A Malliavin-Skorohod calculus in L⁰ and L¹ for pure jump additive and Volterra-type processes

> Josep Vives (josep.vives@ub.edu) (Joint work with Giulia Di Nunno (UiO))

> > Universitat de Barcelona

Conference on Ambit fields and related topics Aarhus, August 15-18, 2016

REFERENCES

- G. Di Nunno and J. V. (2016): A Malliavin Skorohod calculus in L⁰ and L¹ for additive and Volterra type processes. Stochastics. [DV]
- O. E. Barndorff-Nielsen, F. E. Benth, J. Pedersen and A. E. D. Veraart (2014): *On stochastic integration for volatility modulated Lévy driven Volterra processes*. SPA 124: 812-847. [BBPV]
- J. L. Solé, F. Utzet and J. V. (2007): *Canonical Lévy processes* and *Malliavin calculus*. SPA 117: 165-187. [SUV]

< ロ > < 同 > < 回 > < 回 > < 回 > <

ABSTRACT

- In this paper we extend the Malliavin-Skorohod type calculus for pure jump additive processes to the L⁰ and L¹ settings.
- We apply it to extend stochastic integration with respect to volatility modulated pure jump additive-driven Volterra processes.
- In particular, we define integrals with respect to Volterra processes driven by α-stable processes with α < 2.

.

MOTIVATION I

 Consider a pure jump volatility modulated additive driven Volterra (VMAV) process X defined as

$$X(t) = \int_0^t g(t,s)\sigma(s)dJ(s)$$

provided the integral is well defined. Here *J* is a pure jump additive process, *g* is a deterministic function and σ is a predictable process with respect the natural completed filtration of *J*.

• This kind of models, called volatility modulated Volterra processes, are part of the family of Ambit processes and are used in modeling turbulence, energy finance and others.

• A major problem is to develop an integration theory with respect *X* as integrator, that is, to give a meaning to

$$\int_0^t Y(s) dX(s)$$

for a fixed t and a suitable stochastic processes Y. Recall that X is not necessarily a semimartingale.

 This has been done in [BBPV], assuming J is a square integrable pure jump Lévy process and assuming Malliavin regularity conditions on Y in the L² setting.

- 4 B b 4 B b

MOTIVATION III

- Here we extend this integration theory to any pure jump additive process, not necessary square integrable, and in particular allowing to treat integration, for example, with respect to α -stable processes when $\alpha < 2$.
- Integrability conditions related with Y are in the L^1 setting. So, our results are an extension on the previous ones in the finite activity case and treat new cases in the infinite activity case.

INTRODUCTION I

- The Malliavin-Skorohod calculus for square integrable functionals of an additive process is today a well established topic. See for example Yablonski (2008).
- In [SUV] a new canonical space for Lévy processes is introduced and a probabilistic interpretation of Malliavin-Skorohod operators in this space is obtained.
- These operators defined in the canonical space are well defined beyond the *L*² setting.

< ロ > < 同 > < 回 > < 回 > < 回 > <

INTRODUCTION II

- This allows to explore the development of a Malliavin-Skorohod calculus for functionals adapted to a general additive processes that belong only to L¹ or L⁰.
- This is the main goal of our work, that can be seen as an extension of [SUV] using also ideas from Picard (1996).
- In particular we prove several rules of calculus and a new version of the Clark-Hausmmann-Ocone (CHO) formula in the L¹ setting.

★ 3 → < 3</p>

PRELIMINARIES AND NOTATION I

- Let X = {Xt, t ≥ 0} be an additive process, that is, a process with independent increments, stocastically continuous, null at the origin and with càdlàg trajectories.
- Let $\mathbb{R}_0 := \mathbb{R} \{0\}$.
- For any fixed $\epsilon > 0$, denote $S_{\epsilon} := \{ |x| > \epsilon \} \subseteq \mathbb{R}_0$.
- Let us denote B and B₀ the σ−algebras of Borel sets of ℝ and ℝ₀ respectively.

< ロ > < 同 > < 回 > < 回 >

The distribution of an additive process can be characterized by the triplet $(\Gamma_t, \sigma_t^2, \nu_t), t \ge 0$, where

- { Γ_t , $t \ge 0$ } is a continuous function null at the origin.
- {σ_t², t ≥ 0} is a continuous and non-decreasing function null at the origin.
- { $\nu_t, t \ge 0$ } is a set of Lévy measures on \mathbb{R} . Moreover, for any set $B \in \mathcal{B}_0$ such that $B \subseteq S_{\epsilon}$ for a certain $\epsilon > 0$, $\nu_{\cdot}(B)$ is a continuous and increasing function null at the origin.

PRELIMINARIES AND NOTATION III

- Let $\Theta := [0, \infty) \times \mathbb{R}$. Denote $\theta := (t, x) \in \Theta$ and $d\theta = (dt, dx)$.
- For $T \ge 0$, we introduce the measurable spaces $(\Theta_{T,\epsilon}, \mathcal{B}(\Theta_{T,\epsilon}))$ where $\Theta_{T,\epsilon} := [0, T] \times S_{\epsilon}$.
- Observe that $\Theta_{\infty,0} = [0,\infty) \times \mathbb{R}_0$ and that Θ can be represented as $\Theta = \Theta_{\infty,0} \cup ([0,\infty) \times \{0\}).$

Image: A Image: A

PRELIMINARIES AND NOTATION IV

- We introduce a measure ν on Θ_{∞,0} such that for any B ∈ B₀ we have ν([0, t] × B) := ν_t(B). The hypotheses on ν_t guarantee that ν({t} × B) = 0 for any t ≥ 0 and for any B ∈ B₀. Note that in particular, ν is σ-finite.
- Let *N* be the jump measure associated to *X*. Recall that it is a Poisson random measure on $\mathcal{B}(\Theta_{\infty,0})$ with parameter ν . Denote $\widetilde{N}(dt, dx) := N(dt, dx) \nu(dt, dx)$.
- We can introduce also a σ -finite measure σ on $[0, \infty)$ such that $\sigma([0, t]) = \sigma_t^2$.

