A Malliavin-Skorohod calculus in L^{0} and L^{1} for pure jump additive and Volterra-type processes

> Josep Vives (josep.vives@ub.edu)
> (Joint work with Giulia Di Nunno (UiO))

Universitat de Barcelona
Conference on Ambit fields and related topics Aarhus, August 15-18, 2016

REFERENCES

- G. Di Nunno and J. V. (2016): A Malliavin - Skorohod calculus in L^{0} and L^{1} for additive and Volterra type processes. Stochastics. [DV]
- O. E. Barndorff-Nielsen, F. E. Benth, J. Pedersen and A. E. D. Veraart (2014): On stochastic integration for volatility modulated Lévy driven Volterra processes. SPA 124: 812-847. [BBPV]
- J. L. Solé, F. Utzet and J. V. (2007): Canonical Lévy processes and Malliavin calculus. SPA 117: 165-187. [SUV]

Abstract

- In this paper we extend the Malliavin-Skorohod type calculus for pure jump additive processes to the L^{0} and L^{1} settings.
- We apply it to extend stochastic integration with respect to volatility modulated pure jump additive-driven Volterra processes.
- In particular, we define integrals with respect to Volterra processes driven by α-stable processes with $\alpha<2$.

Motivation I

- Consider a pure jump volatility modulated additive driven Volterra $(\mathcal{V M A V})$ process X defined as

$$
X(t)=\int_{0}^{t} g(t, s) \sigma(s) d J(s)
$$

provided the integral is well defined. Here J is a pure jump additive process, g is a deterministic function and σ is a predictable process with respect the natural completed filtration of J.

- This kind of models, called volatility modulated Volterra processes, are part of the family of Ambit processes and are used in modeling turbulence, energy finance and others.

Motivation II

- A major problem is to develop an integration theory with respect X as integrator, that is, to give a meaning to

$$
\int_{0}^{t} Y(s) d X(s)
$$

for a fixed t and a suitable stochastic processes Y. Recall that X is not necessarily a semimartingale.

- This has been done in [BBPV], assuming J is a square integrable pure jump Lévy process and assuming Malliavin regularity conditions on Y in the L^{2} setting.

Motivation III

- Here we extend this integration theory to any pure jump additive process, not necessary square integrable, and in particular allowing to treat integration, for example, with respect to α-stable processes when $\alpha<2$.
- Integrability conditions related with Y are in the L^{1} setting. So, our results are an extension on the previous ones in the finite activity case and treat new cases in the infinite activity case.

Introduction I

- The Malliavin-Skorohod calculus for square integrable functionals of an additive process is today a well established topic. See for example Yablonski (2008).
- In [SUV] a new canonical space for Lévy processes is introduced and a probabilistic interpretation of Malliavin-Skorohod operators in this space is obtained.
- These operators defined in the canonical space are well defined beyond the L^{2} setting.

Introduction II

- This allows to explore the development of a Malliavin-Skorohod calculus for functionals adapted to a general additive processes that belong only to L^{1} or L^{0}.
- This is the main goal of our work, that can be seen as an extension of [SUV] using also ideas from Picard (1996).
- In particular we prove several rules of calculus and a new version of the Clark-Hausmmann-Ocone (CHO) formula in the L^{1} setting.

Preliminaries and Notation I

- Let $X=\left\{X_{t}, t \geq 0\right\}$ be an additive process, that is, a process with independent increments, stocastically continuous, null at the origin and with càdlàg trajectories.
- Let $\mathbb{R}_{0}:=\mathbb{R}-\{0\}$.
- For any fixed $\epsilon>0$, denote $S_{\epsilon}:=\{|x|>\epsilon\} \subseteq \mathbb{R}_{0}$.
- Let us denote \mathcal{B} and \mathcal{B}_{0} the σ-algebras of Borel sets of \mathbb{R} and \mathbb{R}_{0} respectively.

Preliminaries and Notation II

The distribution of an additive process can be characterized by the triplet $\left(\Gamma_{t}, \sigma_{t}^{2}, \nu_{t}\right), t \geq 0$, where

- $\left\{\Gamma_{t}, t \geq 0\right\}$ is a continuous function null at the origin.
- $\left\{\sigma_{t}^{2}, t \geq 0\right\}$ is a continuous and non-decreasing function null at the origin.
- $\left\{\nu_{t}, t \geq 0\right\}$ is a set of Lévy measures on \mathbb{R}. Moreover, for any set $B \in \mathcal{B}_{0}$ such that $B \subseteq S_{\epsilon}$ for a certain $\epsilon>0, \nu$. (B) is a continuous and increasing function null at the origin.

Preliminaries and Notation III

- Let $\Theta:=[0, \infty) \times \mathbb{R}$. Denote $\theta:=(t, x) \in \Theta$ and $d \theta=(d t, d x)$.
- For $T \geq 0$, we introduce the measurable spaces $\left(\Theta_{T, \epsilon}, \mathcal{B}\left(\Theta_{T, \epsilon}\right)\right)$ where $\Theta_{T, \epsilon}:=[0, T] \times S_{\epsilon}$.
- Observe that $\Theta_{\infty, 0}=[0, \infty) \times \mathbb{R}_{0}$ and that Θ can be represented as $\Theta=\Theta_{\infty, 0} \cup([0, \infty) \times\{0\})$.

Preliminaries and Notation IV

- We introduce a measure ν on $\Theta_{\infty, 0}$ such that for any $B \in \mathcal{B}_{0}$ we have $\nu([0, t] \times B):=\nu_{t}(B)$. The hypotheses on ν_{t} guarantee that $\nu(\{t\} \times B)=0$ for any $t \geq 0$ and for any $B \in \mathcal{B}_{0}$. Note that in particular, ν is σ-finite.
- Let N be the jump measure associated to X. Recall that it is a Poisson random measure on $\mathcal{B}\left(\Theta_{\infty, 0}\right)$ with parameter ν. Denote $\widetilde{N}(d t, d x):=N(d t, d x)-\nu(d t, d x)$.
- We can introduce also a σ-finite measure σ on $[0, \infty)$ such that $\sigma([0, t])=\sigma_{t}^{2}$.

Preliminaries ad Notation V

According to the Lévy-Itô decomposition we can write:

$$
X_{t}=\Gamma_{t}+W_{t}+J_{t}, \quad t \geq 0
$$

where

- Γ is a continuous deterministic function null at the origin.
- W is a centered Gaussian process with variance process σ^{2}.

