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Introduction
Aim of the Project

ä Modelling multivariate time series of counts.

ä Count data: Non-negative and integer-valued, and often over-dispersed
(i.e. variance > mean).

ä Various applications: Medical science, epidemiology, meteorology,
network modelling, actuarial science, econometrics and finance.

Aim of the project
Develop continuous-time models for time series of counts that

à allows for a flexible autocorrelation structure;

à can deal with a variety of marginal distributions;

à allows for flexibility when modelling cross-correlations;

à can cope with asynchronous, non-equidistant observations;

à is analytically tractable.
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Introduction
Short and Incomplete Review of the Literature

ä Overall, two predominant modelling approaches:

à Discrete autoregressive moving-average (DARMA) models introduced by
Jacobs & Lewis (1978a,b).

The advantage of such stationary processes is that their marginal
distribution can be of any kind. However, this comes at the cost that the
dependence structure is generated by potentially long runs of constant
values, which results in sample paths which are rather unrealistic in many
applications (see McKenzie (2003)).

à Models obtained from thinning operations going back to the influential work
of Steutel & van Harn (1979), e.g. INARMA. See also Zhu & Joe (2003) for
related more recent work.

ä Key idea of this paper: Use trawling for modelling counts! – Nested within
the framework of ambit fields (Barndorff-Nielsen & Schmiegel (2007)) and
extends results by Barndorff-Nielsen, Pollard & Shephard (2012) and
Barndorff-Nielsen, Lunde, Shephard & Veraart (2014).
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Introduction
What is trawling...? A first ”definition”

“Trawling is a method of fishing that involves pulling a fishing net through the
water behind one or more boats. The net that is used for trawling is called a
trawl.” (Wikipedia)
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Theoretical framework
Integer-valued, homogeneous Lévy bases

ä Let N be a homogeneous Poisson random measure on Rn ×R2 with
compensator

E(N(dy,dx ,dt)) = ν(dy)dxdt ,

where ν is a Lévy measure satisfying
∫ ∞
−∞ min(1, ||y||)ν(dy) < ∞.

ä Assume that N is positive integer-valued, i.e. ν is concentrated on N.

ä Then we define an Nn-valued, homogeneous Lévy basis on R2 in terms
of the Poisson random measure as

L(dx ,dt) = (L(1)(dx ,ds), . . . ,L(n)(dx ,ds))> =
∫ ∞

−∞
yN(dy,dx ,dt). (1)

ä The Lévy basis L is infinitely divisible with cumulant function

C(θ ‡ L(dx ,dt)) ..= log(E(exp(iθ>L(dx ,dt))) =
∫

R

(
eiθ>y − 1

)
ν(dy)dxdt

= C(θ ‡ L′)dxdt , where L′ is the Lévy seed.
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Theoretical framework
Example: A Poisson Basis

ä Suppose L(i)(dx ,dt) is a Poisson basis (Poisson random measure) on
[0,1]×R+ with mean υdxdt .

à L(i) generates randomly scattered points in time with uniformly distributed
height over a unit height strip.
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Theoretical framework
Example: A Negative Binomial Basis

ä Say we want the negative binomial Lévy seed (L′t ∼ NB(υ(i)t , θ(i)))

à Then use L′(i)t = ∑
N(i)

t
j=1 C(i)

j where N(i) ∼ Poi(υ
∣∣∣log

(
1− θ(i)

)∣∣∣) and C(i)
j

(integer dot size) follow the logarithmic distribution with parameter θ(i).
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Theoretical framework
Integer-valued, homogeneous Lévy bases: The cross-correlation

ä From Feller (1968), we know that any non-degenerate distribution on Nn

is infinitely divisible if and only if it can be expressed as a discrete
compound Poisson distribution.

ä A random vector with infinitely divisible distribution on Nn always has
non-negatively correlated components.

ä We model the Lévy seed by an n-dimensional compound Poisson
process given by

L′t =
Nt

∑
j=1

Zj ,

where N = (Nt )t≥0 is an homogeneous Poisson process of rate v > 0
and the (Zj )j∈N form a sequence of i.i.d. random variables independent
of N and which have no atom in 0, i.e. not all components are
simultaneously equal to zero, more precisely, P(Zj = 0) = 0 for all j .
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Theoretical framework
Definition of a Trawl

Definition 1
A trawl for the i th component is a Borel set A(i) ⊂ R× (−∞,0] such that
Leb(A(i)) < ∞. Then, we set

A(i)
t = A(i) + (0, t), i ∈ {1, . . . ,n}.