PRELIMINARIES AD NOTATION V

According to the Lévy-Itô decomposition we can write:

$$X_t = \Gamma_t + W_t + J_t, \quad t \ge 0$$

where

- Γ is a continuous deterministic function null at the origin.
- W is a centered Gaussian process with variance process σ^2 .

PRELIMINARIES AND NOTATION VI

J is an additive process with triplet (0, 0, ν_t) independent of W, defined by

$$J_t = \int_{\Theta_{t,1}} x \mathcal{N}(ds, dx) + \lim_{\epsilon \downarrow 0} \int_{\Theta_{t,\epsilon} - \Theta_{t,1}} x \widetilde{\mathcal{N}}(ds, dx)$$

where the convergence is *a.s.* and uniform with respect to *t* on every bounded interval. We call the process $J = \{J_t, t \ge 0\}$ a pure jump additive process.

• Moreover, if $\{\mathcal{F}_t^W, t \ge 0\}$ and $\{\mathcal{F}_t^J, t \ge 0\}$ are, respectively, the completed natural filtrations of W and J, then, for every $t \ge 0$, we have $\mathcal{F}_t^X = \mathcal{F}_t^W \lor \mathcal{F}_t^J$.

(*) * (*) *)

PRELIMINARIES AND NOTATION VII

• We consider on Θ the σ -finite Borel measure

$$\mu(dt, dx) := \sigma(dt)\delta_0(dx) + \nu(dt, dx).$$

Note that μ is continuous in the sense that $\mu(\{t\} \times B) = 0$ for all $t \ge 0$ and $B \in \mathcal{B}$.

Then we define

$$M(dt, dx) = (W \otimes \delta_0)(dt, dx) + \tilde{N}(dt, dx)$$

that is a centered random measure with independent values such that $\mathbb{E}[M(E_1)M(E_2)] = \mu(E_1 \cap E_2)$, for $E_1, E_2 \in \mathcal{B}(\Theta)$ with $\mu(E_1) < \infty$ and $\mu(E_2) < \infty$.

・ 同 ト ・ ヨ ト ・ ヨ ト

PRELIMINARIES AND NOTATION VIII

- If we take $\sigma^2 \equiv 0$, $\mu = \nu$ and $M = \tilde{N}$, we recover the Poisson random measure case.
- If we take ν = 0, we have μ(dt, dx) := σ(dt)δ₀(dx) and M(ds, dx) = (W ⊗ δ₀)(ds, dx) and we recover the independent increment centered Gaussian measure case.
- If we take $\sigma_t^2 := \sigma_L^2 t$ and $\nu(dt, dx) = dt\nu_L(dx)$, we obtain $M(ds, dx) = \sigma_L(W \otimes \delta_0)(ds, dx) + \tilde{N}(ds, dx)$ and we recover the Lévy case (stationary increments case).

MALLIAVIN-SKOROHOD CALCULUS FOR ADDITIVE PROCESSES IN L^2 .

We recall the presentation of the Malliavin-Skorohod calculus with respect to the random measure M on its canonical space in the L^2 -framework, as a first step towards our final goal of extending the calculus to the L^1 and L^0 frameworks.

THE CHAOS REPRESENTATION PROPERTY

• Given μ , we can consider the spaces

$$\mathbb{L}_n^2 := L^2 \Big(\Theta^n, \mathcal{B}(\Theta)^{\otimes n}, \mu^{\otimes n} \Big)$$

and define for functions *f* in \mathbb{L}^2_n the Itô multiple stochastic integrals $I_n(f)$ with respect to *M* in the usual way.

• Then we have the so-called chaos representation property, that is, for any functional $F \in L^2(\Omega, \mathcal{F}^X, \mathbb{P})$, where $\mathcal{F}^X = \bigvee_{t \ge 0} \mathcal{F}_t^X$, we have

$$F=\sum_{n=0}^{\infty}I_n(f_n)$$

for a certain unique family of symmetric kernels $f_n \in \mathbb{L}^2_n$.

4 B K 4 B K

THE MALLIAVIN AND SKOROHOD OPERATORS I

The chaos representation property of $L^2(\Omega, \mathcal{F}^X, \mathbb{P})$ shows that this space has a Fock space structure. Thus it is possible to apply all the machinery related to the annihilation operator (Malliavin derivative) and the creation operator (Skorohod integral).

Consider $F = \sum_{n=0}^{\infty} I_n(f_n)$, with f_n symmetric and such that $\sum_{n=1}^{\infty} n n! \|f_n\|_{\mathbb{L}^2_n}^2 < \infty$. The Malliavin derivative of F is an object of $L^2(\Theta \times \Omega, \mu \otimes \mathbb{P})$, defined as

$$D_{\theta}F = \sum_{n=1}^{\infty} n I_{n-1}(f_n(\theta, \cdot)), \ \theta \in \Theta.$$

We denote by Dom*D* the domain of this operator.

THE MALLIAVIN AND SKOROHOD OPERATORS II

Let $u \in L^2(\Theta \times \Omega, \mathcal{B}(\Theta) \otimes \mathcal{F}^X, \mu \otimes \mathbb{P})$. For every $\theta \in \Theta$ we have the chaos decomposition

$$u_{\theta} = \sum_{n=0}^{\infty} I_n(f_n(\theta, \cdot))$$

where $f_n \in \mathbb{L}^2_{n+1}$ is symmetric in the last *n* variables. Let \tilde{f}_n be the symmetrization in all n + 1 variables. Then we define the Skorohod integral of *u* by

$$\delta(u) = \sum_{n=0}^{\infty} I_{n+1}(\tilde{f}_n),$$

in $L^2(\Omega)$, provided $u \in \text{Dom } \delta$, that means $\sum_{n=0}^{\infty} (n+1)! \|\tilde{f}_n\|_{\mathbb{L}^2_{n+1}}^2 < \infty$.