Preliminaries and Notation VI

- J is an additive process with triplet $\left(0,0, \nu_{t}\right)$ independent of W, defined by

$$
J_{t}=\int_{\Theta_{t, 1}} x N(d s, d x)+\lim _{\epsilon \downarrow 0} \int_{\Theta_{t, \epsilon}-\Theta_{t, 1}} x \widetilde{N}(d s, d x)
$$

where the convergence is a.s. and uniform with respect to t on every bounded interval. We call the process $J=\left\{J_{t}, t \geq 0\right\}$ a pure jump additive process.

- Moreover, if $\left\{\mathcal{F}_{t}^{W}, t \geq 0\right\}$ and $\left\{\mathcal{F}_{t}^{J}, t \geq 0\right\}$ are, respectively, the completed natural filtrations of W and J, then, for every $t \geq 0$, we have $\mathcal{F}_{t}^{X}=\mathcal{F}_{t}^{W} \vee \mathcal{F}_{t}^{J}$.

Preliminaries and Notation VII

- We consider on Θ the σ-finite Borel measure

$$
\mu(d t, d x):=\sigma(d t) \delta_{0}(d x)+\nu(d t, d x)
$$

Note that μ is continuous in the sense that $\mu(\{t\} \times B)=0$ for all $t \geq 0$ and $B \in \mathcal{B}$.

- Then we define

$$
M(d t, d x)=\left(W \otimes \delta_{0}\right)(d t, d x)+\tilde{N}(d t, d x)
$$

that is a centered random measure with independent values such that $\mathbb{E}\left[M\left(E_{1}\right) M\left(E_{2}\right)\right]=\mu\left(E_{1} \cap E_{2}\right)$, for $E_{1}, E_{2} \in \mathcal{B}(\Theta)$ with $\mu\left(E_{1}\right)<\infty$ and $\mu\left(E_{2}\right)<\infty$.

Preliminaries and Notation VIII

- If we take $\sigma^{2} \equiv 0, \mu=\nu$ and $M=\tilde{N}$, we recover the Poisson random measure case.
- If we take $\nu=0$, we have $\mu(d t, d x):=\sigma(d t) \delta_{0}(d x)$ and $M(d s, d x)=\left(W \otimes \delta_{0}\right)(d s, d x)$ and we recover the independent increment centered Gaussian measure case.
- If we take $\sigma_{t}^{2}:=\sigma_{L}^{2} t$ and $\nu(d t, d x)=d t \nu_{L}(d x)$, we obtain $M(d s, d x)=\sigma_{L}\left(W \otimes \delta_{0}\right)(d s, d x)+\tilde{N}(d s, d x)$ and we recover the Lévy case (stationary increments case).

MALLIAVIN-SKOROHOD CALCULUS FOR ADDITIVE PROCESSES IN L^{2}.

We recall the presentation of the Malliavin-Skorohod calculus with respect to the random measure M on its canonical space in the L^{2}-framework, as a first step towards our final goal of extending the calculus to the L^{1} and L^{0} frameworks.

THE CHAOS REPRESENTATION PROPERTY

- Given μ, we can consider the spaces

$$
\mathbb{L}_{n}^{2}:=L^{2}\left(\Theta^{n}, \mathcal{B}(\Theta)^{\otimes n}, \mu^{\otimes n}\right)
$$

and define for functions f in \mathbb{L}_{n}^{2} the Itô multiple stochastic integrals $I_{n}(f)$ with respect to M in the usual way.

- Then we have the so-called chaos representation property, that is, for any functional $F \in L^{2}\left(\Omega, \mathcal{F}^{X}, \mathbb{P}\right)$, where $\mathcal{F}^{X}=\vee_{t \geq 0} \mathcal{F}_{t}^{X}$, we have

$$
F=\sum_{n=0}^{\infty} I_{n}\left(f_{n}\right)
$$

for a certain unique family of symmetric kernels $f_{n} \in \mathbb{L}_{n}^{2}$.

The Malliavin and Skorohod operators I

The chaos representation property of $L^{2}\left(\Omega, \mathcal{F}^{X}, \mathbb{P}\right)$ shows that this space has a Fock space structure. Thus it is possible to apply all the machinery related to the anhilation operator (Malliavin derivative) and the creation operator (Skorohod integral).

Consider $F=\sum_{n=0}^{\infty} I_{n}\left(f_{n}\right)$, with f_{n} symmetric and such that $\sum_{n=1}^{\infty} n n!\left\|f_{n}\right\|_{\mathbb{L}_{n}^{2}}^{2}<\infty$. The Malliavin derivative of F is an object of $L^{2}(\Theta \times \Omega, \mu \otimes \mathbb{P})$, defined as

$$
D_{\theta} F=\sum_{n=1}^{\infty} n I_{n-1}\left(f_{n}(\theta, \cdot)\right), \quad \theta \in \Theta .
$$

We denote by $\operatorname{Dom} D$ the domain of this operator.

The Malliavin and Skorohod operators II

Let $u \in L^{2}\left(\Theta \times \Omega, \mathcal{B}(\Theta) \otimes \mathcal{F}^{X}, \mu \otimes \mathbb{P}\right)$. For every $\theta \in \Theta$ we have the chaos decomposition

$$
u_{\theta}=\sum_{n=0}^{\infty} I_{n}\left(f_{n}(\theta, \cdot)\right)
$$

where $f_{n} \in \mathbb{L}_{n+1}^{2}$ is symmetric in the last n variables. Let \tilde{f}_{n} be the symmetrization in all $n+1$ variables. Then we define the Skorohod integral of u by

$$
\delta(u)=\sum_{n=0}^{\infty} I_{n+1}\left(\tilde{f}_{n}\right),
$$

in $L^{2}(\Omega)$, provided $u \in \operatorname{Dom} \delta$, that means $\sum_{n=0}^{\infty}(n+1)!\left\|\tilde{f}_{n}\right\|_{\mathbb{N}_{n+1}^{2}}^{2}<\infty$.

Duality between the Malliavin and Skorohod OPERATORS

- If $u \in \operatorname{Dom} \delta$ and $F \in \operatorname{Dom} D$ we have the duality relation

$$
\mathbb{E}[\delta(u) F]=\mathbb{E} \int_{\Theta} u_{\theta} D_{\theta} F \mu(d \theta)
$$

- We recall that if $u \in D o m \delta$ is actually predictable with respect to the filtration generated by X, then the Skorohod integral coincides with the (non anticipating) Itô integral in the L^{2}-setting with respect to M.

