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J. L. Solé, F. Utzet and J. V. (2007): Canonical Lévy processes
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ABSTRACT

In this paper we extend the Malliavin-Skorohod type calculus for
pure jump additive processes to the L0 and L1 settings.
We apply it to extend stochastic integration with respect to
volatility modulated pure jump additive-driven Volterra processes.
In particular, we define integrals with respect to Volterra processes
driven by α-stable processes with α < 2.
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MOTIVATION I

Consider a pure jump volatility modulated additive driven Volterra
(VMAV) process X defined as

X (t) =

∫ t

0
g(t , s)σ(s)dJ(s)

provided the integral is well defined. Here J is a pure jump additive
process, g is a deterministic function and σ is a predictable
process with respect the natural completed filtration of J.
This kind of models, called volatility modulated Volterra processes,
are part of the family of Ambit processes and are used in
modeling turbulence, energy finance and others.
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MOTIVATION II

A major problem is to develop an integration theory with respect X
as integrator, that is, to give a meaning to∫ t

0
Y (s)dX (s)

for a fixed t and a suitable stochastic processes Y . Recall that X
is not necessarily a semimartingale.
This has been done in [BBPV], assuming J is a square integrable
pure jump Lévy process and assuming Malliavin regularity
conditions on Y in the L2 setting.
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MOTIVATION III

Here we extend this integration theory to any pure jump additive
process, not necessary square integrable, and in particular
allowing to treat integration, for example, with respect to α-stable
processes when α < 2.
Integrability conditions related with Y are in the L1 setting. So, our
results are an extension on the previous ones in the finite activity
case and treat new cases in the infinite activity case.
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INTRODUCTION I

The Malliavin-Skorohod calculus for square integrable functionals
of an additive process is today a well established topic. See for
example Yablonski (2008).
In [SUV] a new canonical space for Lévy processes is introduced
and a probabilistic interpretation of Malliavin-Skorohod operators
in this space is obtained.
These operators defined in the canonical space are well defined
beyond the L2 setting.
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INTRODUCTION II

This allows to explore the development of a Malliavin-Skorohod
calculus for functionals adapted to a general additive processes
that belong only to L1 or L0.

This is the main goal of our work, that can be seen as an
extension of [SUV] using also ideas from Picard (1996).
In particular we prove several rules of calculus and a new version
of the Clark-Hausmmann-Ocone (CHO) formula in the L1 setting.
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PRELIMINARIES AND NOTATION I

Let X = {Xt , t ≥ 0} be an additive process, that is, a process with
independent increments, stocastically continuous, null at the origin
and with càdlàg trajectories.
Let R0 := R− {0}.
For any fixed ε > 0, denote Sε := {|x | > ε} ⊆ R0.

Let us denote B and B0 the σ−algebras of Borel sets of R and R0
respectively.
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PRELIMINARIES AND NOTATION II

The distribution of an additive process can be characterized by the
triplet (Γt , σ

2
t , νt ), t ≥ 0, where

{Γt , t ≥ 0} is a continuous function null at the origin.
{σ2

t , t ≥ 0} is a continuous and non-decreasing function null at the
origin.
{νt , t ≥ 0} is a set of Lévy measures on R. Moreover, for any set
B ∈ B0 such that B ⊆ Sε for a certain ε > 0, ν·(B) is a continuous
and increasing function null at the origin.
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PRELIMINARIES AND NOTATION III

Let Θ := [0,∞)× R. Denote θ := (t , x) ∈ Θ and dθ = (dt ,dx).

For T ≥ 0, we introduce the measurable spaces (ΘT ,ε,B(ΘT ,ε))
where ΘT ,ε := [0,T ]× Sε.
Observe that Θ∞,0 = [0,∞)× R0 and that Θ can be represented
as Θ = Θ∞,0 ∪ ([0,∞)× {0}).
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PRELIMINARIES AND NOTATION IV

We introduce a measure ν on Θ∞,0 such that for any B ∈ B0 we
have ν([0, t ]× B) := νt (B). The hypotheses on νt guarantee that
ν({t} × B) = 0 for any t ≥ 0 and for any B ∈ B0. Note that in
particular, ν is σ−finite.
Let N be the jump measure associated to X . Recall that it is a
Poisson random measure on B(Θ∞,0) with parameter ν. Denote
Ñ(dt ,dx) := N(dt ,dx)− ν(dt ,dx).

