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1. Introduction

Recall the Cameron-Martin Formula: Given a centered Gaussian
process G = (Gt)t∈T over an arbitrary set T and a random
variable ξ in L2

G , the L2-closure of the subspace spanned by G , we
have for any measurable functional F : RT 7→ R

E [F ((Gt + φ(t))t∈T )] = E
[
F ((Gt)t∈T ) eξ−

1
2Eξ

2] (1)

where φ(t) = E(ξGt).

This formula has many applications, including SDEs and SPDEs
driven by Gaussian random fields.
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The C-M formula can also be viewed an isomorphism identity
expressing a translated Gaussian process in terms of the
untranslated process, but the latter is under the changed
probability measure.

The set of all translation functions

HG = {φ : T → R : φ(t) = E(ξGt) for some ξ ∈ L2
G}

forms a Hilbert space, called the Cameron-Martin space (or the
reproducing kernel Hilbert space).
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It is well-known that (1) does not extend to the Poissonian case.

Indeed, it is easy to see that if Y = (Yt)t∈[0,1] is a Poisson process,
then there is no function ψ : [0, 1]→ R, ψ 6≡ 0 such that

E
[
F
(

(Yt + ψ(t))t∈[0,1]
)]

= E
[
F
(

(Yt)t∈[0,1]
)
η
]

for all functionals F and some random variable η ≥ 0 with Eη = 1.

We propose isomorphism identities based on random translations
instead.
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Namely, let Y = (Yt)t∈T be a Poissonian infinitely divisible
process over a general index set T . Let ν be the Lévy measure of
Y on the path space RT and assume that ν is σ-finite.
Let Z = (Zt)t∈T be an arbitrary process, which is independent of
the process Y , and whose distribution L(Z ) on RT is absolutely
continuous with respect to ν, i.e., L(Z )� ν.
We will show that there exists a measurable functional
g : RT 7→ R+ with Eg(Y ) = 1 such that for any measurable
functional F : RT 7→ R,

E [F ((Yt + Zt)t∈T )] = E [F ((Yt)t∈T ) g(Y )] . (2)
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What kind of functionals F can be of interest? A few examples:

F ((Yt)t∈T ) = f (Yt1 , . . . ,Ytn ) cylindrical functional;

F ((Yt)t∈T ) = supt∈T Yt extremum;

F ((Yt)t∈T ) =
∫

T |Yt |p µ(dt) path integral;

F
(

(Yt)t∈[0,u]
)

=
∫ u

0 δy (Yt) dt local time;

F ((Yt)t∈T ) =
∫∞

0 e−ηt− dξt exponential functional, where
(ηt , ξt), t ≥ 0 is a Lévy process, T = R1 ∪R2 the union of two
disjoint copies of R+ and Yt = ηt if t ∈ R1, Yt = ξt if t ∈ R2.
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Returning to our example of Poisson process Y = (Yt)t∈[0,1], if we
take

Zt = 1[0,t](η)

where η ∈ [0, 1] is a random variable with absolutely continuous
density fη and independent of Y then (2) holds:

E
[
F
(

(Yt + 1[0,t](η))t∈[0,1]
)]

= E
[
F
(

(Yt)t∈[0,1]
)
g(Y )

]
with g(Y ) = λ−1 ∫ 1

0 fη(t) dYt and λ being the rate of Y .
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Any infinitely divisible process X = (Xt)t∈T can be written as

X d= G + Y

where G = (Gt)t∈T and Y = (Yt)t∈T are independent processes,
G is centered Gaussian and Y is Poissonian infinitely divisible.

Combining isomorphis identities for Gaussian and Poissonian
processes we get the identities for all infinitely divisible processes.

Isomorphism identities for Poissonian processes use Lévy measures.

What is the Lévy measure of a general infinitely divisible process?
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2. Lévy measures on path spaces

Notation: Path space RT = {x : T → R}; BT the cylindrical
(product) σ-algebra of RT ; 0T the origin of RT .