The Clark-Haussmann-Ocone formula I

Let $A \in \mathcal{B}(\Theta)$ and $\mathcal{F}_{A}:=\sigma\left\{M\left(A^{\prime}\right): A^{\prime} \in \mathcal{B}(\Theta), A^{\prime} \subseteq A\right\}$.

- F is \mathcal{F}_{A}-measurable if for any $n \geq 1, f_{n}\left(\theta_{1}, \ldots, \theta_{n}\right)=0, \mu^{\otimes n}$ - a.e. unless $\theta_{i} \in A \quad \forall i=1, \ldots n$.
- In particular, we are interested in the case $A=\Theta_{t-}:=[0, t) \times \mathbb{R}$. Denote $\mathcal{F}_{t-}:=\mathcal{F}_{\Theta_{t-}}$. Obviously, if $F \in \operatorname{Dom} D$ and it is \mathcal{F}_{t-} measurable then $D_{s, x} F=0$ for a.e. $s \geq t$ and any $x \in \mathbb{R}$.

The Clark-Haussmann-Ocone formula II

From the chaos representation property we can see that for $F \in L^{2}(\Omega)$,

$$
E\left[F \mid \mathcal{F}_{t-}\right]=\sum_{n=0}^{\infty} \ln _{n}\left(f_{n}\left(\theta_{1}, \ldots, \theta_{n}\right) \prod_{i=1}^{n} \pi_{[0, t)}\left(t_{i}\right)\right) .
$$

Then, for $F \in D o m D$ we have

$$
D_{s, x} E\left[F \mid \mathcal{F}_{t-}\right]=E\left[D_{s, x} F \mid \mathcal{F}_{t-}\right] \|_{[0, t)}(s),(s, x) \in \Theta .
$$

The Clark-Haussmann-Ocone formula III

Using these facts we can prove the very well known CHO formula: If $F \in D o m D$ we have

$$
F=\mathbb{E}(F)+\delta\left(E\left[D_{t, x} F \mid \mathcal{F}_{t-}\right]\right) .
$$

- Note that being the integrand a predictable process, the Skorohod integral δ here above is actually an Itô integral.
- Note also that the CHO formula can be rewritten in a decompactified form as

$$
F=\mathbb{E}(F)+\int_{0}^{\infty} E\left(D_{s, 0} F \mid \mathcal{F}_{s-}\right) d W_{s}+\int_{\Theta_{\infty, 0}} E\left(D_{s, \chi} F \mid \mathcal{F}_{s_{-}-}\right) \tilde{N}(d s, d x) .
$$

A CANONICAL SPACE FOR J I

- We set our work on the canonical space of J, substantially introduced in [SUV].
- The construction is done first of all in the case ν is concentrated on $\Theta_{T, \epsilon}$ for a fixed $T>0$ and $\epsilon>0$, that is a finite activity case. Later the construction is extended to the case $\Theta_{\infty, 0}$ taking $T \uparrow \infty$ and $\epsilon \downarrow 0$.
- In the case ν concentrated on $\Theta_{T, \epsilon}$, and so finite, any trajectory of J can be totally described by a finite sequence $\left(\left(t_{1}, x_{1}\right), \ldots,\left(t_{n}, x_{n}\right)\right)$ where $t_{1}, \ldots, t_{n} \in[0, T]$ are the jump instants, with $t_{1}<t_{2}<\cdots<t_{n}$, and $x_{1}, \ldots, x_{n} \in S_{\epsilon}$ are the corresponding sizes, for some n.

A CANONICAL SPACE FOR $ل$ II

- The extension to the space $\Theta_{\infty, 0}$ is done through a projective system of probability spaces.
- For every $m \geq 1$ we consider the probability spaces

$$
\left(\Omega_{m}^{J}, \mathcal{F}_{m}, \mathbb{P}_{m}\right):=\left(\Omega_{m, \frac{1}{m}}^{J}, \mathcal{F}_{m, \frac{1}{m}}, \mathbb{P}_{m, \frac{1}{m}}\right)
$$

that are the canonical spaces corresponding to $\Theta_{m}:=[0, m] \times S_{\frac{1}{m}}$.

- Then the canonical space Ω^{J} for J on $\Theta_{\infty, 0}$ is defined as the projective limit of the system $\left(\Omega_{m}^{J}, m \geq 1\right)$.

A CANONICAL SPACE FOR $ل$ III

In our setup, $\Omega^{J}=\cup_{n=0}^{\infty} \Theta_{\infty, 0}^{n}$ and the probability measure \mathbb{P} is concentrated on the subset of

- The empty sequence α, corresponding to the element (α, α, \ldots).
- All finite sequences of pairs $\left(t_{i}, x_{i}\right)$.
- All infinite sequences of pairs $\left(t_{i}, x_{i}\right)$ such that for every $m>0$ there is only a finite number of $\left(t_{i}, x_{i}\right)$ on Θ_{m}.

MALLIAVIN-SKOROHOD CALCULUS FOR PURE JUMP ADDITIVE PROCESSES

- Now we establish the basis for a Malliavin-Skorohod calculus with respect to a pure jump additive process, constructively on the canonical space.
- In general, the proofs of the following results are done directly on Ω_{m}^{J} and extended to Ω^{J} by dominated convergence.

TRANSFORMATIONS ON THE CANONICAL SPACE

- Let $\theta=(s, x) \in \Theta_{\infty, 0}$. Let $\omega \in \Omega^{J}$, that is, $\omega:=\left(\theta_{1}, \ldots, \theta_{n}, \ldots\right)$, with $\theta_{i}:=\left(s_{i}, x_{i}\right)$.
- We introduce the following two transformations from $\Theta_{\infty, 0} \times \Omega^{J}$ to Ω^{J} :

$$
\epsilon_{\theta}^{+} \omega:=\left((s, x),\left(s_{1}, x_{1}\right),\left(s_{2}, x_{2}\right), \ldots\right)
$$

where a jump of size x is added at time s, and

$$
\epsilon_{\theta}^{-} \omega:=\left(\left(s_{1}, x_{1}\right),\left(s_{2}, x_{2}\right), \ldots\right)-\{(s, x)\}
$$

where we take away the point $\theta=(s, x)$ from ω.