We can introduce also a σ−finite measure σ on [0,∞) such that
σ([0, t ]) = σ2

t .
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PRELIMINARIES AD NOTATION V

According to the Lévy-Itô decomposition we can write:

Xt = Γt + Wt + Jt , t ≥ 0

where

Γ is a continuous deterministic function null at the origin.
W is a centered Gaussian process with variance process σ2.
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PRELIMINARIES AND NOTATION VI

J is an additive process with triplet (0,0, νt ) independent of W ,
defined by

Jt =

∫
Θt,1

xN(ds,dx) + lim
ε↓0

∫
Θt,ε−Θt,1

xÑ(ds,dx)

where the convergence is a.s. and uniform with respect to t on
every bounded interval. We call the process J = {Jt , t ≥ 0} a pure
jump additive process.
Moreover, if {FW

t , t ≥ 0} and {FJ
t , t ≥ 0} are, respectively, the

completed natural filtrations of W and J, then, for every t ≥ 0, we
have FX

t = FW
t ∨ FJ

t .
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PRELIMINARIES AND NOTATION VII

We consider on Θ the σ−finite Borel measure

µ(dt ,dx) := σ(dt)δ0(dx) + ν(dt ,dx).

Note that µ is continuous in the sense that µ({t} × B) = 0 for all
t ≥ 0 and B ∈ B.
Then we define

M(dt ,dx) = (W ⊗ δ0)(dt ,dx) + Ñ(dt ,dx)

that is a centered random measure with independent values such
that E

[
M(E1)M(E2)] = µ(E1 ∩ E2), for E1,E2 ∈ B(Θ) with

µ(E1) <∞ and µ(E2) <∞.
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PRELIMINARIES AND NOTATION VIII

If we take σ2 ≡ 0, µ = ν and M = Ñ, we recover the Poisson
random measure case.
If we take ν = 0, we have µ(dt ,dx) := σ(dt)δ0(dx) and
M(ds,dx) = (W ⊗ δ0)(ds,dx) and we recover the independent
increment centered Gaussian measure case.
If we take σ2

t := σ2
Lt and ν(dt ,dx) = dtνL(dx), we obtain

M(ds,dx) = σL(W ⊗ δ0)(ds,dx) + Ñ(ds,dx) and we recover the
Lévy case (stationary increments case).
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MALLIAVIN-SKOROHOD CALCULUS FOR ADDITIVE

PROCESSES IN L2.

We recall the presentation of the Malliavin-Skorohod calculus with
respect to the random measure M on its canonical space in the
L2−framework, as a first step towards our final goal of extending the
calculus to the L1 and L0 frameworks.
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THE CHAOS REPRESENTATION PROPERTY

Given µ, we can consider the spaces

L2
n := L2

(
Θn,B(Θ)⊗n, µ⊗n

)
and define for functions f in L2

n the Itô multiple stochastic integrals
In(f ) with respect to M in the usual way.
Then we have the so-called chaos representation property, that is,
for any functional F ∈ L2(Ω,FX ,P), where FX = ∨t≥0FX

t , we have

F =
∞∑

n=0

In(fn)

for a certain unique family of symmetric kernels fn ∈ L2
n.
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THE MALLIAVIN AND SKOROHOD OPERATORS I

The chaos representation property of L2(Ω,FX ,P) shows that this
space has a Fock space structure. Thus it is possible to apply all the
machinery related to the anhilation operator (Malliavin derivative) and
the creation operator (Skorohod integral).

Consider F =
∑∞

n=0 In(fn), with fn symmetric and such that∑∞
n=1 n n!‖fn‖2L2

n
<∞. The Malliavin derivative of F is an object of

L2(Θ× Ω, µ⊗ P), defined as

DθF =
∞∑

n=1

nIn−1

(
fn
(
θ, ·
))
, θ ∈ Θ.

We denote by DomD the domain of this operator.
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THE MALLIAVIN AND SKOROHOD OPERATORS II

Let u ∈ L2(Θ× Ω,B(Θ)⊗FX , µ⊗ P). For every θ ∈ Θ we have the
chaos decomposition

uθ =
∞∑

n=0

In(fn(θ, ·))

where fn ∈ L2
n+1 is symmetric in the last n variables. Let f̃n be the

symmetrization in all n + 1 variables. Then we define the Skorohod
integral of u by

δ(u) =
∞∑

n=0

In+1(f̃n),

in L2(Ω), provided u ∈ Dom δ, that means
∑∞

n=0(n + 1)! ‖f̃n‖2L2
n+1

<∞.
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DUALITY BETWEEN THE MALLIAVIN AND SKOROHOD

OPERATORS

If u ∈ Dom δ and F ∈ Dom D we have the duality relation

E[δ(u) F ] = E
∫

Θ
uθ DθF µ(dθ).