・ロット (雪) (日) (日) (日)

DUALITY BETWEEN THE MALLIAVIN AND SKOROHOD OPERATORS

• If $u \in \text{Dom } \delta$ and $F \in \text{Dom } D$ we have the duality relation

$$\mathbb{E}[\delta(u) F] = \mathbb{E} \int_{\Theta} u_{\theta} D_{\theta} F \mu(d\theta).$$

• We recall that if $u \in Dom\delta$ is actually predictable with respect to the filtration generated by *X*, then the Skorohod integral coincides with the (non anticipating) Itô integral in the L^2 -setting with respect to *M*.

THE CLARK-HAUSSMANN-OCONE FORMULA I

Let $A \in \mathcal{B}(\Theta)$ and $\mathcal{F}_A := \sigma\{M(A') : A' \in \mathcal{B}(\Theta), A' \subseteq A\}.$

- *F* is \mathcal{F}_A -measurable if for any $n \ge 1$, $f_n(\theta_1, \ldots, \theta_n) = 0$, $\mu^{\otimes n} a.e.$ unless $\theta_i \in A \quad \forall i = 1, \ldots n$.
- In particular, we are interested in the case $A = \Theta_{t-} := [0, t) \times \mathbb{R}$. Denote $\mathcal{F}_{t-} := \mathcal{F}_{\Theta_{t-}}$. Obviously, if $F \in \text{Dom } D$ and it is \mathcal{F}_{t-} -measurable then $D_{s,x}F = 0$ for a.e. $s \ge t$ and any $x \in \mathbb{R}$.

THE CLARK-HAUSSMANN-OCONE FORMULA II

From the chaos representation property we can see that for $F \in L^2(\Omega)$,

$$E[F|\mathcal{F}_{t-}] = \sum_{n=0}^{\infty} I_n(f_n(\theta_1,\ldots,\theta_n)\prod_{i=1}^n \mathfrak{1}_{[0,t)}(t_i))$$

Then, for $F \in DomD$ we have

$$D_{\boldsymbol{s},\boldsymbol{x}}\boldsymbol{E}[\boldsymbol{F}|\mathcal{F}_{t-}] = \boldsymbol{E}[D_{\boldsymbol{s},\boldsymbol{x}}\boldsymbol{F}|\mathcal{F}_{t-}]\mathbf{1}_{[0,t)}(\boldsymbol{s}), \, (\boldsymbol{s},\boldsymbol{x}) \in \Theta.$$

4 3 5 4 3

THE CLARK-HAUSSMANN-OCONE FORMULA III

Using these facts we can prove the very well known CHO formula: If $F \in DomD$ we have

$$F = \mathbb{E}(F) + \delta(E[D_{t,x}F|\mathcal{F}_{t-}]).$$

- Note that being the integrand a predictable process, the Skorohod integral δ here above is actually an Itô integral.
- Note also that the CHO formula can be rewritten in a decompactified form as

$$F = \mathbb{E}(F) + \int_0^\infty E(D_{s,0}F|\mathcal{F}_{s-})dW_s + \int_{\Theta_{\infty,0}} E(D_{s,x}F|\mathcal{F}_{s-})\tilde{N}(ds, dx).$$

A CANONICAL SPACE FOR J I

- We set our work on the canonical space of *J*, substantially introduced in [SUV].
- The construction is done first of all in the case ν is concentrated on Θ_{T,ε} for a fixed T > 0 and ε > 0, that is a finite activity case. Later the construction is extended to the case Θ_{∞,0} taking T ↑ ∞ and ε ↓ 0.
- In the case ν concentrated on $\Theta_{T,\epsilon}$, and so finite, any trajectory of J can be totally described by a finite sequence $((t_1, x_1), \ldots, (t_n, x_n))$ where $t_1, \ldots, t_n \in [0, T]$ are the jump instants, with $t_1 < t_2 < \cdots < t_n$, and $x_1, \ldots, x_n \in S_{\epsilon}$ are the corresponding sizes, for some n.

(日)

A CANONICAL SPACE FOR J II

- The extension to the space Θ_{∞,0} is done through a projective system of probability spaces.
- For every *m* ≥ 1 we consider the probability spaces

$$(\Omega^J_m, \mathcal{F}_m, \mathbb{P}_m) := (\Omega^J_{m, \frac{1}{m}}, \mathcal{F}_{m, \frac{1}{m}}, \mathbb{P}_{m, \frac{1}{m}}),$$

that are the canonical spaces corresponding to $\Theta_m := [0, m] \times S_{\perp}$.

Then the canonical space Ω^J for J on Θ_{∞,0} is defined as the projective limit of the system (Ω^J_m, m ≥ 1).

化原因 化原因

A CANONICAL SPACE FOR J III

In our setup, $\Omega^J = \bigcup_{n=0}^{\infty} \Theta_{\infty,0}^n$ and the probability measure \mathbb{P} is concentrated on the subset of

- The empty sequence α , corresponding to the element $(\alpha, \alpha, ...)$.
- All finite sequences of pairs (t_i, x_i) .
- All infinite sequences of pairs (t_i, x_i) such that for every m > 0 there is only a finite number of (t_i, x_i) on Θ_m.

★ ∃ > < ∃ >

MALLIAVIN-SKOROHOD CALCULUS FOR PURE JUMP ADDITIVE PROCESSES

- Now we establish the basis for a Malliavin-Skorohod calculus with respect to a pure jump additive process, constructively on the canonical space.
- In general, the proofs of the following results are done directly on Ω_m^J and extended to Ω^J by dominated convergence.

4 3 5 4 3 5 5

TRANSFORMATIONS ON THE CANONICAL SPACE

- Let $\theta = (s, x) \in \Theta_{\infty,0}$. Let $\omega \in \Omega^J$, that is, $\omega := (\theta_1, \dots, \theta_n, \dots)$, with $\theta_i := (s_i, x_i)$.
- We introduce the following two transformations from $\Theta_{\infty,0}\times\Omega^J$ to Ω^J :

$$\epsilon_{\theta}^+\omega := ((\boldsymbol{s}, \boldsymbol{x}), (\boldsymbol{s}_1, \boldsymbol{x}_1), (\boldsymbol{s}_2, \boldsymbol{x}_2), \dots),$$

where a jump of size x is added at time s, and

$$\epsilon_{ heta}^{-}\omega := ig((s_1,x_1),(s_2,x_2),\dotsig) - \{(s,x)\},$$

where we take away the point $\theta = (s, x)$ from ω .