PROPERTIES OF THE TRANSFORMATIONS

- These two transformations are analogous to the ones introduced in Picard (1996).
- Observe that ϵ^{+}is well defined except on the set $\{(\theta, \omega): \theta \in \omega\}$ that has null measure with respect $\nu \otimes \mathbb{P}$. We can consider by convention that on this set, $\epsilon_{\theta}^{+} \omega:=\omega$.
- The case of ϵ_{θ}^{-}is also clear. In fact this operator satisfies $\epsilon_{\theta}^{-} \omega=\omega$ except on the set $\{(\theta, \omega): \theta \in \omega\}$.
- For simplicity of the notation sometimes we will denote $\hat{\omega}_{i}:=\epsilon_{\theta_{i}}^{-} \omega$.

The operator T I

- For a random variable $F \in L^{0}\left(\Omega^{J}\right)$, we define the operator

$$
T: L^{0}\left(\Omega^{J}\right) \mapsto L^{0}\left(\Theta_{\infty, 0} \times \Omega^{J}\right),
$$

such that $\left(T_{\theta} F\right)(\omega):=F\left(\epsilon_{\theta}^{+} \omega\right)$.

- It is not difficult to see that if F is a \mathcal{F}^{J}-measurable, then

$$
(T . F)(\cdot): \Theta_{\infty, 0} \times \Omega^{J} \longrightarrow \mathbb{R}
$$

is $\mathcal{B}\left(\Theta_{\infty, 0}\right) \otimes \mathcal{F}^{J}$ - measurable and $F=0, \mathbb{P}$-a.s. implies
$T . F(\cdot)=0, \nu \otimes \mathbb{P}$-a.e. So, T is a closed linear operator defined on the entire $L^{0}\left(\Omega^{J}\right)$.

THE OPERATOR T II

But if we want to assure $T . F(\cdot) \in L^{1}\left(\Theta_{\infty, 0} \times \Omega^{J}\right)$ we have to restrict the domain and guarantee that

$$
\mathbb{E} \int_{\Theta_{\infty, 0}}\left|T_{\theta} F\right| \nu(d \theta)<\infty .
$$

This requires a condition that is strictly stronger than $F \in L^{1}\left(\Omega^{J}\right)$.

The operator T III

Concretely, denoting $k_{m}:=e^{-\nu\left(\Theta_{m}-\Theta_{m-1}\right)}$, we have to assume that

$$
\sum_{m=1}^{\infty} k_{m} \sum_{n=0}^{\infty} \frac{n}{n!} \int_{\left(\Theta_{m}-\Theta_{m-1}\right)^{n}}\left|F\left(\theta_{1}, \ldots, \theta_{n}\right)\right| \nu\left(d \theta_{1}\right) \ldots \nu\left(d \theta_{n}\right)<\infty,
$$

whereas $F \in L^{1}(\Omega)$ is equivalent only to

$$
\sum_{m=1}^{\infty} k_{m} \sum_{n=0}^{\infty} \frac{1}{n!} \int_{\left(\Theta_{m}-\Theta_{m-1}\right)^{n}}\left|F\left(\theta_{1}, \ldots, \theta_{n}\right)\right| \nu\left(d \theta_{1}\right) \ldots \nu\left(d \theta_{n}\right)<\infty .
$$

THE OPERATOR S I

For a random field $u \in L^{0}\left(\Theta_{\infty, 0} \times \Omega^{J}\right)$ we define the operator

$$
S: \operatorname{DomS} \subseteq L^{0}\left(\Theta_{\infty, 0} \times \Omega^{J}\right) \longrightarrow L^{0}\left(\Omega^{J}\right)
$$

such that

$$
(S u)(\omega):=\int_{\Theta_{\infty, 0}} u_{\theta}\left(\epsilon_{\theta}^{-} \omega\right) N(d \theta, \omega):=\sum_{i} u_{\theta_{i}}\left(\hat{\omega}_{i}\right)<\infty .
$$

In particular, if $\omega=\alpha$, we define $(S u)(\alpha)=0$.

THE OPERATOR S II

The operator S is well defined and closed from $L^{1}\left(\Theta_{\infty, 0} \times \Omega^{J}\right)$ to $L^{1}(\Omega)$ as the following proposition says:

Proposition

If $u \in L^{1}\left(\Theta_{\infty, 0} \times \Omega^{J}\right)$, Su is well defined and takes values in $L^{1}(\Omega)$. Moreover

$$
\mathbb{E} \int_{\Theta_{\infty, 0}} u_{\theta}\left(\epsilon_{\theta}^{-} \omega\right) N(d \theta, \omega)=\mathbb{E} \int_{\Theta_{\infty, 0}} u_{\theta}(\omega) \nu(d \theta) .
$$

The operator S III

Given $\theta=(s, x)$ we can define for any $\omega, \tilde{\omega}_{s}$ as the ω restricted to jump instants strictly before s. In this case, obviously, $\epsilon_{\theta}^{-} \tilde{\omega}_{s}=\tilde{\omega}_{s}$. If u is predictable we have $u_{\theta}(\omega)=u_{\theta}\left(\tilde{\omega}_{s}\right)$ and so

$$
u_{\theta}\left(\epsilon_{\theta}^{-} \omega\right)=u_{\theta}(\omega),
$$

and

$$
(S u)(\omega)=\int_{\Theta_{\infty, 0}} u_{\theta}\left(\epsilon_{\theta}^{-} \omega\right) N(d \theta, \omega)=\int_{\Theta_{\infty}, 0} u_{\theta}(\omega) N(d \theta, \omega) .
$$

THE ABSTRACT DUALITY RELATION

The following theorem is the fundamental relationship between operators S and T :

Theorem

Consider $F \in L^{0}\left(\Omega^{J}\right)$ and $u \in D o m S$. Then $F . S u \in L^{1}\left(\Omega^{J}\right)$ if and only if TF $\cdot u \in L^{1}\left(\Theta_{\infty, 0} \times \Omega^{J}\right)$ and in this case

$$
\mathbb{E}(F \cdot S u)=\mathbb{E} \int_{\Theta_{\infty, 0}} T_{\theta} F \cdot u_{\theta} \nu(d \theta)
$$

RUles of calculus

- If u and $T F \cdot u$ belong to DomS we have

$$
F \cdot S u=S(T F \cdot u), \mathbb{P}-\text { a.e. }
$$

- If u and $T u$ are in DomS then

$$
T_{\theta}(S u)=u_{\theta}+S\left(T_{\theta} u\right), \nu \otimes \mathbb{P}-\text { a.e. }
$$

