}} M_{j, \gamma_{n}} \quad \text { (in the merging sense), }
$$

where $M_{j, \gamma} \sim \operatorname{Poisson}\left(2^{-j} \gamma\right)$ conditioned on not being zero.

Large maximum

Proposition

While, if $k_{n}-\log _{2} n \rightarrow \infty$ then conditionally on $X_{n}^{*}=2^{k_{n}}$

$$
N_{n} \xrightarrow{\mathbf{P}} 1, \quad \text { as } n \rightarrow \infty .
$$

Outline

St. Petersburg game
 Sum
 Maximum

Conditioning on the maximum
Number of maximum terms
Conditional limit results
Trimmed sums
Finite number of summands
Properties of the r-trimmed limit

Conditional limit results

Notation

$$
\begin{aligned}
& \mathbf{P}\left\{X=2^{i} \mid X \leq 2^{k}\right\}=2^{-i} /\left(1-2^{-k}\right) \\
& F_{k}(x)=\mathbf{P}\left\{X \leq x \mid X \leq 2^{k}\right\}= \begin{cases}\frac{1}{1-2^{-k}}\left[1-\frac{2^{\left\{100_{2} x\right\}}}{x}\right], & x \in\left[2,2^{k}\right], \\
1, & x>2^{k} .\end{cases}
\end{aligned}
$$

Notation

$\mathbf{P}\left\{X=2^{i} \mid X \leq 2^{k}\right\}=2^{-i} /\left(1-2^{-k}\right)$
$F_{k}(x)=\mathbf{P}\left\{X \leq x \mid X \leq 2^{k}\right\}= \begin{cases}\frac{1}{1-2^{-k}}\left[1-\frac{2^{\left\{\log _{2} x\right\}}}{x}\right], & x \in\left[2,2^{k}\right], \\ 1, & x>2^{k} .\end{cases}$
$X^{(k)}, X_{1}^{(k)}, \ldots$, are iid F_{k}, and

$$
S_{n}^{(k)}=X_{1}^{(k)}+\ldots+X_{n}^{(k)}
$$

Conditioning on small maximum

Proposition
Given that $X_{n}^{*}=2^{k_{n}}, k_{n} \geq 2$, such that $\log _{2} n-k_{n} \rightarrow \infty$

$$
\frac{S_{n}-E\left[S_{n} \mid X_{n}^{*}=2^{k_{n}}\right]}{\sqrt{\operatorname{Var}\left(S_{n} \mid X_{n}^{*}=2^{k_{n}}\right)}} \xrightarrow{\mathcal{D}} N(0,1) .
$$

Conditioning on typical maximum

Proposition

$$
\frac{S_{n_{k}}^{\left(\left\lceil\log _{2} n_{k}\right\rceil+j\right)}}{n_{k}}-\log _{2} n_{k}
$$

converges in distribution iff $\gamma_{n_{k}} \rightarrow \gamma$. The limit $W_{j, \gamma}$

$$
\varphi_{j, \gamma}(t)=\mathbf{E} e^{\mathrm{i} t\left(W_{j, \gamma}\right.}=\exp \left[\mathrm{i} t u_{j, \gamma}+\int_{0}^{\infty}\left(e^{\mathrm{i} t x}-1-\mathrm{i} t x\right) \mathrm{d} L_{j, \gamma}(x)\right],
$$

with

$$
L_{j, \gamma}(x)= \begin{cases}\gamma^{-j}-\frac{2^{\left(\log _{2}(\gamma x)\right\}}}{x}, & \text { for } x<2^{j} \gamma^{-1}, \\ 0, & \text { for } x \geq 2^{j} \gamma^{-1},\end{cases}
$$

Conditioning on typical maximum

Proposition

For $j \in \mathbb{Z}$ we have

$$
\left|\mathbf{P}\left\{\left.\frac{S_{n}}{n}-\log _{2} n \leq x \right\rvert\, X_{n}^{*}=2^{\left\lceil\log _{2} n\right\rceil+j}\right\}-\widetilde{G}_{j, \gamma_{n}}(x)\right| \rightarrow 0
$$

where

$$
\widetilde{G}_{j, \gamma}(x)=\sum_{m=1}^{\infty} G_{j-1, \gamma}\left(x-m \frac{2^{j}}{\gamma}\right) \frac{\left(2^{-j} \gamma\right)^{m}}{m!}\left(e^{2^{-j} \gamma}-1\right)^{-1} .
$$