ä Typically, we choose A(i) to be of the form

A(i) = {(x , s) : s ≤ 0, 0 ≤ x ≤ d (i)(s)}, (2)

where d (i) : (−∞,0] 7→ R is a cont. and Leb(A(i)) < ∞.

ä Then A(i)
t = A(i) + (0, t) = {(x , s) : s ≤ t , 0 ≤ x ≤ d (i)(s− t)}.

ä If d (i) is also monotonically non-decreasing, then A(i) is a monotonic
trawl.
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Theoretical framework
Definition of a Trawl Process

Definition 2
We define an n-dimensional stationary integer-valued trawl (IVT) process
(Yt )t≥0 by Yt = (L(1)(A(1)

t ), . . . ,L(n)(A(n)
t ))′,

à where
L(i)(A(i)

t ) =
∫

R×R
IA(i) (x , s− t)L(i)(dx ,ds), i ∈ {1, . . . ,n}.

à L is the n-dimensional integer-valued, homogeneous Lévy basis on R2 (see (1)).

à A(i)
t = A(i) + (0, t) with A(i) ⊂ R× (−∞,0] and Leb(A(i)) < ∞ is the trawl.

ä Wolpert & Taqqu (2005) study a subclass of general (univariate) trawl processes
(not necessarily restricted to IV) under the name “up-stairs” representation,
“random measure of a moving geometric figure in a higher-dimensional space”

ä Wolpert & Brown (2011) study so-called “random measure processes” which also
fall into the (univariate) trawling framework.
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Theoretical framework
Definition of a Trawl Process
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Examples
Negative Binomial exponential-trawl process
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Some key properties of IVT processes

ä The IVT process is stationary and infinitely divisible.

ä The IVT process is mixing⇒ weakly mixing⇒ ergodic.

ä For any θ ∈ Rn, the characteristic function of Yt is given by
E(exp(iθ>Yt )) = exp(CYt (θ)), where

CYt (θ) =
n

∑
k=1

∑
1≤i1,...,ik≤n:
iν 6=iµ, for ν 6=µ

Leb

 k⋂
l=1

A(il ) \
⋃

1≤j≤n,
j 6∈{i1,...,ik }

A(j)


C
(L(i1),...,L(ik ))((θi1 , . . . , θik )

>).

ä In the special case when A(1) = · · · = A(n) = A, the characteristic
function simplifies to E(exp(iθ>Yt )) = exp (Leb(A)CL′(θ)).
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Some key properties of IVT processes
Cross-correlation structure

ä The covariance between two (possibly shifted) components 1 ≤ i ≤ j ≤ n
for t ,h ≥ 0 is given by

ρij (h) := Cov
(

L(i)(A(i)
t ),L(j)(A(j)

t+h)
)

= Leb
(

A(i) ∩ A(j)
h

)
︸ ︷︷ ︸

=:Rij (h)

(∫
R

∫
R

yiyj ν
(i,j)(dyi ,dyj )

)
︸ ︷︷ ︸

=:κi,j

.

ä Suppose the trawls A(i), i ∈ {1, . . . ,n} are of type (2). Then for h ≥ 0 the
intersection of two trawls is given by

A(i) ∩ A(j)
h = {(x , s) : s ≤ 0,0 ≤ x ≤ min{d (i)(s),d (j)(s− h)}}.

I.e.

Rij (h) =
∫ 0

−∞
min{d (i)(s),d (j)(s− h)}ds.
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Some key properties of IVT processes
Autocorrelation structure

ä For each component, the autocorrelation function is given by

r (i)(h) = Cor (L(i)(A(i)
t ),L(i)(A(i)

t+h)) =
Leb(A(i) ∩ A(i)

h )

Leb(A(i))
.