THE OPERATOR Ψ

Now we introduce the operator $\Psi_{t, x}:=T_{t, x}-l d$. Observe that this operator is linear, closed and satisfies the property

$$
\Psi_{t, x}(F G)=G \Psi_{t, x} F+F \Psi_{t, x} G+\Psi_{t, x}(F) \Psi_{t, x}(G)
$$

The operator \mathcal{E}

On other hand, for $u \in L^{0}\left(\Theta_{\infty, 0} \times \Omega^{J}\right)$ we consider the operator:

$$
\mathcal{E}: \operatorname{DomE} \subseteq L^{0}\left(\Theta_{\infty, 0} \times \Omega^{J}\right) \longrightarrow L^{0}\left(\Omega^{J}\right)
$$

such that

$$
(\mathcal{E} u)(\omega):=\int_{\Theta_{\infty, 0}} u_{\theta}(\omega) \nu(d \theta) .
$$

Note that DomE is the subset of processes in $L^{0}\left(\Theta_{\infty, 0} \times \Omega^{J}\right)$ such that $u(\cdot, \omega) \in L^{1}\left(\Theta_{\infty, 0}\right), \mathbb{P}$-a.e.
We have also that

$$
\int_{\Theta_{\infty, 0}} u_{\theta}\left(\epsilon_{\theta}^{-} \omega\right) \nu(d \theta)=\int_{\Theta_{\infty, 0}} u_{\theta}(\omega) \nu(d \theta), \mathbb{P}-\text { a.s. }
$$

THE OPERATOR Φ

Then, for $u \in \operatorname{Dom} \Phi:=\operatorname{DomS} \cap \operatorname{DomE} \subseteq L^{0}\left(\Theta_{\infty, 0} \times \Omega^{J}\right)$, we define

$$
\Phi u:=S u-\mathcal{E} u .
$$

Note that

- $L^{1}\left(\Theta_{\infty, 0} \times \Omega^{J}\right) \subseteq D o m \Phi$.
- $E(\Phi u)=0$, for any $u \in L^{1}\left(\Theta_{\infty, 0} \times \Omega\right)$.
- For any $u \in D o m \Phi$, predictable,

$$
\Phi(u)=\int_{\Theta_{\infty, 0}} u_{\theta}(\omega) \tilde{N}(d \theta, \omega)
$$

- $u \in L^{2}\left(\Theta_{\infty, 0} \times \Omega^{J}\right)$ not implies $u \in L^{1}\left(\Theta_{\infty, 0} \times \Omega^{J}\right)$ nor $u \in \operatorname{Dom\Phi }$.

DUALITY BETWEEN Ψ AND Φ

As a corollary of the duality between T and S we have the following result:

Proposition

Consider $F \in L^{0}\left(\Omega^{J}\right)$ and $u \in \operatorname{Dom\Phi }$. Assume also $F \cdot u \in L^{1}\left(\Theta_{\infty, 0} \times \Omega^{J}\right)$. Then $F \cdot \Phi u \in L^{1}\left(\Omega^{J}\right)$ if and only if $\psi F \cdot u \in L^{1}\left(\Theta_{\infty, 0} \times \Omega^{J}\right)$ and in this case

$$
\mathbb{E}(F \cdot \Phi u)=\mathbb{E}\left(\int_{\Theta_{\infty, 0}} \Psi_{\theta} F \cdot u_{\theta} \nu(d \theta)\right)
$$

Rules of calculus

- If $F \in L^{0}\left(\Omega^{J}\right)$ and $u, F \cdot u$ and $\Psi F \cdot u$ belong to Dom Φ we have

$$
\Phi(F \cdot u)=F \cdot \Phi u-\Phi(\Psi F \cdot u)-\mathcal{E}(\Psi F \cdot u), \mathbb{P}-\text { a.s. }
$$

- If u and Ψu belong to Dom Φ we have

$$
\Psi_{\theta}(\Phi u)=u_{\theta}+\Phi\left(\Psi_{\theta} u\right), \nu \otimes \mathbb{P}-\text { a.e. }
$$

RELATIONSHIPS BETWEEN THE INTRINSIC OPERATORS and the Malliavin-Skorohod operators.

Consider now the operators D and δ restricted to the pure jump case, that is associated to the measure $\tilde{N}(d s, d x)$. We write D^{J} and δ^{J}. We have the following result:

Lemma

For any n, consider the set $\Theta_{T, \epsilon}^{n, *}=\left\{\left(\theta_{1}, \ldots, \theta_{n}\right) \in \Theta_{T, \epsilon}^{n}: \theta_{i} \neq \theta_{j}\right.$ if $\left.i \neq j\right\}$. Then, for any $g_{k} \in L^{2}\left(\Theta_{\infty, 0}^{k, *}\right)$ for $k \geq 1$ and $\omega \in \Omega^{J}$ we have, a.s.,

$$
I_{k}\left(g_{k}\right)(\omega)=\int_{\Theta_{T, \epsilon}^{k, k}} g_{k}\left(\theta_{1} \ldots, \theta_{k}\right) \tilde{N}\left(\omega, d \theta_{1}\right) \cdots \tilde{N}\left(\omega, d \theta_{k}\right) .
$$

The proof is based on the fact that both expressions coincide for simple functions and define bounded linear operators.

RELATIONSHIP BETWEEN D^{J}, δ^{J}, Ψ AND Φ

- For a fixed $k \geq 0$, consider $F=I_{k}\left(g_{k}\right)$ with g_{k} a symmetric function of $L^{2}\left(\Theta_{\infty, 0}^{k, *}\right)$. Then, F belongs to $D o m D^{J} \cap \operatorname{Dom} \Psi$ and

$$
D^{J} I_{k}\left(g_{k}\right)=\psi I_{k}\left(g_{k}\right), \nu \otimes \mathbb{P}-\text { a.e. }
$$

