Victor Rohde

Infinite divisibility of sums of Gaussian squares

Let ($X_{1}, X_{2}, X_{3}, X_{4}$) be a mean zero four-dimensional Gaussian vector with positive definite covariance matrix Σ. Then the vector $\left(X_{1}^{2}, X_{2}^{2}\right)$ is always infinitely divisible but ($X_{1}^{2}, X_{2}^{2}, X_{3}^{2}$) may fail to be. Interestingly, we regain infinite divisibility when we consider $\left(X_{1}^{2}, X_{2}^{2}+X_{3}^{2}\right)$. A next natural step is then to consider the vector $\left(X_{1}^{2}+X_{2}^{2}, X_{3}^{2}+X_{4}^{2}\right)$. Additionally, studying infinite divisibility of $\left(X_{1}^{2}+X_{2}^{2}, X_{3}^{2}+X_{4}^{2}\right)$ may be a step in understanding infinite divisibility in the second Wiener chaos.

We will take two different approaches to this problem: first we present a readily calculated inequality on Σ that ensures infinite divisibility and second, we give a more theoretical necessary and sufficient condition for infinite divisibility. Finally, we consider some numerical considerations to gain intuition about the problem.