ä For a monotonic trawl, we get

Leb(A(i) ∩ A(i)
h ) =

∫ ∞

h
d (i)(−x)dx ,

which implies that

r (i)(h) =

∫ ∞
h d (i)(−x)dx∫ ∞
0 d (i)(−x)dx

, and r (i)
′
(h) =

−d (i)(−h)∫ ∞
0 d (i)(−x)dx

.
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Key properties of IVT processes
Autocorrelation Structure: Exponential Trawl and Superpositions

ä A very flexible way of parametrising d (i) is to work with a superposition of
exponential trawls.

ä Here we randomise the memory parameter λ: So

d (i)(z) =
∫ ∞

0
eλz fπ(i)(λ)dλ, for z ≤ 0,

for an absolutely continuous probability measure π(i) on (0,∞) with
density fπ(i) .

ä Then the autocorrelation function is given by

r (i)(h) = Cor (Y (i)
t ,Y (i)

t+h) =

∫ ∞
0

1
λ e−λhπ(i)(dλ)∫ ∞
0

1
λ π(i)(dλ)

,

when
∫ ∞

0
1
λ π(i)(dλ) < ∞.
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Key properties of IVT processes
Examples with short and long memory

We suppress the superscript (i) in the following:

ä sup-IG trawl (for π having inverse Gaussian distribution):

d(z) =
(

1− 2z
γ2

)−1/2
exp

(
δγ

(
1−

√
1− 2z

γ2

))
, δ,γ > 0,

r (h) = exp

(
δγ

(
1−

√
1 +

2h
γ2

))
, h ≥ 0.

ä sup-Gamma trawl (for π having Gamma distribution):

d(z) =
(

1− z
α

)−H
, α > 0,H > 1,

r (h) =
(

1 +
h
α

)1−H
.

à if H ∈ (1,2] then this is a stationary long-memory model, while

à if H > 2 it is a stationary short-memory process.
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Multivariate law of the Lévy seed
Poisson mixtures

ä The law of L′ is of discrete compound Poisson type by construction.

ä Use Poisson mixtures based on random additive effect models, see
Barndorff-Nielsen et al. (1992).

ä Consider random variables X1, . . . ,Xn and Z1, . . . ,Zn, such that,
conditionally on {Z1, . . . ,Zn}, the X1, . . . ,Xn are independent and
Poisson distributed with means given by the {Z1, . . . ,Zn}.

ä Model the joint distribution of the {Z1, . . . ,Zn} by a so-called additive
effect model as follows:

Zi = αiU + Vi , i = 1, . . . ,n,

where the random variables U,V1, . . . ,Vn are independent and the
α1, . . . , αn are nonnegative parameters.

ä We have explicit formulas for the joint law of (X1, . . . ,Xn) and

E(Xi ) = αi E(U) + E(Vi ), i = 1, . . . ,n,
Cov(Xi ,Xj ) = αi αj Var(U), if i 6= j .
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Proposition
Representation as compound Poisson distribution

The Poisson mixture model of random-additive-effect type can be represented
as a compound Poisson distribution with rate

v = −
(

K U(α) +
n

∑
i=1

K Vi
(1)

)
,

where α = ∑n
i=1 αi and K denotes the kumulant function, i.e. the logarithm of

the Laplace transform, and the jump size distribution has Laplace transform

L(θ;C) =
1
v

 ∞

∑
k=1

(
n

∑
i=1

αie−θi

)k

q(U)
k +

n

∑
i=1

∞

∑
k=1

e−θi k q(Vi )
k

 ,

where

q(U)
k =

1
k !

∫
R

e−αxxk νU(dx), q(Vi )
k =

∫
R

xk

k !
e−x νVi

(dx), for i ∈ {1, . . . ,n},

where the Lévy measure of U and Vi are denoted by νU and νVi
, respectively.
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Multivariate negative binomial law

ä If U and Vis follow suitable Gamma distributions, then negative binomial
marginal law can be achieved allowing for 1) independence, 2) complete
dependence, or 3) dependence with additional independent factors
between the components.

ä Focus on Case 2 (which arises in the empirical study): Choose
U ∼ Γ(κ,1) and Vi ≡ 0, for i = 1, . . . ,n. Then Xi ∼ NB(κ, αi /(1 + αi )).

ä The distribution in Case 2) can be represented as a compound Poisson
distribution,

à with rate κ log(1 + ∑n
i=1 αi ) and

à jump size distribution given by the multivariate logarithmic distribution with
parameters (p1, . . . ,pn) for pi = αi /(1 + ∑n

i=1 αi ). I.e.