Definition
A measure ν on (RT ,BT ) is said to be a Lévy measure if

(L1) for each t ∈ T ∫
RT
|x(t)|2 ∧ 1 ν(dx) <∞,

(L2) for every A ∈ BT

ν(A) = ν∗(A \ 0T ),

where ν∗ denotes the inner measure.
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Theorem (Lévy-Khintchine representation)

Let X = (Xt)t∈T be an infinitely divisible process. Then there exist
a unique triplet (Σ, ν, b) consisting of a non-negative definite
function Σ on T × T, a Lévy measure ν on (RT ,BT ) and a
function b ∈ RT such that for every finite set I ⊂ T and a ∈ RI

E exp i
∑
t∈I

atXt = exp
{
− 1

2〈a,ΣIa〉+ i〈a, bI〉 (3)

+
∫
RT

(e〈a,xI〉 − 1− i〈a, [[xI ]]〉) ν(dx)
}

where 〈·, ·〉 is the Euclidean inner product in RI and [[·]] denotes a
truncation function.

Conversely, given Σ, a Lévy measure ν on (RT ,BT ) and b ∈ RT

there exists a unique in distribution infinitely divisible process
X = (Xt)t∈T satisfying (3).
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The following is possible but very rare ...

Theorem (Processes with not-σ-finite Lévy measures)

Let Y = (Yt)t∈T be a Poissonian infinitely divisible process with
Lévy measure ν. Then ν is not σ-finite if and only if T is
uncountable and there is a version Ỹ = (Ỹt)t∈T of the process Y
such that for every countable T0 ⊂ T there exist t1 /∈ T0 and
independent random variables ξ and η such that
(a) Ỹt1 = ξ + η;

(b) (Ỹt , ξ, η : t ∈ T0) are jointly Poissonian infinitely divisible;

(c) η is non-degenerate and independent of (Ỹt , ξ : t ∈ T0) .

Remark
Intuitively, a Poissonian infinitely divisible process has a σ-finite
Lévy measure if and only if outside some of countable T0 ⊂ T the
process has no independent components to XT0 .
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Definition (separability in probability)

A stochastic process Y = (Yt)t∈T is separable in probability if
there exists a countable T0 ⊂ T such that for any t ∈ T there is a
sequence {sn} ⊂ T0 such that Ysn

P→ Yt .

Corollary

A separable in probability Poissonian infinitely divisible process Y
has a σ-finite Lévy measure.

Proof. Let T0 be a separant for Y . Suppose to the contrary that
ν is not σ-finite, so by above Theorem there is t1 /∈ T0 such that
(a)–(c) hold. By the separability, Ỹsn

P→ Ỹt1 = ξ + η for some
sn ∈ T0. Therefore, ξ + η is σ(ỸT0)-measurable and still η is
independent of (Ỹt , ξ : t ∈ T0). Hence, for any u ∈ R

eiu(ξ+η) = E[eiu(ξ+η) | ỸT0 , ξ] = eiuξE[eiuη | ỸT0 , ξ] = eiuξE[eiuη],

|E[eiuη]| = 1, so that η is deterministic. A contradiction. 2
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3. Representations and examples of Lévy measures of
processes

A natural way to describe Lévy measures on path spaces is to view
them as “laws of processes” defined on infinite measure spaces.

Definition

A collection of measurable functions V = (Vt)t∈T defined on a
measure space (S,S, n) is said to be a representation of ν if all its
finite dimensional “distributions” coincide with the corresponding
projections of ν for all Borel sets that do not contain the origin.

A representation V is called exact if n ◦ V−1 = ν. Here V is
viewed as a function from S into RT given by V (s)(·) = V(·)(s).
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Example (Lévy processes)

Let Y = (Yt)t≥0 be a Poissonian Lévy process determined by
EeiuYt = etK(u), where K is the cumulant function given by

K (u) =
∫
R

(eiux − 1− iu[[x ]]) ρ(dx) + iuc.

Then V = (Vt)t≥0 defined on (R+ × R, λ⊗ ρ) by

Vt(r , v) = 1{t≥r}v , (r , v) ∈ R+ × R

is an exact representation of ν.
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Example (Squared Bessel processes)

Let Y = (Yt)t≥0 be a squared Bessel process of dimension β > 0
starting from 0. If β ∈ N, then Yt := ‖Bt‖2, where B is a
β-dimensional standard Brownian motion. In general, Y is
defined as the unique solution of the stochastic differential
equation

dYt = 2
√
Yt dWt + β dt, Y0 = 0,

where W is a one dimensional standard Brownian motion. Shiga
& Watanabe showed that squared Bessel processes are infinitely
divisible and Pitman & Yor described the Lévy measures on
C(R+). We will adapt that characterization to our setting.
Let U+ ⊂ C(R+) be defined by

U+ := {u : u(0) = 0, u|(0,t0) > 0, u|[t0,∞) = 0 for some t0 > 0}.