We recall that if u ∈ Domδ is actually predictable with respect to
the filtration generated by X , then the Skorohod integral coincides
with the (non anticipating) Itô integral in the L2−setting with
respect to M.
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THE CLARK-HAUSSMANN-OCONE FORMULA I

Let A ∈ B(Θ) and FA := σ{M(A′) : A′ ∈ B(Θ),A′ ⊆ A}.

F is FA−measurable if for any n ≥ 1, fn(θ1, . . . , θn) = 0, µ⊗n − a.e.
unless θi ∈ A ∀ i = 1, . . .n.
In particular, we are interested in the case A = Θt− := [0, t)× R.
Denote Ft− := FΘt− . Obviously, if F ∈ Dom D and it is
Ft−−measurable then Ds,xF = 0 for a.e. s ≥ t and any x ∈ R.
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THE CLARK-HAUSSMANN-OCONE FORMULA II

From the chaos representation property we can see that for F ∈ L2(Ω),

E [F |Ft−] =
∞∑

n=0

In(fn(θ1, . . . , θn)
n∏

i=1

11[0,t)(ti)).

Then, for F ∈ DomD we have

Ds,xE [F |Ft−] = E [Ds,xF |Ft−]11[0,t)(s), (s, x) ∈ Θ.
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THE CLARK-HAUSSMANN-OCONE FORMULA III

Using these facts we can prove the very well known CHO formula:
If F ∈ DomD we have

F = E(F ) + δ(E [Dt ,xF |Ft−]).

Note that being the integrand a predictable process, the Skorohod
integral δ here above is actually an Itô integral.
Note also that the CHO formula can be rewritten in a
decompactified form as

F = E(F )+

∫ ∞
0

E(Ds,0F |Fs−)dWs +

∫
Θ∞,0

E(Ds,xF |Fs−)Ñ(ds,dx).
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A CANONICAL SPACE FOR J I

We set our work on the canonical space of J, substantially
introduced in [SUV].
The construction is done first of all in the case ν is concentrated
on ΘT ,ε for a fixed T > 0 and ε > 0, that is a finite activity case.
Later the construction is extended to the case Θ∞,0 taking T ↑ ∞
and ε ↓ 0.
In the case ν concentrated on ΘT ,ε, and so finite, any trajectory of
J can be totally described by a finite sequence(
(t1, x1), . . . , (tn, xn)

)
where t1, . . . , tn ∈ [0,T ] are the jump instants,

with t1 < t2 < · · · < tn, and x1, . . . , xn ∈ Sε are the corresponding
sizes, for some n.
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A CANONICAL SPACE FOR J II

The extension to the space Θ∞,0 is done through a projective
system of probability spaces.
For every m ≥ 1 we consider the probability spaces

(ΩJ
m,Fm,Pm) := (ΩJ

m, 1
m
,Fm, 1

m
,Pm, 1

m
),

that are the canonical spaces corresponding to Θm := [0,m]×S 1
m
.

Then the canonical space ΩJ for J on Θ∞,0 is defined as the
projective limit of the system (ΩJ

m,m ≥ 1).
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A CANONICAL SPACE FOR J III

In our setup, ΩJ = ∪∞n=0Θn
∞,0 and the probability measure P is

concentrated on the subset of

The empty sequence α, corresponding to the element (α, α, . . . ).
All finite sequences of pairs (ti , xi).

All infinite sequences of pairs (ti , xi) such that for every m > 0
there is only a finite number of (ti , xi) on Θm.
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MALLIAVIN-SKOROHOD CALCULUS FOR PURE JUMP

ADDITIVE PROCESSES

Now we establish the basis for a Malliavin-Skorohod calculus with
respect to a pure jump additive process, constructively on the
canonical space.
In general, the proofs of the following results are done directly on
ΩJ

m and extended to ΩJ by dominated convergence.
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TRANSFORMATIONS ON THE CANONICAL SPACE

Let θ = (s, x) ∈ Θ∞,0. Let ω ∈ ΩJ , that is, ω := (θ1, . . . , θn, . . . ),
with θi := (si , xi).

We introduce the following two transformations from Θ∞,0 × ΩJ to
ΩJ :

ε+
θ ω :=

(
(s, x), (s1, x1), (s2, x2), . . .

)
,

where a jump of size x is added at time s, and

ε−θ ω :=
(
(s1, x1), (s2, x2), . . .