PROPERTIES OF THE TRANSFORMATIONS

- These two transformations are analogous to the ones introduced in Picard (1996).
- Observe that ϵ^+ is well defined except on the set $\{(\theta, \omega) : \theta \in \omega\}$ that has null measure with respect $\nu \otimes \mathbb{P}$. We can consider by convention that on this set, $\epsilon^+_{\theta} \omega := \omega$.
- The case of ε_θ⁻ is also clear. In fact this operator satisfies ε_θ⁻ω = ω except on the set {(θ, ω) : θ ∈ ω}.
- For simplicity of the notation sometimes we will denote μ̂_i := ϵ⁻_{θ_i}ω.

30/74

Aarhus, August 2016

THE OPERATOR T I

• For a random variable $F \in L^0(\Omega^J)$, we define the operator

$$T: L^0(\Omega^J) \mapsto L^0(\Theta_{\infty,0} \times \Omega^J),$$

such that $(T_{\theta}F)(\omega) := F(\epsilon_{\theta}^{+}\omega).$

• It is not difficult to see that if F is a \mathcal{F}^J -measurable, then

$$(T_{\cdot}F)(\cdot)\colon \Theta_{\infty,0}\times \Omega^{J}\longrightarrow \mathbb{R}$$

is $\mathcal{B}(\Theta_{\infty,0}) \otimes \mathcal{F}^J$ – measurable and F = 0, \mathbb{P} -a.s. implies $T.F(\cdot) = 0$, $\nu \otimes \mathbb{P}$ -a.e. So, T is a closed linear operator defined on the entire $\mathcal{L}^0(\Omega^J)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

But if we want to assure $T.F(\cdot) \in L^1(\Theta_{\infty,0} \times \Omega^J)$ we have to restrict the domain and guarantee that

$$\mathbb{E}\int_{\Theta_{\infty,0}}|T_{ heta}F|
u(d heta)<\infty.$$

This requires a condition that is strictly stronger than $F \in L^1(\Omega^J)$.

→ 3 → 4 3

THE OPERATOR T III

Concretely, denoting $k_m := e^{-\nu(\Theta_m - \Theta_{m-1})}$, we have to assume that

$$\sum_{m=1}^{\infty} k_m \sum_{n=0}^{\infty} \frac{n}{n!} \int_{(\Theta_m - \Theta_{m-1})^n} |F(\theta_1, \ldots, \theta_n)| \nu(d\theta_1) \ldots \nu(d\theta_n) < \infty,$$

whereas $F \in L^1(\Omega)$ is equivalent only to

$$\sum_{m=1}^{\infty} k_m \sum_{n=0}^{\infty} \frac{1}{n!} \int_{(\Theta_m - \Theta_{m-1})^n} |F(\theta_1, \ldots, \theta_n)| \nu(d\theta_1) \ldots \nu(d\theta_n) < \infty.$$

・ ロ ト ・ () ト ・

33/74

Josep Vives (UB)

THE OPERATOR S I

For a random field $u \in L^0(\Theta_{\infty,0} \times \Omega^J)$ we define the operator

$$\mathcal{S}: \textit{DomS} \subseteq L^0(\Theta_{\infty,0} imes \Omega^J) \longrightarrow L^0(\Omega^J)$$

such that

$$(Su)(\omega) := \int_{\Theta_{\infty,0}} u_{\theta}(\epsilon_{\theta}^{-}\omega) \mathcal{N}(d\theta,\omega) := \sum_{i} u_{\theta_{i}}(\hat{\omega}_{i}) < \infty.$$

Image: A mage: A ma

(4) E > (4) E >

Aarhus, August 2016

э

34/74

In particular, if $\omega = \alpha$, we define $(Su)(\alpha) = 0$.

Josep Vives (UB)

The operator *S* is well defined and closed from $L^1(\Theta_{\infty,0} \times \Omega^J)$ to $L^1(\Omega)$ as the following proposition says:

PROPOSITION

If $u \in L^1(\Theta_{\infty,0} \times \Omega^J)$, Su is well defined and takes values in $L^1(\Omega)$. Moreover

$$\mathbb{E}\int_{\Theta_{\infty,0}} u_{\theta}(\epsilon_{\theta}^{-}\omega) \mathcal{N}(d\theta,\omega) = \mathbb{E}\int_{\Theta_{\infty,0}} u_{\theta}(\omega)\nu(d\theta).$$

★ 3 → < 3</p>

Aarhus, August 2016

35 / 74

Josep Vives (UB)

Given $\theta = (s, x)$ we can define for any ω , $\tilde{\omega}_s$ as the ω restricted to jump instants strictly before *s*. In this case, obviously, $\epsilon_{\theta}^- \tilde{\omega}_s = \tilde{\omega}_s$. If *u* is predictable we have $u_{\theta}(\omega) = u_{\theta}(\tilde{\omega}_s)$ and so

$${\it U}_{ heta}(\epsilon_{ heta}^{-}\omega)={\it U}_{ heta}(\omega),$$

and

$$(\mathcal{S} u)(\omega) = \int_{\Theta_{\infty,0}} u_{\theta}(\epsilon_{\theta}^{-}\omega) \mathcal{N}(d\theta,\omega) = \int_{\Theta_{\infty,0}} u_{\theta}(\omega) \mathcal{N}(d\theta,\omega).$$

(*) * (*) *)

The following theorem is the fundamental relationship between operators S and T:

THEOREM

Consider $F \in L^0(\Omega^J)$ and $u \in DomS$. Then $F \cdot Su \in L^1(\Omega^J)$ if and only if $TF \cdot u \in L^1(\Theta_{\infty,0} \times \Omega^J)$ and in this case

$$\mathbb{E}(F \cdot Su) = \mathbb{E} \int_{\Theta_{\infty,0}} T_{\theta}F \cdot u_{\theta} \nu(d\theta).$$