Corollary

Theorem (Gut \& Martin-Löf (2016))
For any $\gamma \in[1 / 2,1]$

$$
G_{\gamma}(x)=\sum_{j=-\infty}^{\infty} \tilde{G}_{j, \gamma}(x) e^{-\gamma 2^{-j}}\left(1-e^{-\gamma 2^{-j}}\right) .
$$

This is equivalent to the distributional representation

Corollary

Theorem (Gut \& Martin-Löf (2016))
For any $\gamma \in[1 / 2,1]$

$$
G_{\gamma}(x)=\sum_{j=-\infty}^{\infty} \widetilde{G}_{j, \gamma}(x) e^{-\gamma 2^{-j}}\left(1-e^{-\gamma 2^{-j}}\right) .
$$

This is equivalent to the distributional representation

$$
W_{\gamma} \stackrel{\mathcal{D}}{=} W_{Y_{\gamma}-1, \gamma}+M_{Y_{\gamma}, \gamma} 2^{Y_{\gamma}} \gamma^{-1},
$$

where $\left(W_{j, \gamma}\right)_{j \in \mathbb{Z}},\left(M_{j, \gamma}\right)_{j \in \mathbb{Z}}$ and Y_{γ} are independent, $Y_{\gamma} \sim\left(p_{j, \gamma}\right)_{j \in \mathbb{Z}}, M_{j, \gamma} \sim$ Poisson $\left(\gamma 2^{-j}\right)$ conditioned on not being 0 .

Buchmann, Fan \& Maller (2016) result

Lévy process setup: W_{γ} is a semistable Lévy process at time 1.

$$
W_{\gamma} \stackrel{\mathcal{D}}{=} W_{Y_{\gamma}-1, \gamma}+M_{Y_{\gamma}, \gamma} 2^{Y_{\gamma}} \gamma^{-1},
$$

The value $2^{Y_{\gamma}} / \gamma$ corresponds to the maximum jump, $M_{Y_{\gamma}, \gamma}$ is the number of the maximum jumps, and $W_{Y_{\gamma}-1, \gamma}$ has the law of the Lévy process conditioned on that the maximum jump is strictly less than $2^{\gamma_{\gamma}} / \gamma$.
processes were obtained by Buchmann, Fan \& Maller (2016).

Buchmann, Fan \& Maller (2016) result

Lévy process setup: W_{γ} is a semistable Lévy process at time 1.

$$
W_{\gamma} \stackrel{\mathcal{D}}{=} W_{Y_{\gamma}-1, \gamma}+M_{Y_{\gamma}, \gamma} 2^{Y_{\gamma}} \gamma^{-1},
$$

The value $2^{Y_{\gamma}} / \gamma$ corresponds to the maximum jump, $M_{Y_{\gamma}, \gamma}$ is the number of the maximum jumps, and $W_{Y_{\gamma}-1, \gamma}$ has the law of the Lévy process conditioned on that the maximum jump is strictly less than $2^{\gamma_{\gamma}} / \gamma$.
This kind of distributional representations for general Lévy processes were obtained by Buchmann, Fan \& Maller (2016).

Conditioning on large maximum

Proposition
Assume that $k_{n}-\log _{2} n \rightarrow \infty$. Given that $X_{n}^{*}=2^{k_{n}}$

$$
\frac{S_{n}}{X_{n}^{*}}-A_{n} \xrightarrow{\mathrm{P}} 1,
$$

where

$$
A_{n}=\frac{n k_{n}}{2^{k_{n}}} .
$$

Conditioning on the maximum

Figure: The conditional histograms for $\log _{2} S_{n}, n=2^{7}$

Outline

St. Petersburg game
 Sum
 Maximum

Conditioning on the maximum
 Number of maximum terms Conditional limit results

Trimmed sums
Finite number of summands
Properties of the r-trimmed limit

Joint with István Berkes and László Györfi.