)
− {(s, x)},

where we take away the point θ = (s, x) from ω.
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PROPERTIES OF THE TRANSFORMATIONS

These two transformations are analogous to the ones introduced
in Picard (1996).
Observe that ε+ is well defined except on the set {(θ, ω) : θ ∈ ω}
that has null measure with respect ν ⊗ P. We can consider by
convention that on this set, ε+

θ ω := ω.

The case of ε−θ is also clear. In fact this operator satisfies ε−θ ω = ω
except on the set {(θ, ω) : θ ∈ ω}.
For simplicity of the notation sometimes we will denote ω̂i := ε−θi

ω.
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THE OPERATOR T I

For a random variable F ∈ L0(ΩJ), we define the operator

T : L0(ΩJ) 7→ L0(Θ∞,0 × ΩJ),

such that (TθF )(ω) := F (ε+
θ ω).

It is not difficult to see that if F is a FJ -measurable, then

(T·F )(·) : Θ∞,0 × ΩJ −→ R

is B(Θ∞,0)⊗FJ− measurable and F = 0, P-a.s. implies
T·F (·) = 0, ν ⊗ P-a.e. So, T is a closed linear operator defined on
the entire L0(ΩJ).
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THE OPERATOR T II

But if we want to assure T·F (·) ∈ L1(Θ∞,0 × ΩJ) we have to restrict the
domain and guarantee that

E
∫

Θ∞,0

|TθF |ν(dθ) <∞.

This requires a condition that is strictly stronger than F ∈ L1(ΩJ).
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THE OPERATOR T III

Concretely, denoting km := e−ν(Θm−Θm−1), we have to assume that

∞∑
m=1

km

∞∑
n=0

n
n!

∫
(Θm−Θm−1)n

|F (θ1, . . . , θn)|ν(dθ1) . . . ν(dθn) <∞,

whereas F ∈ L1(Ω) is equivalent only to

∞∑
m=1

km

∞∑
n=0

1
n!

∫
(Θm−Θm−1)n

|F (θ1, . . . , θn)|ν(dθ1) . . . ν(dθn) <∞.
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THE OPERATOR S I

For a random field u ∈ L0(Θ∞,0 × ΩJ) we define the operator

S : DomS ⊆ L0(Θ∞,0 × ΩJ) −→ L0(ΩJ)

such that

(Su)(ω) :=

∫
Θ∞,0

uθ(ε−θ ω)N(dθ, ω) :=
∑

i

uθi (ω̂i) <∞.

In particular, if ω = α, we define (Su)(α) = 0.
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THE OPERATOR S II

The operator S is well defined and closed from L1(Θ∞,0 × ΩJ) to L1(Ω)
as the following proposition says:

PROPOSITION

If u ∈ L1(Θ∞,0 × ΩJ), Su is well defined and takes values in L1(Ω).
Moreover

E
∫

Θ∞,0

uθ(ε−θ ω)N(dθ, ω) = E
∫

Θ∞,0

uθ(ω)ν(dθ).
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THE OPERATOR S III

Given θ = (s, x) we can define for any ω, ω̃s as the ω restricted to jump
instants strictly before s. In this case, obviously, ε−θ ω̃s = ω̃s.
If u is predictable we have uθ(ω) = uθ(ω̃s) and so

uθ(ε−θ ω) = uθ(ω),

and

(Su)(ω) =

∫
Θ∞,0

uθ(ε−θ ω)N(dθ, ω) =

∫
Θ∞,0

uθ(ω)N(dθ, ω).
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THE ABSTRACT DUALITY RELATION

The following theorem is the fundamental relationship between
operators S and T :

THEOREM

Consider F ∈ L0(ΩJ) and u ∈ DomS. Then F · Su ∈ L1(ΩJ) if and only
if TF · u ∈ L1(Θ∞,0 × ΩJ) and in this case

E(F · Su) = E
∫

Θ∞,0

TθF · uθ ν(dθ).
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RULES OF CALCULUS

If u and TF · u belong to DomS we have

F · Su = S(TF · u), P− a.e.

If u and Tu are in DomS then

Tθ(Su) = uθ + S(Tθu), ν ⊗ P− a.e.
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THE OPERATOR Ψ

Now we introduce the operator Ψt ,x := Tt ,x − Id . Observe that this
operator is linear, closed and satisfies the property

Ψt ,x (F G) = G Ψt ,xF + F Ψt ,xG + Ψt ,x (F ) Ψt ,x (G).
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THE OPERATOR E

On other hand, for u ∈ L0(Θ∞,0 × ΩJ) we consider the operator:

E : DomE ⊆ L0(Θ∞,0 × ΩJ) −→ L0(ΩJ)

such that

(Eu)(ω) :=

∫
Θ∞,0

uθ(ω)ν(dθ).