U+ is a Borel subset of C(R+), on which we consider the Itô
measure n+ of the Brownian positive excursions.
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Example (Squared Bessel processes, cont.)
Let La

∞(u) denote the total accumulated local time of an
excursion u ∈ U+ at a > 0. Symbolically,

La
∞(u) =

∫ ∞
0

δa(u(t)) dt.

Set La
∞(u) = 0 when a ≤ 0.

Then V = (Vt)t≥0 defined on (R+ × U+, βλ⊗ n+) by

Vt(r , u) = Lt−r
∞ (u), r ≥ 0, u ∈ U+.

is an exact representation of the Lévy measure ν of Y , the
squared Bessel process of dimension β starting from zero.
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Example (Feller diffusion)

We consider a Feller diffusion Z = (Zt)t≥0 without the drift
term, which satisfies the stochastic differential equation

dZt = σ
√
Zt dWt , Z0 = a > 0,

where W is a one dimensional standard Brownian motion. Z is
a time-scaled 0-dimensional squared Bessel process whose Lévy
measure ν0 was given by Pitman & Yor. We get that
V = (Vt)t≥0 defined on (U+, a n+) by

Vt(u) = L4−1σ2t
∞ (u), u ∈ U+

is an exact representation of the Lévy measure of Z .
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4. Lévy-Itô representations and transfer of regularity for
Lévy measures

Theorem (Generalized Lévy-Itô representation)

Let X = (Xt)t∈T be a separable in probability infinitely divisible
process with the generating triplet (Σ, ν, b). Assume that the
probability space is rich enough to support independent of X
standard uniform random variable. Then, given a representation
V = (Vt)t∈T of ν defined on a σ-finite measure space (S,S, n),
where S is (modulo n) countably generated, there exist a centered
Gaussian process G = (Gt)t∈T with covariance Σ, an independent
of G Poisson random measure N on (S,S) with intensity n, such
that for every t ∈ T

Xt = Gt +
∫

S
Vt(s)

(
N(ds)− χ(Vt(s)) n(ds)

)
+ b(t) a.s.

where χ is a fixed cut-off function.
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Examples (integral representations)

(a) Lévy processes. Let Y = (Yt)t≥0 be a Poissonian Lévy
process. Since Vt(r , v) = 1{t≥r}v , we get for every t ≥ 0 a.s.

Yt =
∫
R+

∫
R

1{t≥r}v
(
N(dr , dv)− χ(1{t≥r}v) drρ(dv)

)
+ ct

=
∫ t

0

∫
R
v (N(dr , dv)− χ(v) drρ(dv)) + ct,

where N is a Poisson random measure on R+×R with rate λ⊗ ρ.
(b) Squared Bessel processes. Let Y = (Yt)t≥0 be a squared
Bessel process of dimension β > 0 starting from 0. Then

Yt =
∫ t

0

∫
U+

Lt−r
∞ (u)N(dr , du) .

where N is s Poisson random measure on R+ × U+ with intensity
βλ⊗ n+. Therefore, a squared Bessel process Y is a mixed
stochastic convolution.
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Examples (integral representations, continue)

(c) Feller diffusion. Let Z = (Zt)t≥0 be a Feller diffusion starting
from a > 0, as in a previous example. We have for every t ≥ 0 a.s.

Zt =
∫

U+
Lκt
∞(u)N(du) .

where κ = σ2/4 and N is s Poisson random measure on U+ with
intensity a n+.
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The transfer of regularity property for Lévy measures says that
regularities of sample paths of Poissonian infinitely divisible
processes are inherited by representations of their Lévy measures.

Theorem (Transfer of regularity)

Let Y = (Yt)t∈T be a Poissonian infinitely divisible process with a
σ-finite Lévy measure ν. Assume that paths of Y lie in a set U
that is a subgroup of RT under addition. Then ν has an exact
representation with all paths in U. Therefore, both the distribution
of Y and its Lévy measure are carried by the path space (U,U),
where U = BT ∩ U.
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5. Isomorphism identities for Poissonian processes

We continue isomorphic identities from the Introduction.

