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Introduction

A common practice in the analysis of high-frequency financial data is to
estimate daily volatility using the classic realized volatility estimator
assuming that asset prices follow a continuous stochastic model and are
directly observed.

Important in asset pricing, risk management and portfolio allocation.

Log-price process: (yt , t ∈ [0,1]) with dynamics

dyt = atdt + σtdBt , y0 ∈ R,

B is a standard Brownian motion, [0,1] represents 1 day

Observations: yi = yti , where 0 = t0 < t1 < · · · < tm = 1,

h = ti − ti−1 =
1
m
, m large

Goal: Estimate the integrated volatility:
∫ 1

0 σ
2
t dt from the observations
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Introduction

Classic realized volatility estimator:

σ̂2
RV =

m∑
i=1

(yi − yi−1)2

Consistent estimator of the integrated volatility: as m→∞

σ̂2
RV

P−→
∫ 1

0 σ
2
t dt .

Moreover, it satisfies the following CLT: as m→∞

m1/2
(
σ̂2

RV −
∫ 1

0 σ
2
t dt
)
L−→ N(0, c),

for some constant c > 0.

See (Barndorff-Nielsen, Shephard:2002), and (Andersen, Bollerslev,
Diebold, Labys :2003)
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Introduction

However, the presence of price jumps poses challenges to this
estimation approach, as evidenced by recent empirical studies in
finance.

The presence of discontinuities has motivated modeling prices as a
combination of a continuous and a jump process, but then it is more
challenging to estimate the quadratic variation of the continuous part,
which is typically the object of interest from an economic perspective.

Log–price process: (yt , t ∈ [0,1]) with dynamics

dyt = atdt + σtdBt + dJt ,

J is an pure jump Lévy process independent of B.

Set ∆Jt = Jt − Jt− . Then as m→∞

σ̂2
RV

P−→
∫ 1

0 σ
2
t dt +

∑
t∈[0,1](∆Jt )

2.
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Introduction

Consistent estimators of the integrated volatility
∫ 1

0 σ
2
t dt in the presence

of jumps:

1 Power and multipower variation estimators: (Barndorff-Nielsen,
Shephard:2004), (Corsi, Pirino, Reno:2010): finite activity jumps,
(Barndorff-Nielsen, Shephard, Winkel:2006), (Woerner:2006),
(Jacod:2008), (Jacod, Todorov:2014): infinite activity jumps.

2 Truncated realized volatility estimator (Mancini:2008, 2009): finite
and infinite activity jumps.

σ̂2
TRV =

∑m
i=1(yi − yi−1)21{(yi−yi−1)2≤r(h)},

for some threshold r(h) satisfying lim
h→0

r(h) = 0, lim
h→0

h log 1
h

r(h) = 0.
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Introduction

The presence of market microstructure noise also poses challenges to
the estimation of the quadratic variation. In fact, in the presence of noise
standard realized volatility estimators are inconsistent as the sampling
frequency of the data increases.

Efficient log–price process: (yt , t ∈ [0,1])

Observed price process: xt at timestamps 0 = t0 < t1 < · · · < tm = 1,
h = ti − ti−1 = 1

m :
xi = yi + ui , i = 1, ...,m,

where xi = xti , yi = yti , and ui = uti .

uti denotes the microstructure noise associated to the i th trade, and is a
discrete i.i.d. process, independent of the efficient price process and
uti ∼ N(0, η2) where η > 0.
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Introduction

Consistent estimators of the integrated volatility
∫ 1

0 σ
2
t dt in the presence

of noise:

1 Two-scales realized volatility estimator (Zhang, Mykland,
Aı̈t-Sahalia:2005)

σ̂2
TS = 1

K

∑m
j=K

(
xj − xj−K

)2 − m−K+1
mK

∑m
j=1

(
xj − xj−1

)2
,

where K = cm2/3.

2 Realized kernel estimators (Barndorff-Nielsen, Hansen, Lunde,
Shephard:2008, 2011)
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Introduction

Consistent estimators of the integrated volatility
∫ 1

0 σ
2
t dt in the presence

of finite activity noise and jumps:

1 Modulated bipower variation estimator (Podolskij, Vetter:2009)

2 Wavelet-based estimators (Fan,Wang:2007), (Barunik,Vacha:2015)

3 Intra-daily quantile ranges based estimator (Christensen, Oomen,
Podolskij:2010)
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2. Theory
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Truncated two-scales realized volatility estimator

We introduce a novel realized volatility estimator that is consistent in the
presence of both jumps and noise.

In the spirit of Mancini we introduce a truncation technique based on a
local average of intra-daily returns that allows to detect jumps when the
price is contaminated by noise.

We apply this technique to the two-scales realized volatility estimator to
introduce the so called truncated two-scales realized volatility estimator.

We establish consistency in the presence of finite or infinite activity
jumps and noise. In case of finite activity jumps, we also establish its
asymptotic distribution.

A simulation study shows that it performs satisfactorily and out–performs
the truncated realized volatility, the two-scales realized volatility, the
bipower variation and the modulated bipower variation.
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Theory

Efficient log–price process: (yt , t ∈ [0,1]) with dynamics

dyt = atdt + σtdBt + dJt , y0 ∈ R,

B standard Brownian motion and J indep. pure jump Lévy process.

Observed price process: xt at timestamps 0 = t0 < t1 < · · · < tm = 1,
h = ti − ti−1 = 1

m :
xi = yi + ui , i = 1, ...,m,

where xi = xti , yi = yti , and ui = uti .

uti denotes the microstructure noise associated to the i th trade, and is a
discrete i.i.d. process, independent of the efficient price process and
uti ∼ N(0, η2) where η > 0.