Note that DomE is the subset of processes in L0(Θ∞,0 × ΩJ) such that
u(·, ω) ∈ L1(Θ∞,0), P−a.e.
We have also that∫

Θ∞,0

uθ(ε−θ ω)ν(dθ) =

∫
Θ∞,0

uθ(ω)ν(dθ),P− a.s.
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THE OPERATOR Φ

Then, for u ∈ DomΦ := DomS ∩ DomE ⊆ L0(Θ∞,0 × ΩJ), we define

Φu := Su − Eu.

Note that

L1(Θ∞,0 × ΩJ) ⊆ DomΦ.

E(Φu) = 0, for any u ∈ L1(Θ∞,0 × Ω).

For any u ∈ DomΦ, predictable,

Φ(u) =

∫
Θ∞,0

uθ(ω)Ñ(dθ, ω).

u ∈ L2(Θ∞,0 × ΩJ) not implies u ∈ L1(Θ∞,0 × ΩJ) nor u ∈ DomΦ.
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DUALITY BETWEEN Ψ AND Φ

As a corollary of the duality between T and S we have the following
result:

PROPOSITION

Consider F ∈ L0(ΩJ) and u ∈ DomΦ. Assume also
F · u ∈ L1(Θ∞,0 × ΩJ). Then F · Φu ∈ L1(ΩJ) if and only if
ΨF · u ∈ L1(Θ∞,0 × ΩJ) and in this case

E(F · Φu) = E(

∫
Θ∞,0

ΨθF · uθ ν(dθ)).
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RULES OF CALCULUS

If F ∈ L0(ΩJ) and u, F · u and ΨF · u belong to DomΦ we have

Φ(F · u) = F · Φu − Φ(ΨF · u)− E(ΨF · u), P− a.s.

If u and Ψu belong to DomΦ we have

Ψθ(Φu) = uθ + Φ(Ψθu), ν ⊗ P− a.e.
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RELATIONSHIPS BETWEEN THE INTRINSIC OPERATORS

AND THE MALLIAVIN-SKOROHOD OPERATORS.

Consider now the operators D and δ restricted to the pure jump case,
that is associated to the measure Ñ(ds,dx). We write DJ and δJ .
We have the following result:

LEMMA

For any n, consider the set Θn,∗
T ,ε = {(θ1, . . . , θn) ∈ Θn

T ,ε : θi 6= θj if i 6= j}.
Then, for any gk ∈ L2(Θk ,∗

∞,0) for k ≥ 1 and ω ∈ ΩJ we have, a.s.,

Ik (gk )(ω) =

∫
Θk,∗

T ,ε

gk (θ1 . . . , θk )Ñ(ω,dθ1) · · · Ñ(ω,dθk ).

The proof is based on the fact that both expressions coincide for
simple functions and define bounded linear operators.
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RELATIONSHIP BETWEEN DJ , δJ , Ψ AND Φ

For a fixed k ≥ 0, consider F = Ik (gk ) with gk a symmetric
function of L2(Θk ,∗

∞,0). Then, F belongs to DomDJ ∩ DomΨ and

DJ Ik (gk ) = ΨIk (gk ), ν ⊗ P− a.e.

For fixed k ≥ 1, consider uθ = Ik (gk (·, θ)) where
gk (·, ·) ∈ L2(Θk+1,∗

∞,0 ) is symmetric with respect to the first k
variables. Assume also u ∈ DomΦ. Then,

Φ(u) = δJ(u), P− a.e..
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RELATIONSHIP BETWEEN THE OPERATORS

Let F ∈ L2(ΩJ). Then, F ∈ DomDJ ⇐⇒ ΨF ∈ L2(Θ∞,0 × ΩJ), and
in this case

DJF = ΨF , ν ⊗ P − a.e.

Let u ∈ L2(Θ∞,0 × ΩJ) ∩ DomΦ. Then
u ∈ DomδJ ⇐⇒ Φu ∈ L2(ΩJ), and in this case

δJu = Φu, P− a.s.
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THE CLARK-HAUSMANN-OCONE

As an application of the previous results in the pure jump case we
hereafter prove a CHO-type formula as an integral representation of
random variables in L1(ΩJ).