Theorem

Let Y = (Yt)t∈T be a Poissonian infinitely divisible process with a
σ-finite Lévy measure ν and given by its canonical spectral
representation

Yt =
∫
RT

x(t)[N(dx)− χ(x(t))ν(dx)] + b(t), t ∈ T ,

where N is a Poisson random measure with intensity ν. Let
Z = (Zt)t∈T be an arbitrary process independent of N such that
L(Z )� ν. Put q := dL(Z)

dν . Then for any measurable functional
F : RT 7→ R

EF
(
(Yt + Zt)t∈T

)
= E

[
F
(
(Yt)t∈T

)
; N(q)

]
(4)
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Theorem (continue)
where

N(q) =
∫
RT

q(x)N(dx) .

Conversely, for any F as above,

E
[
F
(
(Yt)t∈T

)
; N(q) > 0

]
(5)

= E
[
F
(
(Yt + Zt)t∈T

)
(N(q) + q(Z ))−1

]
where q(Z ) = q ((Zt)t∈T ). Therefore, L(Y + Z ) and L(Y ) are
equivalent provided ν{x : q(x) > 0} =∞.

The next identity is in terms of representations of Lévy measures.
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Theorem

Let Y = (Yt)t∈T be a Poissonian infinitely divisible process given
by

Yt =
∫

S
Vt(s)

[
N(ds)− χ(Vt(s))n(ds)

]
+ b(t) ,

where V = (Vt)t∈T is a representation of the Lévy measure of Y
defined on a σ-finite measure space (S,S, n), N is a Poisson
random measure on (S,S) with intensity n, and b is a shift
function. Choose an arbitrary measurable function q : S 7→ R+
such that

∫
S q(s) n(ds) = 1. Then for any measurable functional

F : RT 7→ R∫
S
EF

(
(Yt + Vt(s))t∈T

)
q(s) n(ds) = E[F

(
(Yt)t∈T

)
; N(q)] ,

where
N(q) =

∫
S
q(s)N(ds) .
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Theorem (Continue)

Conversely, for any F as above,

E[F
(

(Yt)t∈T
)

;N(q) > 0]

=
∫

S
E
[
F
(
(Yt + Vt(s))t∈T

)
; (N(q) + q(s))−1] q(s) n(ds) .

If n{s ∈ S : q(s) > 0} =∞ then

E[F
(
(Yt)t∈T

)
]

=
∫

S
E
[
F
(
(Yt + Vt(s)

)
t∈T

)
; (N(q) + q(s))−1

]
q(s) n(ds) .
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Trying to understand the following isomorphism theorem inspired
the present study:

Example (Dynkin isomorphism for permanental processes)

First we will recall some definition and facts about permanental
processes that will be needed in the sequel. A positive
real-valued stochastic process Y = (Yx )x∈E over a set E is
called a α-permanental process with kernel (u(x , y) : x , y ∈ E ) if
for every x1, . . . , xn ∈ E and s1, . . . , sn ≥ 0

E exp
{
−

n∑
j=1

sjYxj

}
= |I + US|−α (6)

where U and S are n × n-matrices, U = (u(xi , xj) : 1 ≤ i , j ≤ n),
S = diag(s1, . . . , sn), and α > 0. The one dimensional marginal
of Yx is a gamma distribution with shape parameter α and
mean αu(x , x) (in particular, it is exponential when α = 1, or a
χ2-distribution when α ∈ N/2). Therefore, (6) can be viewed as
a generalization of such distributions to the multivariate case.
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Example (continue)
The importance of permanental processes comes from their
connection to Markov processes. Eisenbaum & Kaspi proved that
if X = (Xt)t≥0 is a transient Markov process with a state space E
and potential density (u(x , y) : x , y ∈ E ), then for every α > 0
there exists a α-permanental process Y (α) = (Yx )x∈E whose kernel
is (u(x , y) : x , y ∈ E ) and Y (α) is Poissonian infinitely divisible.
Therefore

E exp
{
−

n∑
j=1

sjYxj

}
= exp

[∫
RE

+

(
e−
∑n

j=1 sjβ(xj ) − 1
)
αν(dβ)