Subexponential distributions

$$
Y, Y_{1}, Y_{2}, \ldots \text { iid } \geq 0, G . \bar{G}(x)=1-G(x) .
$$

G is subexponential, $G \in \mathcal{S}$,

Characterizing property of \mathcal{S} : for any $n \geq 1$

equivalently

Subexponential distributions

Y, Y_{1}, Y_{2}, \ldots iid $\geq 0, G . \bar{G}(x)=1-G(x)$.
G is subexponential, $G \in \mathcal{S}$,

$$
\lim _{x \rightarrow \infty} \frac{\overline{G * G}(x)}{\bar{G}(x)}=2,
$$

Characterizing property of \mathcal{S} : for any $n \geq 1$

equivalently

Subexponential distributions

Y, Y_{1}, Y_{2}, \ldots iid $\geq 0, G . \bar{G}(x)=1-G(x)$.
G is subexponential, $G \in \mathcal{S}$,

$$
\lim _{x \rightarrow \infty} \frac{\overline{G * G}(x)}{\bar{G}(x)}=2,
$$

Characterizing property of \mathcal{S} : for any $n \geq 1$

$$
\lim _{x \rightarrow \infty} \frac{\mathbf{P}\left\{Y_{1}+\ldots+Y_{n}>x\right\}}{\mathbf{P}\left\{\max \left\{Y_{i}: i=1,2, \ldots, n\right\}>x\right\}}=1,
$$

Subexponential distributions

Y, Y_{1}, Y_{2}, \ldots iid $\geq 0, G . \bar{G}(x)=1-G(x)$.
G is subexponential, $G \in \mathcal{S}$,

$$
\lim _{x \rightarrow \infty} \frac{\overline{G * G}(x)}{\bar{G}(x)}=2,
$$

Characterizing property of \mathcal{S} : for any $n \geq 1$

$$
\lim _{x \rightarrow \infty} \frac{\mathbf{P}\left\{Y_{1}+\ldots+Y_{n}>x\right\}}{\mathbf{P}\left\{\max \left\{Y_{i}: i=1,2, \ldots, n\right\}>x\right\}}=1,
$$

equivalently

$$
\lim _{x \rightarrow \infty} \frac{\mathbf{P}\left\{Y_{1}+\ldots+Y_{n}>x\right\}}{\mathbf{P}\left\{Y_{1}>x\right\}}=n .
$$

O-subexponential distributions

Goldie (1978): St. Petersburg distribution F is not subexponential.

G is O-subexponential (Klüppelberg, 1990), $G \in \mathcal{O S}$, if

always $\lim \inf \geq 2 ;=2$ for heavy-tailed (Foss \& Korshunov 2007)

O-subexponential distributions

Goldie (1978): St. Petersburg distribution F is not subexponential.

$$
2=\liminf _{x \rightarrow \infty} \frac{\overline{F * F}(x)}{\bar{F}(x)}<\limsup _{x \rightarrow \infty} \frac{\overline{F * F}(x)}{\bar{F}(x)}=4 .
$$

G is O-subexponential (Klüppelberg, 1990), $G \in \mathcal{O S}$, if

always lim inf $\geq 2 ;=2$ for heavy-tailed (Foss \& Korshunov 2007)

O-subexponential distributions

Goldie (1978): St. Petersburg distribution F is not subexponential.

$$
2=\liminf _{x \rightarrow \infty} \frac{\overline{F * F}(x)}{\bar{F}(x)}<\limsup _{x \rightarrow \infty} \frac{\overline{F * F}(x)}{\bar{F}(x)}=4 .
$$

G is O-subexponential (Klüppelberg, 1990), $G \in \mathcal{O S}$, if

$$
\ell^{*}(G):=\limsup _{x \rightarrow \infty} \frac{\bar{G} * \mathcal{G}(x)}{\bar{G}(x)}<\infty .
$$

always $\lim \inf \geq 2 ;=2$ for heavy-tailed (Foss \& Korshunov 2007)

Shimura and Watanabe (2005): $G \in \mathcal{O S}, \forall \varepsilon>0, \exists c>0$,

$$
\frac{\overline{G^{n *}}(x)}{\bar{G}(x)} \leq c\left(\ell^{*}(G)-1+\varepsilon\right)^{n} .
$$

Notation

X, X_{1}, X_{2}, \ldots iid St. Petersburg rv's
$X_{1 n} \leq X_{2 n} \leq \ldots \leq X_{n n}$ ordered sample of $X_{1}, X_{2}, \ldots, X_{n}$.
r-trimmed sum: $S_{n, r}=\sum_{k=1}^{n-r} X_{k n}$.