THEOREM

Let F ∈ L1(ΩJ) and assume ΨF ∈ L1(Θ∞,0 × ΩJ). Then

F = E(F ) + Φ(E(Ψt ,xF |Ft−)), a.s.
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REMARK

Observe that under the conditions of the previous theorem we have

Ψs,xE [F |FΘt− ] = E [Ψs,xF |FΘt− ]11[0,t), ν ⊗ P− a.e.
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EXAMPLE 1 I

Consider a pure jump additive process L. On one hand, for any t , we
have the Lévy-Itô decomposition:

Lt = Γt +

∫ t

0

∫
{|x |>1}

xN(ds,dx) +

∫ t

0

∫
{|x |≤1}

xÑ(ds,dx).

Consider LT . Assume E(|LT |) <∞. Recall that this is equivalently to∫ t

0

∫
|x |>1

|x |ν(ds,dx) <∞.

Then we can write

Lt = Γt +

∫ t

0

∫
{|x |>1}

xν(ds,dx) +

∫ t

0

∫
R

xÑ(ds,dx).
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EXAMPLE 1 II

On the other hand, applying the CHO formula, we have
Ψs,xLT = x11[0,T ](s) and E(Ψs,xLT |Fs−) = x11[0,T )(s). So, the
hypothesis E(|LT |) <∞ is equivalent to

E
∫ T

0

∫
R
|Ψs,xLT |ν(ds,dx) <∞

and

LT = E(LT ) +

∫ T

0

∫
R

xÑ(ds,dx).

Observe that this is coherent with the previous decomposition because

E(LT ) = ΓT +

∫ T

0

∫
{|x |>1}

xν(ds,dx).
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EXAMPLE 2 I

Let X := {Xt , t ∈ [0,T ]} be a pure jump Lévy process with triplet
(γLt ,0, νLt). Let St := eXt be an asset price process. Let Q be a
risk-neutral measure. In order e−rteXt be a Q−martingale we need to
assume some restrictions on νL and γL:∫

|x |≥1
exνL(dx) <∞

and

γL =

∫
R

(ey − 1− y11{|y |<1})ν(dy).
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EXAMPLE 2 II

These conditions allow us to write without loosing generality,

Xt = x + (r − c2)t +

∫ t

0

∫
R

yÑ(ds,dy),

where

c2 :=

∫
R

(ey − 1− y)νL(dy)

and N is a Poisson random measure under Q.
According to the CHO formula if F = ST ∈ L1(Ω) and
EQ[Ψs,xST |Fs−] ∈ L1(Ω× [0,T ]) we have

ST = EQ(ST ) +

∫
ΘT ,0

EQ[Ψs,xST |Fs−]Ñ(ds,dx).
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EXAMPLE 2 III

Observe that

Ψs,xST (ω) = ST (ex − 1), `× νL ×Q− a.s.,

and this process belongs to L1(Ω×Θ∞,0) if and only if∫
R |e

x − 1|νL(dx) <∞.
Then, in this case, we have

ST = EQ(ST ) +

∫
ΘT ,0

er(T−s)(ex − 1)Ss−Ñ(ds,dx).

So, this result covers Lévy processes with finite activity and Lévy
processes with infinite activity but finite variation.
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INTEGRATION WITH RESPECT PURE JUMP VOLATILITY

MODULATED VOLTERRA PROCESSES

Consider a pure jump volatility modulated additive driven Volterra
(VMAV) process X defined as

X (t) =

∫ t

0
g(t , s)σ(s)dJ(s)

provided the integral is well defined. Here J is a pure jump additive
processes, g is a deterministic function and σ is a predictable process
with respect the natural completed filtration of J.
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INTEGRATION WITH RESPECT PURE JUMP VOLATILITY

MODULATED VOLTERRA PROCESSES

Recall that using the Lévy-Itô representation J can be written as

J(t) = Γt +

∫
Θt,0−Θt,1

xÑ(ds,dx) +

∫
Θt,1

xN(ds,dx),

where Γ is a continuous deterministic function that we assume of
bounded variation in order to admit integration with respect dΓ.
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INTEGRATION WITH RESPECT PURE JUMP VOLATILITY

MODULATED VOLTERRA PROCESSES

For each t , Xt is well defined if

(H1) :

∫ ∞
0
|g(t , s)σ(s)|dΓs <∞,

(H2) :

∫
Θ∞,0

(1 ∧ (g(t , s)σ(s)x)2)ν(dx ,ds) <∞,

and

(H3) :