P(C = c) =
Γ(c1 + · · ·+ cn)

c1! · · · cn!
pc1

1 · · · p
cn
n

(− log(1−∑n
i=1 pi )

, for c ∈Nn
0 \ {0}.
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Key properties of IVT processes
Overview

Flexible marginal distributions:

ä Poisson trawl process;

ä Negative binomial trawl process;

ä other compound Poisson distributions.

Various choices of the trawl function:

ä Superpositions of exponential trawls: d (i)(z) =
∫ ∞

0 eλz π(i)(dλ), for z ≤ 0, for a
probability measure π(i) on (0,∞).

ä Possibility of allowing for long memory.

ä A possible seasonal model: d (i)(t) = d (i)
p (t)d (i)

s (t), where d (i)
p (t) monotonically

increases with t while d (i)
s (t) is a purely periodic seasonal effect.
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Simulation and inference
Simulation

ä A univariate trawl process can be written as

Yt = L(At ) = X0,t + Xt ,

where X0,t = L({(x , s) : s ≤ 0,0 ≤ x ≤ d(s− t)}) and
Xt = L({(x , s) : 0 < s ≤ t ,0 ≤ x ≤ d(s− t)}).

ä Since X0,t → 0 in probability as t → ∞, we focus on Xt , which can be
represented as

Xt =
Nt

∑
j=1

Cj I{Uj≤d(tj−t)}, (3)

for i.i.d. standard uniform (Uj )s (independent of N,C).

ä In the multivariate context, we allow for both common and disjoint jumps
and obtain the marginal components as their sums.

ä Use (3) for efficient simulation of trawl processes.
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Inference
(Generalised) Method of Moments

ä Use a (generalised) method of moments in a two-stage
equation-by-equation approach to estimate the marginal parameters first,
followed by the dependence parameters.

ä Step 1a) Use the acf r (i)(h) = Leb(A(i)∩A(i)
h )

Leb(A(i))
to infer the trawl parameters.

ä Step 1b) Use the cumulant function C(θ ‡ Y (i)
t ) = Leb(A(i))C(θ ‡ L

′(i)) to
infer the marginal parameters of the Lévy basis.

ä Step 2a) Compute Leb(A(i) ∩ A(j)) for i 6= j .

ä Step 2b) Use the cross-covariance function

Cov
(

L(i)(A(i)
t ),L(j)(A(j)

t )
)
= Leb

(
A(i) ∩ A(j)

)(∫
R

∫
R

yiyj ν
(i,j)(dyi ,dyj )

)
to infer the dependence parameters.
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Simulation results
Bivariate negative binomial marginal law, with exponential trawl
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Empirical illustration
High frequency financial data from LOBSTER

ä Study high frequency limit order book data from LOBSTER.

ä We picked the Bank of America (BAC) data for 21st April 2016: Start at
10:00, end at 15:30, i.e. we removed the first and last 30 minutes.

ä We compute the number of new submissions and full cancellations of
limit orders in each interval of length 5s (3960 observations in total)

ä We fit a bivariate trawl model to the submitted and cancelled orders.

ä Summary statistics:
Min 1st Quartile Median Mean 3rd Quartile Max

No. of sub. 0 7 13 34.06 28 646
No. of can. 0 5.75 12 29.13 27.25 571
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Number of submitted and cancelled limit orders

0 1000 2000 3000 4000

−
60

0
−

40
0

−
20

0
0

20
0

40
0

60
0

Interval

C
ou

nt
s

26 / 32



Number of submitted and cancelled limit orders
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Fitted trawl functions
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Negative binomial marginal fit
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Negative binomial bivariate fit
ts

2
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Main contributions

ä New continuous-time framework for modelling multivariate stationary,
serially correlated count data.

ä Two key components:
à Integer-valued, homogeneous Lévy basis: Generates random point pattern

and determines marginal distribution and cross-sectional dependence.
à Trawl: Thins the point pattern and determines the autocorrelation structure.

ä Methodology for simulation and inference for multivariate integer-valued
trawl processes.

ä Simulation study reveals good finite sample performance of the inference
method.

ä Empirical application: Joint model for the number of order submissions
and cancellations in a limit order book.
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