Tail of the sums

Theorem
As n, r fix, $x \rightarrow \infty$
$\mathbf{P}\left\{S_{n, r}>x\right\} \sim \frac{2^{(r+1)\left\{\log _{2} x\right\}}}{x^{r+1}}\binom{n}{r+1}$

$$
\times\left(1+\mathbf{P}\left\{S_{n-r-1}>x\left(1-2^{-\left\{\log _{2} x\right\}}\right)\right\}\left(2^{r+1}-1\right)\right)
$$

In particular, for any $0<\delta<1$,

Tail of the sums

Theorem
As n, r fix, $x \rightarrow \infty$
$\mathbf{P}\left\{S_{n, r}>x\right\} \sim \frac{2^{(r+1)\left\{\log _{2} x\right\}}}{x^{r+1}}\binom{n}{r+1}$

$$
\times\left(1+\mathbf{P}\left\{S_{n-r-1}>x\left(1-2^{-\left\{\log _{2} x\right\}}\right)\right\}\left(2^{r+1}-1\right)\right)
$$

In particular, for any $0<\delta<1$,

$$
\lim _{x \rightarrow \infty,\left\{\log _{2} x\right\}>\delta} \mathbf{P}\left\{S_{n, r}>x\right\} \frac{x^{r+1}}{2^{(r+1)\left\{\log _{2} x\right\}}}=\binom{n}{r+1} .
$$

$r=0$

Figure: The function $x \cdot \mathbf{P}\left\{S_{16}>x\right\}$ in a logarithmic scale.

Almost subexponential

Untrimmed case:

$$
\mathbf{P}\left\{S_{n}>x\right\} \sim \frac{2^{\left\{\log _{2} x\right\}}}{x} n\left(1+\mathbf{P}\left\{S_{n-1}>x\left(1-2^{-\left\{\log _{2} x\right\}}\right)\right\}\right)
$$

from which

$$
n=\liminf _{x \rightarrow \infty} x \mathbf{P}\left\{S_{n}>x\right\}<\limsup _{x \rightarrow \infty} x \mathbf{P}\left\{S_{n}>x\right\}=2 n
$$

Since $x \mathbf{P}\{X>x\}=2^{\left\{\log _{2} x\right\}}, x \geq 2$, we have

Almost subexponential

Untrimmed case:

$$
\mathbf{P}\left\{S_{n}>x\right\} \sim \frac{2^{\left\{\log _{2} x\right\}}}{x} n\left(1+\mathbf{P}\left\{S_{n-1}>x\left(1-2^{-\left\{\log _{2} x\right\}}\right)\right\}\right)
$$

from which

$$
n=\liminf _{x \rightarrow \infty} x \mathbf{P}\left\{S_{n}>x\right\}<\limsup _{x \rightarrow \infty} x \mathbf{P}\left\{S_{n}>x\right\}=2 n .
$$

Since $x \mathbf{P}\{X>x\}=2^{\left\{\log _{2} x\right\}}, x \geq 2$, we have

$$
\lim _{x \rightarrow \infty,\left\{\log _{2} x\right\} \geq \delta} \frac{\mathbf{P}\left\{S_{n}>x\right\}}{\mathbf{P}\{X>x\}}=n .
$$

Outline

St. Petersburg game
 Sum
 Maximum

Conditioning on the maximum
 Number of maximum terms Conditional limit results

Trimmed sums
Finite number of summands
Properties of the r-trimmed limit

$$
E_{k}, k=1,2, \ldots \text { iid } \operatorname{Exp}(1), Z_{k}=E_{1}+\ldots+E_{k}
$$

Theorem
Let $n_{k}=\left\lfloor\gamma 2^{k}\right\rfloor$, for some $\gamma \in(1 / 2,1]$. Then for any $r \geq 0$
$\frac{1}{n_{k}} S_{n_{k}, r}-a_{n_{k}, \gamma}^{(r)} \xrightarrow{\mathcal{D}} Y_{r, \gamma}=\sum_{k=r+1}^{\infty} \gamma^{-1}\left(2^{-\left\lfloor\log _{2} Z_{k} / \gamma\right\rfloor}-2^{-\left\lfloor\log _{2} k / \gamma\right\rfloor}\right)$,
with centering sequence

$$
a_{n, \gamma}^{(r)}=\gamma^{-1} \sum_{j=r+1}^{n} 2^{-\lfloor j / \gamma\rfloor}
$$

Proof (sketch)

Quantile method \& LePage, Woodroofe, Zinn idea.

where U's are ordered sample of n iid $\operatorname{Uniform}(0,1)$.