Goal: Estimate the integrated volatility
∫ 1

0 σ
2
t dt .
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uti ∼ N(0, η2) where η > 0.

Goal: Estimate the integrated volatility
∫ 1

0 σ
2
t dt .
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Jump signaling measure

In order to detect a jump in a given interval (ti−1, ti ], we set

βi =
1
K1

i+K1−1∑
j=i

(
xj − xj−K1

)
, for i = 1, . . . ,m,

where K1 = K1(m) satisfies lim
m→∞

K1
m = 0 and lim

m→∞
K1 =∞.

The βi measure is a local average of overlapping returns:

ti−K1 ti−K1+1 ... ...ti−1

βi

ti ti+1 ti+K1−1

ti−K1 ti

ti−K1+1 ti+1

...
ti−1 ti+K1−1

1
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Jump signaling measure: finite activity jumps

Theorem 1
Suppose that

(1) σ and a are a.s. bounded on [0,1].

(2) r(h) is a deterministic function such that

lim
h→0

r(h) = 0, lim
h→0

√
log 1

h
K1

r(h) = 0, and lim
h→0

√
K1h log 1

h
r(h) = 0.

Then, for P-almost all ω, there exists h(ω) > 0 such that for all h ≤ h(ω) and
i = 1, . . . ,m,

1{Ni+K1−1−Ni−K1=0}(ω) ≤ 1{|βi |≤r(h)}(ω) and 1{|βi |≤r(h)}(ω) ≤ 1{Ni−Ni−1=0}(ω).

Example: K1 = mα1 , r(h) = hα2 , 0 < α < 1, 0 < α2 < min
(
α1
2 ,

1−α1
2

)
.
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Modified TSRV estimator

Recall the TSRV estimator (Zhang, Mykland, Aı̈t-Sahalia:2005)

σ̂2
TS =

1
K

m∑
j=K

(
xj − xj−K

)2 − m − K + 1
mK

m∑
j=1

(
xj − xj−1

)2
,

where K = cm2/3.

We work with the following modified version of the TSRV

σ̂2
MTS =

1
K

m∑
j=K

(xj − xj−K )2 − 1
K

m∑
j=K

(xj − xj−1)2.

Both have the same asymptotic properties but σ̂2
MTS is easier to truncate.
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Truncated TSRV estimator

The truncated TSRV realized volatility estimator (TTSRV)

σ̂2
TTS =

1
K

m∑
j=K

(xj − xj−K )21Ej −
1
K

m∑
j=K

(xj − xj−1)21Ej ,

where
Ej = {|βi | ≤ r(h), i = j − K + 1, . . . , j} .

In the presence of finite or infinite activity jumps and noise, we show that
this estimator estimates consistently the integrated volatility.

When jumps are finite we show it has the same asymptotic distribution
as the TSRV.

We also find a consistent estimator of its asymptotic variance.
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Asymptotic properties: finite activity jumps

Consistency:

Theorem 2
Consider the assumptions of Theorem 1, a and σ a.s. continuous on [0,1],
and lim

m→∞
K1 log m

m1/3 = 0. Then as m→∞, σ̂2
TTS

P−→
∫ 1

0 σ
2
t dt .

Example: K1 = mα1 , r(h) = hα2 , 0 < α1 <
1
3 , 0 < α2 <

α1
2 .

Asymptotic Normality:

Theorem 3
Consider the assumptions of Theorem 2, and that lim

m→∞
K1 log m

m1/6 = 0. Then as

m→∞, m1/6
(
σ̂2

TTS −
∫ 1

0 σ
2
t dt
)

stableL−→
(

8c−2η4 + 4
3 c
∫ 1

0 σ
4
t dt
)1/2

N(0,1).

Example: K1 = mα1 , r(h) = hα2 , 0 < α1 <
1
6 , 0 < α2 <

α1
2 .
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3. Simulation study
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Simulation study

We assume a trading day is eight hours long and xt is measured each
second (m = 28,800)

xt =

∫ t

0
σsdBs + Jt + ut ,

and
dσs = κ(v − σs) + τ

√
σsdWs,

where v = 9, τ = 2.74, κ = 0.1, and B and W are independent BM.

Model 1 (finite activity jumps): J a compound Poisson process with
λ = 2, and jump sizes iid N(0, ξ2).

Model 2 (infinite activity jumps): J a variance gamma (VG) process,
Js = d1Gs + d2W Gs , d1 = −0.8, d2 = 0.8, Gs is a Gamma random
variable with shape s/b and scale b > 0, W is a BM independent of B
and W .

K1 = 4 (≈ m1/7) and K = 30.

We use the Euler simulation scheme replicated 1000 times.
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MSE of TTSRV: Model 1

ξ = 2
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MSE of TTSRV: Model 2

b = 2
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MSE of TTSRV: Model 1

η = 0.1
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MSE of TTSRV: Model 2

η = 0.1
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Histogram and normal qqplot: Model 1

standardized estimation error:

z =
m1/6

(
σ̂2

TTS −
∫ 1

0 σ
2
s ds
)

(
8c−2η4 + 4

3 c
∫ 1

0 σ
4
s ds
)1/2

.

r(h) = 0.75, η = 0.1
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Comparison of MSE: Model 1
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Comparison of MSE: Model 2
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Comparison of MSE: Model 1
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Comparison of MSE: Model 2
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Thanks!
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