- For fixed $k \geq 1$, consider $u_{\theta}=I_{k}\left(g_{k}(\cdot, \theta)\right)$ where $g_{k}(\cdot, \cdot) \in L^{2}\left(\Theta_{\infty, 0}^{k+1, *}\right)$ is symmetric with respect to the first k variables. Assume also $u \in D o m \Phi$. Then,

$$
\Phi(u)=\delta^{J}(u), \mathbb{P}-\text { a.e.. }
$$

RELATIONSHIP BETWEEN THE OPERATORS

- Let $F \in L^{2}\left(\Omega^{J}\right)$. Then, $F \in D o m D^{J} \Longleftrightarrow \psi F \in L^{2}\left(\Theta_{\infty, 0} \times \Omega_{J}\right)$, and in this case

$$
D^{J} F=\psi F, \nu \otimes P-\text { a.e. }
$$

- Let $u \in L^{2}\left(\Theta_{\infty, 0} \times \Omega_{J}\right) \cap$ Dom Φ. Then
$u \in D o m \delta^{J} \Longleftrightarrow \Phi u \in L^{2}\left(\Omega^{J}\right)$, and in this case

$$
\delta^{J} u=\Phi u, \quad \mathbb{P}-\text { a.s. }
$$

The Clark-Hausmann-Ocone

As an application of the previous results in the pure jump case we hereafter prove a CHO-type formula as an integral representation of random variables in $L^{1}\left(\Omega^{J}\right)$.

Theorem
Let $F \in L^{1}\left(\Omega^{J}\right)$ and assume $\Psi F \in L^{1}\left(\Theta_{\infty, 0} \times \Omega^{J}\right)$. Then

$$
F=\mathbb{E}(F)+\Phi\left(E\left(\Psi_{t, x} F \mid \mathcal{F}_{t-}\right)\right), \text { a.s. }
$$

REMARK

Observe that under the conditions of the previous theorem we have

$$
\Psi_{s, x} E\left[F \mid \mathcal{F}_{\Theta_{t-}}\right]=E\left[\psi_{s, x} F \mid \mathcal{F}_{\Theta_{t-}-}\right] \mathbb{1 1}_{[0, t)}, \nu \otimes \mathbb{P}-\text { a.e. }
$$

Example 1 I

Consider a pure jump additive process L. On one hand, for any t, we have the Lévy-ltô decomposition:

$$
L_{t}=\Gamma_{t}+\int_{0}^{t} \int_{\{|x|>1\}} x N(d s, d x)+\int_{0}^{t} \int_{\{|x| \leq 1\}} x \tilde{N}(d s, d x) .
$$

Consider L_{T}. Assume $\mathbb{E}\left(\left|L_{T}\right|\right)<\infty$. Recall that this is equivalently to

$$
\int_{0}^{t} \int_{|x|>1}|x| \nu(d s, d x)<\infty
$$

Then we can write

$$
L_{t}=\Gamma_{t}+\int_{0}^{t} \int_{\{|x|>1\}} x \nu(d s, d x)+\int_{0}^{t} \int_{\mathbb{R}} x \tilde{N}(d s, d x) .
$$

EXAMPLE 1 II

On the other hand, applying the CHO formula, we have $\Psi_{s, x} L_{T}=x \prod_{[0, T]}(s)$ and $E\left(\Psi_{s, x} L_{T} \mid \mathcal{F}_{s-}\right)=x \prod_{[0, T)}(s)$. So, the hypothesis $\mathbb{E}\left(\left|L_{T}\right|\right)<\infty$ is equivalent to

$$
\mathbb{E} \int_{0}^{T} \int_{\mathbb{R}}\left|\Psi_{s, x} L_{T}\right| \nu(d s, d x)<\infty
$$

and

$$
L_{T}=\mathbb{E}\left(L_{T}\right)+\int_{0}^{T} \int_{\mathbb{R}} x \tilde{N}(d s, d x)
$$

Observe that this is coherent with the previous decomposition because

$$
\mathbb{E}\left(L_{T}\right)=\Gamma_{T}+\int_{0}^{T} \int_{\{|x|>1\}} x \nu(d s, d x)
$$

Example 2 I

Let $X:=\left\{X_{t}, t \in[0, T]\right\}$ be a pure jump Lévy process with triplet $\left(\gamma_{L} t, 0, \nu_{L} t\right)$. Let $S_{t}:=e^{X_{t}}$ be an asset price process. Let \mathbb{Q} be a risk-neutral measure. In order $e^{-r t} e^{X_{t}}$ be a \mathbb{Q}-martingale we need to assume some restrictions on ν_{L} and γ_{L} :

$$
\int_{|x| \geq 1} e^{x} \nu_{L}(d x)<\infty
$$

and

$$
\gamma_{L}=\int_{\mathbb{R}}\left(e^{y}-1-y \mathbb{1}_{\{|y|<1\}}\right) \nu(d y) .
$$

EXAMPLE 2 II

These conditions allow us to write without loosing generality,

$$
X_{t}=x+\left(r-c_{2}\right) t+\int_{0}^{t} \int_{\mathbb{R}} y \tilde{N}(d s, d y)
$$

where

$$
c_{2}:=\int_{\mathbb{R}}\left(e^{y}-1-y\right) \nu_{L}(d y)
$$

and N is a Poisson random measure under \mathbb{Q}.
According to the CHO formula if $F=S_{T} \in L^{1}(\Omega)$ and $\mathbb{E}_{\mathbb{Q}}\left[\Psi_{s, x} S_{T} \mid \mathcal{F}_{s-}\right] \in L^{1}(\Omega \times[0, T])$ we have

$$
S_{T}=\mathbb{E}_{\mathbb{Q}}\left(S_{T}\right)+\int_{\Theta_{T, 0}} \mathbb{E}_{\mathbb{Q}}\left[\Psi_{s, x} S_{T} \mid \mathcal{F}_{s-}\right] \tilde{N}(d s, d x)
$$

EXAMPLE 2 III

Observe that

$$
\Psi_{s, x} S_{T}(\omega)=S_{T}\left(e^{x}-1\right), \ell \times \nu_{L} \times \mathbb{Q}-\text { a.s. }
$$

and this process belongs to $L^{1}\left(\Omega \times \Theta_{\infty, 0}\right)$ if and only if $\int_{\mathbb{R}}\left|e^{x}-1\right| \nu_{L}(d x)<\infty$.
Then, in this case, we have

$$
S_{T}=\mathbb{E}_{\mathbb{Q}}\left(S_{T}\right)+\int_{\Theta_{T, 0}} e^{r(T-s)}\left(e^{x}-1\right) S_{s-} \tilde{N}(d s, d x)
$$

So, this result covers Lévy processes with finite activity and Lévy processes with infinite activity but finite variation.