Proof (sketch)

Quantile method \& LePage, Woodroofe, Zinn idea.
Quantile representation: $\left(X_{1 n}, \ldots, X_{n n}\right) \stackrel{\mathcal{D}}{=}\left(Q\left(U_{1 n}\right), \ldots, Q\left(U_{n n}\right)\right)$, where $F^{-1}(s)=Q(s)=\inf \{x: s \leq F(x)\}$

where U's are ordered sample of n iid $\operatorname{Uniform}(0,1)$.

Proof (sketch)

Quantile method \& LePage, Woodroofe, Zinn idea.
Quantile representation: $\left(X_{1 n}, \ldots, X_{n n}\right) \stackrel{\mathcal{D}}{=}\left(Q\left(U_{1 n}\right), \ldots, Q\left(U_{n n}\right)\right)$, where $F^{-1}(s)=Q(s)=\inf \{x: s \leq F(x)\}$

$$
Q(s)= \begin{cases}2, & s=0 \\ 2^{\left\lceil-\log _{2}(1-s)\right\rceil}=\frac{2^{\left\{\log _{2}(1-s)\right\}}}{1-s}, & s \in(0,1)\end{cases}
$$

where U's are ordered sample of n iid $\operatorname{Uniform}(0,1)$.

Proof (sketch)

Quantile method \& LePage, Woodroofe, Zinn idea.
Quantile representation: $\left(X_{1 n}, \ldots, X_{n n}\right) \stackrel{\mathcal{D}}{=}\left(Q\left(U_{1 n}\right), \ldots, Q\left(U_{n n}\right)\right)$, where $F^{-1}(s)=Q(s)=\inf \{x: s \leq F(x)\}$

$$
Q(s)= \begin{cases}2, & s=0 \\ 2^{\left\lceil-\log _{2}(1-s)\right\rceil}=\frac{2^{\left\{\log _{2}(1-s)\right\}}}{1-s}, & s \in(0,1)\end{cases}
$$

$\left(E_{i}\right)_{i \in \mathbb{N}}$ iid $\operatorname{Exp}(1), Z_{n}=E_{1}+\ldots+E_{n}$. For n fix

$$
\left(U_{1 n}, U_{2 n}, \ldots, U_{n n}\right) \stackrel{\mathcal{D}}{=}\left(\frac{Z_{1}}{Z_{n+1}}, \frac{Z_{2}}{Z_{n+1}}, \ldots, \frac{Z_{n}}{Z_{n+1}}\right),
$$

where U's are ordered sample of n iid $\operatorname{Uniform}(0,1)$.

Proof

$$
\begin{aligned}
& \Psi(x)=2^{\left\{\log _{2} x\right\}}\left(\text { grows linearly from } 1 \text { to } 2 \text { in each }\left[2^{j}, 2^{j+1}\right)\right) . \\
& Q(1-s)=\Psi(s) / s
\end{aligned}
$$

$$
\psi\left(Z_{j} / n\right)=\psi\left(Z_{j} / \gamma_{n}\right)
$$

Proof

$$
\begin{aligned}
& \Psi(x)=2^{\left\{\log _{2} x\right\}}\left(\text { grows linearly from } 1 \text { to } 2 \text { in each }\left[2^{j}, 2^{j+1}\right)\right) . \\
& Q(1-s)=\Psi(s) / s
\end{aligned}
$$

$$
\left(X_{1 n}, \ldots, X_{n n}\right) \stackrel{\mathcal{D}}{=}\left(\frac{Z_{n+1}}{Z_{1}} \Psi\left(Z_{1} / Z_{n+1}\right), \ldots, \frac{Z_{n+1}}{Z_{n}} \Psi\left(Z_{n} / Z_{n+1}\right)\right)
$$

Proof

$$
\begin{aligned}
& \Psi(x)=2^{\left\{\log _{2} x\right\}}\left(\text { grows linearly from } 1 \text { to } 2 \text { in each }\left[2^{j}, 2^{j+1}\right)\right) . \\
& Q(1-s)=\Psi(s) / s
\end{aligned}
$$

$$
\left(X_{1 n}, \ldots, X_{n n}\right) \stackrel{\mathcal{D}}{=}\left(\frac{Z_{n+1}}{Z_{1}} \Psi\left(Z_{1} / Z_{n+1}\right), \ldots, \frac{Z_{n+1}}{Z_{n}} \Psi\left(Z_{n} / Z_{n+1}\right)\right)
$$