Aarhus, August 2016

37 / 74

• If *u* and *TF* · *u* belong to *DomS* we have

$$F \cdot Su = S(TF \cdot u), \mathbb{P} - a.e.$$

• If *u* and *Tu* are in *DomS* then

$$T_{ heta}(Su) = u_{ heta} + S(T_{ heta}u), \ \nu \otimes \mathbb{P} - a.e.$$

Josep Vives (UB)

→ 3 → 4 3

< A >

Now we introduce the operator $\Psi_{t,x} := T_{t,x} - Id$. Observe that this operator is linear, closed and satisfies the property

$$\Psi_{t,x}(FG) = G\Psi_{t,x}F + F\Psi_{t,x}G + \Psi_{t,x}(F)\Psi_{t,x}(G).$$

< ロ > < 回 > < 回 > < 回 > < 回 > <

The operator ${\cal E}$

On other hand, for $u \in L^0(\Theta_{\infty,0} \times \Omega^J)$ we consider the operator:

$$\mathcal{E}: \textit{Dom}\mathcal{E} \subseteq L^0(\Theta_{\infty,0} imes \Omega^J) \longrightarrow L^0(\Omega^J)$$

such that

$$(\mathcal{E} u)(\omega) := \int_{\Theta_{\infty,0}} u_{\theta}(\omega) \nu(d\theta).$$

Note that $Dom\mathcal{E}$ is the subset of processes in $L^0(\Theta_{\infty,0} \times \Omega^J)$ such that $u(\cdot, \omega) \in L^1(\Theta_{\infty,0})$, \mathbb{P} -a.e. We have also that

$$\int_{\Theta_{\infty,0}} u_{\theta}(\epsilon_{\theta}^{-}\omega)\nu(d\theta) = \int_{\Theta_{\infty,0}} u_{\theta}(\omega)\nu(d\theta), \mathbb{P} - a.s.$$

40 / 74

Aarhus, August 2016

The operator Φ

Then, for $u \in Dom\Phi := DomS \cap Dom\mathcal{E} \subseteq L^0(\Theta_{\infty,0} \times \Omega^J)$, we define

$$\Phi u := Su - \mathcal{E}u.$$

Note that

•
$$L^1(\Theta_{\infty,0} \times \Omega^J) \subseteq Dom\Phi.$$

• $E(\Phi u) = 0$, for any $u \in L^1(\Theta_{\infty,0} \times \Omega)$.

• For any $u \in Dom\Phi$, predictable,

$$\Phi(u) = \int_{\Theta_{\infty,0}} u_{\theta}(\omega) \tilde{N}(d\theta, \omega).$$

• $u \in L^2(\Theta_{\infty,0} \times \Omega^J)$ not implies $u \in L^1(\Theta_{\infty,0} \times \Omega^J)$ nor $u \in Dom\Phi$.

-

・ロッ ・ 一 ・ ・ ヨッ ・ ・ ・ ・ ・

As a corollary of the duality between T and S we have the following result:

PROPOSITION

Consider $F \in L^0(\Omega^J)$ and $u \in Dom\Phi$. Assume also $F \cdot u \in L^1(\Theta_{\infty,0} \times \Omega^J)$. Then $F \cdot \Phi u \in L^1(\Omega^J)$ if and only if $\Psi F \cdot u \in L^1(\Theta_{\infty,0} \times \Omega^J)$ and in this case

$$\mathbb{E}(F \cdot \Phi u) = \mathbb{E}(\int_{\Theta_{\infty,0}} \Psi_{\theta} F \cdot u_{\theta} \nu(d\theta)).$$

∃ → < ∃</p>

42 / 74

Aarhus, August 2016

• If $F \in L^0(\Omega^J)$ and $u, F \cdot u$ and $\Psi F \cdot u$ belong to $Dom\Phi$ we have

$$\Phi(F \cdot u) = F \cdot \Phi u - \Phi(\Psi F \cdot u) - \mathcal{E}(\Psi F \cdot u), \mathbb{P} - a.s.$$

• If u and Ψu belong to $Dom\Phi$ we have

 $\Psi_{\theta}(\Phi u) = u_{\theta} + \Phi(\Psi_{\theta} u), \ \nu \otimes \mathbb{P} - a.e.$

★ 3 → < 3</p>

Aarhus, August 2016

43/74

RELATIONSHIPS BETWEEN THE INTRINSIC OPERATORS AND THE MALLIAVIN-SKOROHOD OPERATORS.

Consider now the operators D and δ restricted to the pure jump case, that is associated to the measure $\tilde{N}(ds, dx)$. We write D^{J} and δ^{J} . We have the following result:

Lemma

For any *n*, consider the set $\Theta_{T,\epsilon}^{n,*} = \{(\theta_1, \ldots, \theta_n) \in \Theta_{T,\epsilon}^n : \theta_i \neq \theta_j \text{ if } i \neq j\}$. Then, for any $g_k \in L^2(\Theta_{\infty,0}^{k,*})$ for $k \ge 1$ and $\omega \in \Omega^J$ we have, a.s.,

$$I_k(g_k)(\omega) = \int_{\Theta_{T,\epsilon}^{k,*}} g_k(heta_1 \dots, heta_k) ilde{N}(\omega, d heta_1) \cdots ilde{N}(\omega, d heta_k).$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Aarhus, August 2016

44 / 74

The proof is based on the fact that both expressions coincide for simple functions and define bounded linear operators.