]
,

where x1, . . . , xn ∈ E , s1, . . . , sn ≥ 0, and n ≥ 1. ν is the Lévy
measure of the 1-permanental process. ν is σ-finite under a weak
assumption that Y (α) is separable in probability.
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Example (continue)
The Dynkin Isomorphism Theorem says that for any measurable
functional F : RE 7→ R

EẼa [F ((Yx + Lx
∞)x∈E )] = α−1u(a, a)−1 E [F ((Yx )x∈E ) ; Ya] ,

(7)
where (Lx

∞)x∈E is the process of the total accumulated local time
at x of the associated Markov process X considered under
probability measure P̃a. Under P̃a the process X starts at a and is
killed at its last visit to a.

One can show that L((Lx
∞)x∈E )� ν. Thus (7) is a special case of

(4) above. Using (5) we also get

E [F ((Yx )x∈E )] = αu(a, a) ẼaE
[
F ((Yx + Lx

∞)x∈E ) (Ya + La
∞)−1

]
.
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Example (Lévy processes)

Let X = (Xt)t≥0 be a Lévy process such that EeiuXt = etK(u),
where

K (u) = −1
2σ

2u2 +
∫
R

(eiux − 1− iu[[x ]]) ρ(dx) + icu .

Let q : R+ × R 7→ R+ be a measurable function such that∫
R+×R q(r , v) drρ(dv) = 1. Then for any measurable functional
F : RT 7→ R

E
∫
R+×R

F
((

Xt + 1{r≤t}v
)

t≥0

)
q(r , v) drρ(dv)

= E[F
(

(Xt)t≥0

)
; g(X )] ,

where g(X ) =
∑
{r>0: ∆Xr 6=0} q(r ,∆Xr ) and ∆Xr = Xr − Xr−.
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Example (Lévy processes, continue)
Conversely,

E[F
(

(Xt)t≥0
)

; g(X ) > 0]

=
∫
R+×R

E
[
F
((

Xt + 1{r≤t}v
)

t≥0

)
; (g(X ) + q(r , v))−1] q(r , v)

drρ(dv) .

Moreover, g(X ) > 0 a.s. if
∫
R+×R 1{q(r , v) > 0} drρ(dv) =∞.
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6. Series representations
We will only show an example how a representation of Lévy
measure leads to series representation of the processes.

Example (Feller diffusions)

Let Z = (Zt)t∈T be a Feller diffusion starting from a > 0 and
without a drift term. Recall that Vt = Lκt

∞, t ≥ 0 is a
representation of the Lévy measure of Z on (S, n) = (U+, a n+).
Let R(u) denote the length of an excursion u ∈ U+. It is
well-known that

n+{u : R(u) > x} = 1√
2π

x−1/2.

Let f : R+ 7→ R+ be such that f (x) = 0 only for x = 0 and

1√
2π

∫ ∞
0

f ′(x)x−1/2 dx = 1.
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Example (continue)
Since∫

U+
f (R(u)) n+(du) =

∫ ∞
0

f ′(x) n+{u : R(u) > x} dx = 1,

n(1)(du) := f (R(u)) n+(du) is a probability measure on U+. Let
(ξj)j∈N be an i.i.d. sequence of random elements in U+ with the
common distribution n(1) and let (Γj)j∈N be a sequence of
partial sums of i.i.d. mean-one exponential random variables
independent of the sequence (ξj)j∈N. Then

Zt
d=
∞∑

j=1
Lκt
∞(ξj)1{f (R(ξj)) ≤ aΓ−1

j }, t ≥ 0

and the convergence holds also a.s. uniformly in t on finite
intervals.
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Example (continue)

Let us take f (x) =
√

π
2 (x ∧ 1) for concreteness. Then the above

formula becomes

Zt
d=
∞∑

j=1
Lκt
∞(ξj)1{R(ξj) ∧ 1 ≤ (2/π)1/2aΓ−1

j }, t ≥ 0.

This formula says that a Feller diffusion is the series of
randomly trimmed total accumulated local times taken at the
level κt, t ≥ 0 from an infinite sample of Brownian excursions.
This sample is taken according to the density (π/2)1/2(R ∧ 1)
with respect to n+.
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Thank you!
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