$\operatorname{SLLN} Z_{n+1} / n \rightarrow 1$ a.s.

$$
X_{j, n}^{*}=\frac{n}{Z_{j}} \Psi\left(\frac{Z_{j}}{n}\right)(1+o(1)) \quad \text { a.s. }
$$

Proof

$$
\begin{aligned}
& \left.\Psi(x)=2^{\left\{\log _{2} x\right\}} \text { (grows linearly from } 1 \text { to } 2 \text { in each }\left[2^{j}, 2^{j+1}\right)\right) . \\
& Q(1-s)=\Psi(s) / s \\
& \quad\left(X_{1 n}, \ldots, X_{n n}\right) \stackrel{\mathcal{D}}{=}\left(\frac{Z_{n+1}}{Z_{1}} \Psi\left(Z_{1} / Z_{n+1}\right), \ldots, \frac{Z_{n+1}}{Z_{n}} \Psi\left(Z_{n} / Z_{n+1}\right)\right)
\end{aligned}
$$

$\operatorname{SLLN} Z_{n+1} / n \rightarrow 1$ a.s.

$$
\begin{gathered}
X_{j, n}^{*}=\frac{n}{Z_{j}} \Psi\left(\frac{Z_{j}}{n}\right)(1+o(1)) \quad \text { a.s. } \\
\Psi\left(Z_{j} / n\right)=\Psi\left(Z_{j} / \gamma_{n}\right)
\end{gathered}
$$

LePage, Woodroofe \& Zinn (1981)

Y, Y_{1}, Y_{2}, \ldots iid $, \geq 0, Y \in D(\alpha), S_{n}$ partial sum
$\left(S_{n}-n b_{n}\right) / a_{n} \rightarrow S . Y_{1, n} \geq Y_{2, n} \geq \ldots \geq Y_{n, n}$

where E_{1}, E_{2}, \ldots are iid $\operatorname{Exp}(1), Z_{k}=E_{1}+\ldots+E_{k}$. Moreover,

LePage, Woodroofe \& Zinn (1981)

Y, Y_{1}, Y_{2}, \ldots iid, $\geq 0, Y \in D(\alpha), S_{n}$ partial sum, $\left(S_{n}-n b_{n}\right) / a_{n} \rightarrow S . Y_{1, n} \geq Y_{2, n} \geq \ldots \geq Y_{n, n}$

$$
S=\sum_{k=1}^{\infty}\left(Z_{k}^{-1 / \alpha}-\mathbf{E} Z_{k}^{-1 / \alpha} l\left(Z_{k}^{-1 / \alpha}<1\right)\right),
$$

where E_{1}, E_{2}, \ldots are iid $\operatorname{Exp}(1), Z_{k}=E_{1}+\ldots+E_{k}$. Moreover,

$$
\left(\frac{S_{n}-n b_{n}}{a_{n}},\left(\frac{Y_{1, n}}{a_{n}}, \ldots, \frac{Y_{n, n}}{a_{n}}\right)\right) \xrightarrow{\mathcal{D}}\left(S,\left(Z_{1}^{-1 / \alpha}, Z_{2}^{-1 / \alpha}, \ldots\right)\right) .
$$

On the centering

For any $\gamma \in(1 / 2,1], n_{k}=\left\lfloor\gamma 2^{k}\right\rfloor$,

$$
a_{n_{k}, \gamma}^{(0)}-\log _{2} n_{k} \rightarrow 2-\frac{1}{\gamma} \sum_{k=1}^{\infty} \frac{k \varepsilon_{k}}{2^{k}}-\log _{2} \gamma=\xi(\gamma),
$$

where $\gamma=\sum_{k=1}^{\infty} \varepsilon_{k} 2^{-k}$.
Steinhaus' resolution of the St. Petersburg paradox (Csörgő \&
Simons 1993)
ξ is right-continuous, left-continuous except at dyadic rationals greater than $1 / 2$ and has unbounded variation (Csörgő \& Simons 1993); the Hausdorff and box-dimension of the graph of ξ is 1 (Kern \& Wedrich 2014).