Relationship between D^J , δ^J , Ψ and Φ

For a fixed k ≥ 0, consider F = I_k(g_k) with g_k a symmetric function of L²(Θ^{k,*}_{∞,0}). Then, F belongs to DomD^J ∩ DomΨ and

$$D^J I_k(g_k) = \Psi I_k(g_k), \ \nu \otimes \mathbb{P} - ext{a.e.}$$

 For fixed k ≥ 1, consider u_θ = I_k(g_k(·, θ)) where g_k(·, ·) ∈ L²(Θ^{k+1,*}_{∞,0}) is symmetric with respect to the first k variables. Assume also u ∈ DomΦ. Then,

$$\Phi(u) = \delta^J(u), \ \mathbb{P} - \text{a.e.}.$$

A B > A B >

RELATIONSHIP BETWEEN THE OPERATORS

• Let $F \in L^2(\Omega^J)$. Then, $F \in DomD^J \iff \Psi F \in L^2(\Theta_{\infty,0} \times \Omega_J)$, and in this case

$$D^{J}F = \Psi F, \ \nu \otimes P - a.e.$$

• Let $u \in L^2(\Theta_{\infty,0} \times \Omega_J) \cap Dom\Phi$. Then $u \in Dom\delta^J \iff \Phi u \in L^2(\Omega^J)$, and in this case

$$\delta^J u = \Phi u, \quad \mathbb{P} - a.s.$$

As an application of the previous results in the pure jump case we hereafter prove a CHO-type formula as an integral representation of random variables in $L^1(\Omega^J)$.

THEOREM

Let $F \in L^1(\Omega^J)$ and assume $\Psi F \in L^1(\Theta_{\infty,0} \times \Omega^J)$. Then

 $F = \mathbb{E}(F) + \Phi(E(\Psi_{t,x}F|\mathcal{F}_{t-})), a.s.$

4 B K 4 B K

Aarhus, August 2016

47 / 74

Observe that under the conditions of the previous theorem we have

$$\Psi_{s,x} E[F|\mathcal{F}_{\Theta_{t-}}] = E[\Psi_{s,x}F|\mathcal{F}_{\Theta_{t-}}] 1\!\!1_{[0,t)}, \ \nu \otimes \mathbb{P} - a.e.$$

(D) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Aarhus, August 2016

48/74

EXAMPLE 1 I

Consider a pure jump additive process L. On one hand, for any t, we have the Lévy-Itô decomposition:

$$L_t = \Gamma_t + \int_0^t \int_{\{|x|>1\}} x \mathcal{N}(ds, dx) + \int_0^t \int_{\{|x|\leq 1\}} x \tilde{\mathcal{N}}(ds, dx).$$

Consider L_T . Assume $\mathbb{E}(|L_T|) < \infty$. Recall that this is equivalently to

$$\int_0^t\int_{|x|>1}|x|\nu(ds,dx)<\infty.$$

Then we can write

$$L_t = \Gamma_t + \int_0^t \int_{\{|x|>1\}} x\nu(ds, dx) + \int_0^t \int_{\mathbb{R}} x \tilde{N}(ds, dx).$$

A B + A B +

EXAMPLE 1 II

On the other hand, applying the CHO formula, we have $\Psi_{s,x}L_T = x \mathbb{1}_{[0,T]}(s)$ and $E(\Psi_{s,x}L_T | \mathcal{F}_{s-}) = x \mathbb{1}_{[0,T]}(s)$. So, the hypothesis $\mathbb{E}(|L_T|) < \infty$ is equivalent to

$$\mathbb{E}\int_0^T\int_{\mathbb{R}}|\Psi_{s,x}L_T|\nu(ds,dx)<\infty$$

and

$$L_T = \mathbb{E}(L_T) + \int_0^T \int_{\mathbb{R}} x \tilde{N}(ds, dx).$$

Observe that this is coherent with the previous decomposition because

$$\mathbb{E}(L_T) = \Gamma_T + \int_0^T \int_{\{|x|>1\}} x\nu(ds, dx).$$

EXAMPLE 2 I

Let $X := \{X_t, t \in [0, T]\}$ be a pure jump Lévy process with triplet $(\gamma_L t, 0, \nu_L t)$. Let $S_t := e^{X_t}$ be an asset price process. Let \mathbb{Q} be a risk-neutral measure. In order $e^{-rt}e^{X_t}$ be a \mathbb{Q} -martingale we need to assume some restrictions on ν_L and γ_L :

$$\int_{|x|\geq 1} e^x \nu_L(dx) < \infty$$

and

$$\gamma_L = \int_{\mathbb{R}} (e^y - 1 - y \operatorname{1}_{\{|y| < 1\}}) \nu(dy).$$

- E • • E •

EXAMPLE 2 II

These conditions allow us to write without loosing generality,

$$X_t = x + (r - c_2)t + \int_0^t \int_{\mathbb{R}} y \tilde{N}(ds, dy),$$

where

$$c_2 := \int_{\mathbb{R}} (e^y - 1 - y) \nu_L(dy)$$

and *N* is a Poisson random measure under \mathbb{Q} . According to the CHO formula if $F = S_T \in L^1(\Omega)$ and $\mathbb{E}_{\mathbb{Q}}[\Psi_{s,x}S_T|\mathcal{F}_{s-}] \in L^1(\Omega \times [0, T])$ we have

$$\mathcal{S}_{\mathcal{T}} = \mathbb{E}_{\mathbb{Q}}(\mathcal{S}_{\mathcal{T}}) + \int_{\Theta_{\mathcal{T},0}} \mathbb{E}_{\mathbb{Q}}[\Psi_{s,x}\mathcal{S}_{\mathcal{T}}|\mathcal{F}_{s-}] ilde{\mathcal{N}}(ds,dx).$$

EXAMPLE 2 III

Observe that

$$\Psi_{s,x}S_{T}(\omega) = S_{T}(e^{x} - 1), \ \ell \times \nu_{L} \times \mathbb{Q} - a.s.,$$

and this process belongs to $L^1(\Omega \times \Theta_{\infty,0})$ if and only if $\int_{\mathbb{R}} |e^x - 1|\nu_L(dx) < \infty$. Then, in this case, we have

$$S_{\mathcal{T}} = \mathbb{E}_{\mathbb{Q}}(S_{\mathcal{T}}) + \int_{\Theta_{\mathcal{T},0}} e^{r(\mathcal{T}-s)}(e^{x}-1)S_{s-}\tilde{N}(ds,dx).$$

So, this result covers Lévy processes with finite activity and Lévy processes with infinite activity but finite variation.