∫
Θ∞,0

|g(t , s)σ(s)x [11{|g(t ,s)σ(s)x |≤1} − 11{|x |≤1}]|ν(dx ,ds) <∞.
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INTEGRATION WITH RESPECT PURE JUMP VOLATILITY

MODULATED VOLTERRA PROCESSES

Hereafter we discuss the problem of developing an integration theory
with respect to X as integrator, i.e. to give a meaning to∫ t

0
Y (s)dX (s)

for a fixed t and a suitable stochastic processes Y .
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INTEGRATION WITH RESPECT PURE JUMP VOLATILITY

MODULATED VOLTERRA PROCESSES

Exploiting the representation of J, an integration with respect to X
can be treated as the sum of integrals with respect to the
corresponding components of J.
It is enough to define integrals with respect

∫ t
0 g(t , s)σ(s)dΓs,∫ t

0

∫
|x |≤1 g(t , s)σ(s)xÑ(ds,dx) and

∫ t
0

∫
|x |>1 g(t , s)σ(s)xN(ds,dx).

Under the assumptions that Γ has finite variation and using the
fact that N on [0, t ]× {|x | > δ}, for any δ > 0, is a.s. a finite
measure, the integration with respect to the first and third term
presents no difficulties.

Josep Vives (UB) Aarhus, August 2016 58 / 74



INTEGRATION WITH RESPECT PURE JUMP VOLATILITY

MODULATED VOLTERRA PROCESSES

We have to discuss the second term, specifically the case when J
has infinite activity and the corresponding X is not a
semimartingale. In fact, if X was a semimartingale, we could
perform the integration in the Itô sense.
We can refer to [BBPV] for a discussion of the the conditions on g
in order X be or not a semimartingale
In [BBPV], an integral with respect to a non semimartingale X
driven by a Lévy process by means of the Malliavin-Skorohod
calculus is defined. Their technique is naturally constrained to an
L2 setting.

Josep Vives (UB) Aarhus, August 2016 59 / 74



INTEGRATION WITH RESPECT PURE JUMP VOLATILITY

MODULATED VOLTERRA PROCESSES

Within the framework presented in this paper, we can extend the
definition proposed in [BBPV] to reach out for additive processes
beyond the L2 setting.
Assume the following hypothesis on X and Y :

For s ≥ 0, the mapping t −→ g(t , s) is of bounded variation on any
interval [u, v ] ⊆ (s,∞).

The function

Kg(Y )(t , s) := Y (s)g(t , s) +

∫ t

s
(Y (u)− Y (s))g(du, s), t > s,

is well defined a.s., in the sense that (Y (u)− Y (s)) is integrable
with respect to g(du, s) as a pathwise Lebesgue-Stieltjes integral.
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INTEGRATION WITH RESPECT PURE JUMP VOLATILITY

MODULATED VOLTERRA PROCESSES

The mappings

(s, x) −→ Kg(Y )(t , s)σ(s)x11Θt,0−Θt,1(s, x)

and
(s, x) −→ Ψs,x (Kg(Y )(t , s)σ(s))x11Θt,0−Θt,1(s, x)

belong to DomΦ.
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INTEGRATION WITH RESPECT PURE JUMP VOLATILITY

MODULATED VOLTERRA PROCESSES

Then, the following integral, is well defined:∫ t

0
Y (s)d(

∫ s

0

∫
|x |≤1

g(s,u)σ(u)xÑ(du,dx))

:= Φ(xKg(Y )(t , s)σ(s)11Θt,0−Θt,1(s, x))

+ Φ(xΨs,x (Kg(Y )(t , s))σ(s)11Θt,0−Θt,1(s, x))

+ E(xΨs,x (Kg(Y )(t , s))σ(s)11Θt,0−Θt,1(s, x)).
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INTEGRATION WITH RESPECT PURE JUMP VOLATILITY

MODULATED VOLTERRA PROCESSES

This result extends the definition in [BBPV] to any pure jump
additive process J, i.e. beyond square integrability.
The proof relies on the definitions of Φ, Ψ and the developed
calculus rules.
In the finite activity case,

L2(Θ∞,0 × ΩJ) ⊆ L1(Θ∞,0 × ΩJ)

and our result is an extension of the definition in [BBPV].
In the infinite activity case, our Theorem covers cases not covered
by [BBPV] and viceversa.
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EXAMPLE I

Hereafter we give a classical example of a pure jump Lévy
process without second moment as a driver and we consider a
kernel function g of shift type, i.e. it only depends on the
difference t − s. For simplicity we assume moreover σ ≡ 1. The
chosen kernel appears in applications to turbulence.
Assume L to be a symmetric α−stable Lévy process, for
α ∈ (0,2). It corresponds to the triplet (0,0, νL) with
νL(dx) = c|x |−1−αdx .
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EXAMPLE II

Take
g(t , s) := (t − s)β−1e−λ(t−s)11[0,t)(s)

with β ∈ (0,1) and λ > 0. Note that

g(du, s) = −g(u, s)(
1− β
u − s

+ λ)du.