INTEGRATION WITH RESPECT PURE JUMP VOLATILITY MODULATED VOLTERRA PROCESSES

Consider a pure jump volatility modulated additive driven Volterra $(\mathcal{V} \mathcal{M A V})$ process X defined as

$$
X(t)=\int_{0}^{t} g(t, s) \sigma(s) d J(s)
$$

provided the integral is well defined. Here J is a pure jump additive processes, g is a deterministic function and σ is a predictable process with respect the natural completed filtration of J.

INTEGRATION WITH RESPECT PURE JUMP VOLATILITY MODULATED VOLTERRA PROCESSES

Recall that using the Lévy-Itô representation J can be written as

$$
J(t)=\Gamma_{t}+\int_{\Theta_{t, 0}-\Theta_{t, 1}} x \tilde{N}(d s, d x)+\int_{\Theta_{t, 1}} x N(d s, d x)
$$

where Γ is a continuous deterministic function that we assume of bounded variation in order to admit integration with respect $d \Gamma$.

Integration with respect pure jump volatility modulated Volterra processes

For each t, X_{t} is well defined if

$$
\begin{gathered}
(H 1): \int_{0}^{\infty}|g(t, s) \sigma(s)| d \Gamma_{s}<\infty, \\
(H 2): \int_{\Theta_{\infty}, 0}\left(1 \wedge(g(t, s) \sigma(s) x)^{2}\right) \nu(d x, d s)<\infty,
\end{gathered}
$$

and
(H3) : $\int_{\Theta_{\infty, 0}}\left|g(t, s) \sigma(s) x\left[\#_{\{|g(t, s) \sigma(s) x| \leq 1\}}-\mathbb{1}_{\{|x| \leq 1\}}\right]\right| \nu(d x, d s)<\infty$.

INTEGRATION WITH RESPECT PURE JUMP VOLATILITY MODULATED VOLTERRA PROCESSES

Hereafter we discuss the problem of developing an integration theory with respect to X as integrator, i.e. to give a meaning to

$$
\int_{0}^{t} Y(s) d X(s)
$$

for a fixed t and a suitable stochastic processes Y.

Integration with respect pure jump volatility modulated Volterra processes

- Exploiting the representation of J, an integration with respect to X can be treated as the sum of integrals with respect to the corresponding components of J.
- It is enough to define integrals with respect $\int_{0}^{t} g(t, s) \sigma(s) d \Gamma_{s}$, $\int_{0}^{t} \int_{|x| \leq 1} g(t, s) \sigma(s) x \tilde{N}(d s, d x)$ and $\int_{0}^{t} \int_{|x|>1} g(t, s) \sigma(s) x N(d s, d x)$.
- Under the assumptions that Γ has finite variation and using the fact that N on $[0, t] \times\{|x|>\delta\}$, for any $\delta>0$, is a.s. a finite measure, the integration with respect to the first and third term presents no difficulties.

INTEGRATION WITH RESPECT PURE JUMP VOLATILITY modulated Volterra processes

- We have to discuss the second term, specifically the case when J has infinite activity and the corresponding X is not a semimartingale. In fact, if X was a semimartingale, we could perform the integration in the Itô sense.
- We can refer to [BBPV] for a discussion of the the conditions on g in order X be or not a semimartingale
- In [BBPV], an integral with respect to a non semimartingale X driven by a Lévy process by means of the Malliavin-Skorohod calculus is defined. Their technique is naturally constrained to an L^{2} setting.

INTEGRATION WITH RESPECT PURE JUMP VOLATILITY MODULATED VOLTERRA PROCESSES

Within the framework presented in this paper, we can extend the definition proposed in [BBPV] to reach out for additive processes beyond the L^{2} setting.
Assume the following hypothesis on X and Y :

- For $s \geq 0$, the mapping $t \longrightarrow g(t, s)$ is of bounded variation on any interval $[u, v] \subseteq(s, \infty)$.
- The function

$$
\mathcal{K}_{g}(Y)(t, s):=Y(s) g(t, s)+\int_{s}^{t}(Y(u)-Y(s)) g(d u, s), \quad t>s
$$

is well defined a.s., in the sense that $(Y(u)-Y(s))$ is integrable with respect to $g(d u, s)$ as a pathwise Lebesgue-Stieltjes integral.

Integration with respect pure jump volatility modulated Volterra processes

- The mappings

$$
(s, x) \longrightarrow \mathcal{K}_{g}(Y)(t, s) \sigma(s) x \|_{\Theta_{t, 0}-\Theta_{t, 1}}(s, x)
$$

and

$$
(s, x) \longrightarrow \Psi_{s, x}\left(\mathcal{K}_{g}(Y)(t, s) \sigma(s)\right) x \|_{\Theta_{t, 0}-\Theta_{t, 1}}(s, x)
$$

belong to Dom Φ.

Integration with respect pure jump volatility modulated Volterra processes

Then, the following integral, is well defined:

$$
\begin{aligned}
& \int_{0}^{t} Y(s) d\left(\int_{0}^{s} \int_{|x| \leq 1} g(s, u) \sigma(u) x \tilde{N}(d u, d x)\right) \\
:= & \Phi\left(x \mathcal{K}_{g}(Y)(t, s) \sigma(s) 1_{\Theta_{t, 0}-\Theta_{t, 1}}(s, x)\right) \\
+ & \Phi\left(x \Psi_{s, x}\left(\mathcal{K}_{g}(Y)(t, s)\right) \sigma(s) \Pi_{\Theta_{t, 0}-\Theta_{t, 1}}(s, x)\right) \\
+ & \mathcal{E}\left(x \Psi_{s, x}\left(\mathcal{K}_{g}(Y)(t, s)\right) \sigma(s) 1_{\Theta_{t, 0}-\Theta_{t, 1}}(s, x)\right)
\end{aligned}
$$

INTEGRATION WITH RESPECT PURE JUMP VOLATILITY MODULATED VOLTERRA PROCESSES

- This result extends the definition in [BBPV] to any pure jump additive process J, i.e. beyond square integrability.
- The proof relies on the definitions of Φ, Ψ and the developed calculus rules.
- In the finite activity case,

$$
L^{2}\left(\Theta_{\infty, 0} \times \Omega^{J}\right) \subseteq L^{1}\left(\Theta_{\infty, 0} \times \Omega^{J}\right)
$$

and our result is an extension of the definition in [BBPV].