On the centering

For any $\gamma \in(1 / 2,1], n_{k}=\left\lfloor\gamma 2^{k}\right\rfloor$,

$$
a_{n_{k}, \gamma}^{(0)}-\log _{2} n_{k} \rightarrow 2-\frac{1}{\gamma} \sum_{k=1}^{\infty} \frac{k \varepsilon_{k}}{2^{k}}-\log _{2} \gamma=\xi(\gamma),
$$

where $\gamma=\sum_{k=1}^{\infty} \varepsilon_{k} 2^{-k}$.
Steinhaus' resolution of the St. Petersburg paradox (Csörgő \& Simons 1993)
> ξ is right-continuous, left-continuous except at dyadic rationals greater than 1/2 and has unbounded variation (Csörgó \& Simons 1993); the Hausdorff and box-dimension of the graph of छ is 1 (Kern \& Wedrich 2014).

On the centering

For any $\gamma \in(1 / 2,1], n_{k}=\left\lfloor\gamma 2^{k}\right\rfloor$,

$$
a_{n_{k}, \gamma}^{(0)}-\log _{2} n_{k} \rightarrow 2-\frac{1}{\gamma} \sum_{k=1}^{\infty} \frac{k \varepsilon_{k}}{2^{k}}-\log _{2} \gamma=\xi(\gamma)
$$

where $\gamma=\sum_{k=1}^{\infty} \varepsilon_{k} 2^{-k}$.
Steinhaus' resolution of the St. Petersburg paradox (Csörgő \& Simons 1993)
ξ is right-continuous, left-continuous except at dyadic rationals greater than $1 / 2$ and has unbounded variation (Csörgő \& Simons 1993); the Hausdorff and box-dimension of the graph of ξ is 1 (Kern \& Wedrich 2014).

Properties of the r-trimmed limit

$\xi(\gamma)$

Tail of the trimmed limit

$$
A_{r, \gamma}=\gamma^{-1} \sum_{k=1}^{r} 2^{\lfloor k / \gamma\rfloor}
$$

Theorem

$$
\begin{aligned}
& \mathbf{P}\left\{Y_{r, \gamma}>x\right\} \sim \frac{2^{\left\{\log _{2}(\gamma x)\right\}(r+1)}}{(r+1)!x^{r+1}}\left[2^{-r-1}+\left(2^{r+1}-1\right)\right. \\
& \left.\quad \times \sum_{\ell=0}^{1} 2^{-\ell(r+1)} \mathbf{P}\left\{Y_{0, \gamma}+A_{r, \gamma}>x\left(1-2^{\ell-\left\{\log _{2}(\gamma x)\right\}}\right)\right\}\right]
\end{aligned}
$$

Untrimmed case

$$
\begin{aligned}
\mathbf{P}\left\{Y_{0, \gamma}>x\right\} & \sim \frac{2^{\left\{\log _{2}(\gamma x)\right\}}}{x} \\
& \times\left[2^{-1}+\sum_{\ell=0}^{1} 2^{-\ell} \mathbf{P}\left\{Y_{0, \gamma}>x\left(1-2^{\ell-\left\{\log _{2}(\gamma x)\right\}}\right)\right\}\right]
\end{aligned}
$$

Exactly the tail of the Lévy measure appears

Untrimmed case

$$
\begin{aligned}
\mathbf{P}\left\{Y_{0, \gamma}>x\right\} & \sim \frac{2^{\left\{\log _{2}(\gamma x)\right\}}}{x} \\
& \times\left[2^{-1}+\sum_{\ell=0}^{1} 2^{-\ell} \mathbf{P}\left\{Y_{0, \gamma}>x\left(1-2^{\ell-\left\{\log _{2}(\gamma x)\right\}}\right)\right\}\right]
\end{aligned}
$$

Exactly the tail of the Lévy measure appears

$$
\left.\frac{\mathbf{P}\left\{Y_{0, \gamma}>x\right\}}{-R_{\gamma}(x)} \sim 2^{-1}+\sum_{\ell=0}^{1} 2^{-\ell} \mathbf{P}\left\{Y_{0, \gamma}>x\left(1-2^{\ell-\left\{\log _{2}(\gamma x)\right\}}\right)\right\}\right]
$$

$$
\left.\frac{\mathbf{P}\left\{Y_{0, \gamma}>x\right\}}{-R_{\gamma}(x)} \sim 2^{-1}+\sum_{\ell=0}^{1} 2^{-\ell} \mathbf{P}\left\{Y_{0, \gamma}>x\left(1-2^{\ell-\left\{\log _{2}(\gamma x)\right\}}\right)\right\}\right]
$$