Consider a pure jump volatility modulated additive driven Volterra (VMAV) process *X* defined as

$$X(t) = \int_0^t g(t,s)\sigma(s)dJ(s)$$

provided the integral is well defined. Here *J* is a pure jump additive processes, *g* is a deterministic function and σ is a predictable process with respect the natural completed filtration of *J*.

(4) E > (4) E >

Recall that using the Lévy-Itô representation J can be written as

$$J(t) = \Gamma_t + \int_{\Theta_{t,0} - \Theta_{t,1}} x \tilde{N}(ds, dx) + \int_{\Theta_{t,1}} x N(ds, dx),$$

Aarhus, August 2016

55 / 74

where Γ is a continuous deterministic function that we assume of bounded variation in order to admit integration with respect $d\Gamma$.

For each t, X_t is well defined if

$$(H1): \int_0^\infty |g(t,s)\sigma(s)|d\Gamma_s < \infty,$$
$$(H2): \int_{\Theta_{\infty,0}} (1 \wedge (g(t,s)\sigma(s)x)^2)\nu(dx,ds) < \infty,$$

and

$$(H3): \int_{\Theta_{\infty,0}} |g(t,s)\sigma(s)x[\mathrm{1\!\!1}_{\{|g(t,s)\sigma(s)x|\leq 1\}} - \mathrm{1\!\!1}_{\{|x|\leq 1\}}]|\nu(dx,ds) < \infty.$$

Hereafter we discuss the problem of developing an integration theory with respect to X as integrator, i.e. to give a meaning to

$$\int_0^t Y(s) dX(s)$$

for a fixed t and a suitable stochastic processes Y.

- Exploiting the representation of *J*, an integration with respect to *X* can be treated as the sum of integrals with respect to the corresponding components of *J*.
- It is enough to define integrals with respect $\int_0^t g(t,s)\sigma(s)d\Gamma_s$, $\int_0^t \int_{|x|\leq 1} g(t,s)\sigma(s)x\tilde{N}(ds,dx)$ and $\int_0^t \int_{|x|>1} g(t,s)\sigma(s)xN(ds,dx)$.
- Under the assumptions that Γ has finite variation and using the fact that N on [0, t] × {|x| > δ}, for any δ > 0, is a.s. a finite measure, the integration with respect to the first and third term presents no difficulties.

- We have to discuss the second term, specifically the case when *J* has infinite activity and the corresponding *X* is not a semimartingale. In fact, if *X* was a semimartingale, we could perform the integration in the Itô sense.
- We can refer to [BBPV] for a discussion of the the conditions on *g* in order *X* be or not a semimartingale
- In [BBPV], an integral with respect to a non semimartingale X driven by a Lévy process by means of the Malliavin-Skorohod calculus is defined. Their technique is naturally constrained to an L² setting.

・ロッ ・ 一 ・ ・ ヨッ ・ ・ ・ ・ ・

Within the framework presented in this paper, we can extend the definition proposed in [BBPV] to reach out for additive processes beyond the L^2 setting.

Assume the following hypothesis on X and Y:

For s ≥ 0, the mapping t → g(t, s) is of bounded variation on any interval [u, v] ⊆ (s, ∞).

• The function

$$\mathcal{K}_{g}(\textbf{Y})(t, oldsymbol{s}) := oldsymbol{Y}(oldsymbol{s}) g(t, oldsymbol{s}) + \int_{oldsymbol{s}}^{t} (oldsymbol{Y}(u) - oldsymbol{Y}(oldsymbol{s})) g(du, oldsymbol{s}), \quad t > oldsymbol{s},$$

is well defined a.s., in the sense that (Y(u) - Y(s)) is integrable with respect to g(du, s) as a pathwise Lebesgue-Stieltjes integral.

.

The mappings

$$(s, x) \longrightarrow \mathcal{K}_g(Y)(t, s)\sigma(s)x \mathbb{1}_{\Theta_{t,0}-\Theta_{t,1}}(s, x)$$

and

$$(s, x) \longrightarrow \Psi_{s,x}(\mathcal{K}_g(Y)(t, s)\sigma(s))x \mathbb{1}_{\Theta_{t,0}-\Theta_{t,1}}(s, x)$$

belong to $Dom\Phi$.

医下子 医

Then, the following integral, is well defined:

$$\begin{aligned} &\int_0^t Y(s) d(\int_0^s \int_{|x| \le 1} g(s, u) \sigma(u) x \tilde{N}(du, dx)) \\ &:= & \Phi(x \mathcal{K}_g(Y)(t, s) \sigma(s) \mathbb{1}_{\Theta_{t,0} - \Theta_{t,1}}(s, x)) \\ &+ & \Phi(x \Psi_{s,x}(\mathcal{K}_g(Y)(t, s)) \sigma(s) \mathbb{1}_{\Theta_{t,0} - \Theta_{t,1}}(s, x)) \\ &+ & \mathcal{E}(x \Psi_{s,x}(\mathcal{K}_g(Y)(t, s)) \sigma(s) \mathbb{1}_{\Theta_{t,0} - \Theta_{t,1}}(s, x)). \end{aligned}$$

• = • • =

- This result extends the definition in [BBPV] to any pure jump additive process *J*, i.e. beyond square integrability.
- The proof relies on the definitions of Φ , Ψ and the developed calculus rules.
- In the finite activity case,

$$L^2(\Theta_{\infty,0} imes \Omega^J) \subseteq L^1(\Theta_{\infty,0} imes \Omega^J)$$

and our result is an extension of the definition in [BBPV].

 In the infinite activity case, our Theorem covers cases not covered by [BBPV] and viceversa.

63 / 74

Aarhus, August 2016

EXAMPLE I

- Hereafter we give a classical example of a pure jump Lévy process without second moment as a driver and we consider a kernel function g of shift type, i.e. it only depends on the difference t s. For simplicity we assume moreover $\sigma \equiv 1$. The chosen kernel appears in applications to turbulence.
- Assume *L* to be a symmetric α -stable Lévy process, for $\alpha \in (0, 2)$. It corresponds to the triplet $(0, 0, \nu_L)$ with $\nu_L(dx) = c|x|^{-1-\alpha}dx$.