- In the infinite activity case, our Theorem covers cases not covered by [BBPV] and viceversa.

ExAMPLE I

- Hereafter we give a classical example of a pure jump Lévy process without second moment as a driver and we consider a kernel function g of shift type, i.e. it only depends on the difference $t-s$. For simplicity we assume moreover $\sigma \equiv 1$. The chosen kernel appears in applications to turbulence.
- Assume L to be a symmetric α-stable Lévy process, for $\alpha \in(0,2)$. It corresponds to the triplet ($0,0, \nu_{L}$) with $\nu_{L}(d x)=c|x|^{-1-\alpha} d x$.

Example II

Take

$$
g(t, s):=(t-s)^{\beta-1} e^{-\lambda(t-s)} 1_{[0, t)}(s)
$$

with $\beta \in(0,1)$ and $\lambda>0$. Note that

$$
g(d u, s)=-g(u, s)\left(\frac{1-\beta}{u-s}+\lambda\right) d u
$$

Example III

We concentrate on the component

$$
J(t)=\int_{0}^{t} \int_{\{|x| \leq 1\}} x \tilde{N}(d s, d x),
$$

and so first of all on the definition of the integral

$$
X(t):=\int_{0}^{t} g(t, s) d J(s)=\int_{0}^{t} \int_{|x| \leq 1} g(t, s) x \tilde{N}(d s, d x), t \geq 0 .
$$

Example IV

In relation with this integral, that is not a semimartingale, we have four situations:
(1) If $\alpha \in(0,1)$ and $\beta>\frac{1}{2}, g(t, s) x$ belongs to $L^{1} \cap L^{2}$
(2) If $\alpha \in(0,1)$ and $\beta \leq \frac{1}{2}, g(t, s) x$ belongs to L^{1} but not to L^{2}.

- If $\alpha \in[1,2)$ and $\beta>\frac{1}{2}, g(t, s) x$ belongs to L^{2} but not to L^{1}.
- If $\alpha \in[1,2)$ and $\beta \leq \frac{1}{2}, g(t, s) x$ belongs not to L^{2} nor to L^{1}.

Only in case (4) the integral is not necessarily well defined.

Example V

Just to show the types of computation involved, let us consider the particular case of a $\mathcal{V} \mathcal{M A \mathcal { L }}$ process as integrand. Namely,

$$
Y(s)=\int_{0}^{s} \int_{|x| \leq 1} \phi(s-u) x \tilde{N}(d u, d x), \quad 0 \leq s \leq T
$$

where ϕ is a positive continuous function such that the integral Y is well defined.
Consider the case $\alpha<1$ and $\beta \in(0,1)$, not covered by [BBPV] if $\beta \leq \frac{1}{2}$.

Example VI

In order to see that $\int_{0}^{t} Y(s-) d X(s)$ is well defined we have to check:
(1) The process $(Y(u)-Y(s))$ is integrable with respect to $g(d u, s)$ on (s, t], as a pathwise Lebesgue-Stieltjes integral.
(The mappings

$$
(s, x) \longrightarrow x \mathcal{K}_{g}(Y)(t, s) \mathbb{1}_{[0, t]}(s) \mathbb{1}_{\{|x| \leq 1\}}
$$

and

$$
(s, x) \longrightarrow x \Psi_{s, x}\left(\mathcal{K}_{g}(Y)(t, s)\right) \mathbb{H}_{[0, t]}(s) \mathbb{H}_{\{|x| \leq 1\}}
$$

belong to Dom Φ.

Example VII

We have

$$
\begin{aligned}
& \mathcal{K}_{g}(Y)(t, s) \\
= & g(t, s) \int_{[0, s)} \int_{|x| \leq 1} \phi(s-v) x \tilde{N}(d v, d x) \\
- & \int_{s}^{t} g(u, s)\left(\frac{1-\beta}{u-s}+\lambda\right) \int_{[s, u)} \int_{|x| \leq 1} \phi(u-v) x \tilde{N}(d v, d x) d u \\
- & \int_{s}^{t} g(u, s)\left(\frac{1-\beta}{u-s}+\lambda\right) \int_{[0, s)} \int_{|x| \leq 1}[\phi(u-v)-\phi(s-v)] x \tilde{N}(d v, d x) d t
\end{aligned}
$$

Example VIII

In terms of Φ we can rewrite

$$
\begin{aligned}
& \mathcal{K}_{g}(Y)(t, s) \\
= & g(t, s) \Phi\left(\phi(s-\cdot) x\left\|_{\{|x| \leq 1\}}\right\|_{[0, s)}\right) \\
- & \int_{s}^{t} g(u, s)\left(\frac{1-\beta}{u-s}+\lambda\right) \Phi\left(\phi(u-\cdot) x \|_{\{|x| \leq 1\}} \mathbb{\#}_{[s, u)}(\cdot)\right) d u \\
- & \int_{s}^{t} g(u, s)\left(\frac{1-\beta}{u-s}+\lambda\right) \Phi\left([\phi(u-\cdot)-\phi(s-\cdot)] x\left\|_{\{|x| \leq 1\}}\right\|_{[0, s)}(\cdot)\right) d u .
\end{aligned}
$$

Moreover we have

$$
\Psi_{s, \chi} \mathcal{K}_{g}(Y)(t, s)=-x \mathbb{\#}_{\{|x| \leq 1\}} \int_{s}^{t} g(u, s) \phi(u-s)\left(\frac{1-\beta}{u-s}+\lambda\right) \|_{[0, u)}(s) d u .
$$

Example IX

So, it is enough to check that the mappings

$$
(s, x) \longrightarrow x \mathcal{K}_{g}(Y)(t, s) \mathbb{H}_{[0, t]}(s) \mathbb{H}_{\{|x| \leq 1\}}
$$

and

$$
(s, x) \longrightarrow x \Psi_{s, x}\left(\mathcal{K}_{g}(Y)(t, s)\right) \#_{[0, t]}(s) \|_{\{|x| \leq 1\}}
$$

are in $L^{1}\left(\Theta_{\infty, 0} \times \Omega\right)$.

Example X

If for example we consider the case $\phi(y)=y^{\gamma}$ with $\gamma>0$ and $\beta+\gamma \geq 1$ is not difficult to check the mappings are in L^{1} and we conclude that the integral

$$
\int_{0}^{t} Y(s-) d X(s)
$$

is well defined.

Thank you for the attention

Tak
Gràcies