$$
\begin{aligned}
\frac{\mathbf{P}\left\{Y_{0, \gamma}>x\right\}}{-R_{\gamma}(x)} \sim 2^{-1}+ & \left.\sum_{\ell=0}^{1} 2^{-\ell} \mathbf{P}\left\{Y_{0, \gamma}>x\left(1-2^{\ell-\left\{\log _{2}(\gamma x)\right\}}\right)\right\}\right] \\
2^{-1}+2^{-1} \mathbf{P}\left\{Y_{0, \gamma}>0\right\} & =\liminf _{x \rightarrow \infty} \frac{\mathbf{P}\left\{Y_{0, \gamma}>x\right\}}{-R_{\gamma}(x)} \\
& <\limsup _{x \rightarrow \infty} \frac{\mathbf{P}\left\{Y_{0, \gamma}>x\right\}}{-R_{\gamma}(x)}=1+\mathbf{P}\left\{Y_{0, \gamma}>0\right\}
\end{aligned}
$$

For any $\delta \in(0,1 / 2)$ we have

$$
\lim _{x \rightarrow \infty, \delta<\left\{\log _{2}(\gamma x)\right\}<1-\delta} \mathbf{P}\left\{Y_{r, \gamma}>x\right\} \frac{x}{2\left\{\log _{2}(\gamma x)\right\}}=1
$$

In the untrimmed case $(r=0)$ for $\gamma=1$

(Martin-Löf 1985).

For any $\delta \in(0,1 / 2)$ we have

$$
\lim _{x \rightarrow \infty, \delta<\left\{\log _{2}(\gamma x)\right\}<1-\delta} \mathbf{P}\left\{Y_{r, \gamma}>x\right\} \frac{x}{2^{\left\{\log _{2}(\gamma x)\right\}}}=1 .
$$

In the untrimmed case $(r=0)$ for $\gamma=1$

$$
\mathbf{P}\left\{Y_{0,1}>2^{m}+c\right\} \sim 2^{-m}\left[1+\mathbf{P}\left\{Y_{0,1}>c\right\}\right], \quad \text { as } m \rightarrow \infty
$$

(Martin-Löf 1985).

Watanabe \& Yamamuro (2012) result

For general semistable distributions:

$$
\begin{gathered}
\lim _{n \rightarrow \infty} 2^{n} \mathbf{P}\left\{W_{1}>x 2^{n}\right\}=-R_{1}(x)+\left[R_{1}(x-)-R_{1}(x)\right] \mathbf{P}\left\{W_{1}>0\right\} \\
C_{*}=\liminf _{x \rightarrow \infty} \frac{\mathbf{P}\{W>x\}}{-R(x)} \leq \limsup _{x \rightarrow \infty} \frac{\mathbf{P}\{W>x\}}{-R(x)}=C^{*},
\end{gathered}
$$

with

$$
\begin{aligned}
& C_{*}=1-\left(1-Q^{-1}\right) \mathbf{P}\{W<0\}, C^{*}=Q+(Q-1) \mathbf{P}\{W<0\} \text {, } \\
& \text { and } Q=\sup _{x \in[1,2]} R(x-) / R(x) .
\end{aligned}
$$

'the modern student will hardly understand the mysterious discussions of this "paradox" '- Feller

> A natural example, which is not in the domain of attraction of any stable law, but it is in the domain of geometric partial attraction of a semistable law.
> Not subexponential, but tractable tail behavior.
'the modern student will hardly understand the mysterious discussions of this "paradox" ' - Feller

A natural example, which is not in the domain of attraction of any stable law, but it is in the domain of geometric partial attraction of a semistable law.
Not subexponential, but tractable tail behavior.
'the modern student will hardly understand the mysterious discussions of this "paradox" ' - Feller

A natural example, which is not in the domain of attraction of any stable law, but it is in the domain of geometric partial attraction of a semistable law.
Not subexponential, but tractable tail behavior.

References I

嗇 I. Berkes, L. Györfi, P. Kevei
Tail probabilities of St. Petersburg sums, trimmed sums, and their limit. Journal of Theoretical Probability. To appear.

國 G. Fukker, L. Györfi, P. Kevei
Asymptotic behavior of the St. Petersburg sum conditioned on its maximum. Bernoulli, 22 (2), 1026-1054, 2016.