・ロッ ・ 一 ・ ・ ヨッ ・ ・ ・ ・ ・

EXAMPLE II

Take

$$g(t,s):=(t-s)^{eta-1}e^{-\lambda(t-s)}\mathrm{1\!\!1}_{[0,t)}(s)$$

with $\beta \in (0, 1)$ and $\lambda > 0$. Note that

$$g(du, s) = -g(u, s)(\frac{1-\beta}{u-s}+\lambda)du.$$

◆□ > ◆□ > ◆豆 > ◆豆 >

Aarhus, August 2016

э

65 / 74

EXAMPLE III

We concentrate on the component

$$J(t) = \int_0^t \int_{\{|x| \le 1\}} x \tilde{N}(ds, dx),$$

and so first of all on the definition of the integral

$$X(t):=\int_0^t g(t,s) dJ(s)=\int_0^t \int_{|x|\leq 1} g(t,s) x ilde{\mathsf{N}}(ds,dx), \ t\geq 0.$$

→ E → < E</p>

< A >

EXAMPLE IV

In relation with this integral, that is not a semimartingale, we have four situations:

If α ∈ (0, 1) and β > ½, g(t, s)x belongs to L¹ ∩ L²
If α ∈ (0, 1) and β ≤ ½, g(t, s)x belongs to L¹ but not to L².
If α ∈ [1, 2) and β > ½, g(t, s)x belongs to L² but not to L¹.
If α ∈ [1, 2) and β ≤ ½, g(t, s)x belongs not to L² nor to L¹.
Only in case (4) the integral is not necessarily well defined.

.

EXAMPLE V

Just to show the types of computation involved, let us consider the particular case of a \mathcal{VMAV} process as integrand. Namely,

$$Y(s) = \int_0^s \int_{|x| \le 1} \phi(s-u) x \tilde{N}(du, dx), \quad 0 \le s \le T,$$

where ϕ is a positive continuous function such that the integral *Y* is well defined.

Consider the case $\alpha < 1$ and $\beta \in (0, 1)$, not covered by [BBPV] if $\beta \leq \frac{1}{2}$.

EXAMPLE VI

In order to see that $\int_0^t Y(s-)dX(s)$ is well defined we have to check:

- The process (Y(u) Y(s)) is integrable with respect to g(du, s) on (s, t], as a pathwise Lebesgue-Stieltjes integral.
- O The mappings

$$(s,x) \longrightarrow x\mathcal{K}_g(Y)(t,s) \mathbb{1}_{[0,t]}(s) \mathbb{1}_{\{|x| \leq 1\}}$$

and

$$(s,x) \longrightarrow x \Psi_{s,x}(\mathcal{K}_g(Y)(t,s)) \mathbb{1}_{[0,t]}(s) \mathbb{1}_{\{|x| \leq 1\}}$$

belong to $Dom\Phi$.

A B + A B +

EXAMPLE VII

We have

$$\mathcal{K}_{g}(Y)(t,s) = g(t,s) \int_{[0,s)} \int_{|x| \le 1} \phi(s-v) x \tilde{N}(dv, dx)$$

-
$$\int_{s}^{t} g(u,s)(\frac{1-\beta}{u-s}+\lambda) \int_{[s,u)} \int_{|x| \le 1} \phi(u-v) x \tilde{N}(dv, dx) du$$

-
$$\int_{s}^{t} g(u,s)(\frac{1-\beta}{u-s}+\lambda) \int_{[0,s)} \int_{|x| \le 1} [\phi(u-v) - \phi(s-v)] x \tilde{N}(dv, dx) du$$

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

EXAMPLE VIII

In terms of Φ we can rewrite

$$\begin{split} & \mathcal{K}_{g}(Y)(t,s) \\ &= g(t,s)\Phi(\phi(s-\cdot)x1\!\!1_{\{|x|\leq 1\}}1\!\!1_{[0,s)}) \\ &- \int_{s}^{t}g(u,s)(\frac{1-\beta}{u-s}+\lambda)\Phi(\phi(u-\cdot)x1\!\!1_{\{|x|\leq 1\}}1\!\!1_{[s,u)}(\cdot))du \\ &- \int_{s}^{t}g(u,s)(\frac{1-\beta}{u-s}+\lambda)\Phi([\phi(u-\cdot)-\phi(s-\cdot)]x1\!\!1_{\{|x|\leq 1\}}1\!\!1_{[0,s)}(\cdot))du. \end{split}$$

Moreover we have

$$\Psi_{s,x}\mathcal{K}_g(Y)(t,s) = -x \operatorname{1\!\!1}_{\{|x| \leq 1\}} \int_s^t g(u,s)\phi(u-s)(\frac{1-\beta}{u-s}+\lambda)\operatorname{1\!\!1}_{[0,u)}(s)du.$$

э

(日)

EXAMPLE IX

So, it is enough to check that the mappings

$$(s,x) \longrightarrow x\mathcal{K}_{g}(Y)(t,s) 1\!\!1_{[0,t]}(s) 1\!\!1_{\{|x| \leq 1\}}$$

and

$$(s, x) \longrightarrow x \Psi_{s,x}(\mathcal{K}_g(Y)(t, s)) 1\!\!1_{[0,t]}(s) 1\!\!1_{\{|x| \le 1\}}$$

are in $L^1(\Theta_{\infty,0} \times \Omega)$.

э

EXAMPLE X

If for example we consider the case $\phi(y) = y^{\gamma}$ with $\gamma > 0$ and $\beta + \gamma \ge 1$ is not difficult to check the mappings are in L^1 and we conclude that the integral

$$\int_0^t Y(s-)dX(s)$$

is well defined.

A B + A B +

Thank you for the attention

Tak

Gràcies

Josep Vives (UB)

Aarhus, August 2016 74 / 74