Josep Vives (UB) Aarhus, August 2016 65 / 74



EXAMPLE III

We concentrate on the component

J(t) =

∫ t

0

∫
{|x |≤1}

xÑ(ds,dx),

and so first of all on the definition of the integral

X (t) :=

∫ t

0
g(t , s)dJ(s) =

∫ t

0

∫
|x |≤1

g(t , s)xÑ(ds,dx), t ≥ 0.
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EXAMPLE IV

In relation with this integral, that is not a semimartingale, we have four
situations:

1 If α ∈ (0,1) and β > 1
2 , g(t , s)x belongs to L1 ∩ L2

2 If α ∈ (0,1) and β ≤ 1
2 , g(t , s)x belongs to L1 but not to L2.

3 If α ∈ [1,2) and β > 1
2 , g(t , s)x belongs to L2 but not to L1.

4 If α ∈ [1,2) and β ≤ 1
2 , g(t , s)x belongs not to L2 nor to L1.

Only in case (4) the integral is not necessarily well defined.
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EXAMPLE V

Just to show the types of computation involved, let us consider the
particular case of a VMAV process as integrand. Namely,

Y (s) =

∫ s

0

∫
|x |≤1

φ(s − u)xÑ(du,dx), 0 ≤ s ≤ T ,

where φ is a positive continuous function such that the integral Y is
well defined.
Consider the case α < 1 and β ∈ (0,1), not covered by [BBPV] if
β ≤ 1

2 .
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EXAMPLE VI

In order to see that
∫ t

0 Y (s−)dX (s) is well defined we have to check:
1 The process (Y (u)− Y (s)) is integrable with respect to g(du, s)

on (s, t ], as a pathwise Lebesgue-Stieltjes integral.
2 The mappings

(s, x) −→ xKg(Y )(t , s)11[0,t](s)11{|x |≤1}

and
(s, x) −→ xΨs,x (Kg(Y )(t , s))11[0,t](s)11{|x |≤1}

belong to DomΦ.

Josep Vives (UB) Aarhus, August 2016 69 / 74



EXAMPLE VII

We have

Kg(Y )(t , s)

= g(t , s)

∫
[0,s)

∫
|x |≤1

φ(s − v)xÑ(dv ,dx)

−
∫ t

s
g(u, s)(

1− β
u − s

+ λ)

∫
[s,u)

∫
|x |≤1

φ(u − v)xÑ(dv ,dx)du

−
∫ t

s
g(u, s)(

1− β
u − s

+ λ)

∫
[0,s)

∫
|x |≤1

[φ(u − v)− φ(s − v)]xÑ(dv ,dx)du.
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EXAMPLE VIII

In terms of Φ we can rewrite

Kg(Y )(t , s)

= g(t , s)Φ(φ(s − ·)x11{|x |≤1}11[0,s))

−
∫ t

s
g(u, s)(

1− β
u − s

+ λ)Φ(φ(u − ·)x11{|x |≤1}11[s,u)(·))du

−
∫ t

s
g(u, s)(

1− β
u − s

+ λ)Φ([φ(u − ·)− φ(s − ·)]x11{|x |≤1}11[0,s)(·))du.

Moreover we have

Ψs,xKg(Y )(t , s) = −x11{|x |≤1}

∫ t

s
g(u, s)φ(u−s)(

1− β
u − s

+λ)11[0,u)(s)du.
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EXAMPLE IX

So, it is enough to check that the mappings

(s, x) −→ xKg(Y )(t , s)11[0,t](s)11{|x |≤1}

and
(s, x) −→ xΨs,x (Kg(Y )(t , s))11[0,t](s)11{|x |≤1}

are in L1(Θ∞,0 × Ω).
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EXAMPLE X

If for example we consider the case φ(y) = yγ with γ > 0 and
β + γ ≥ 1 is not difficult to check the mappings are in L1 and we
conclude that the integral ∫ t

0
Y (s−)dX (s)

is well defined.
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