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Flux and Circulation

Two fundamental quantities in fluid mechanics are the so-called flux
and circulation:

Circulation around Dr (p) =
∮

∂Dr (p)

X ·n⊥ds; (unit of area/unit of time)

Flux through Dr (p) =
∮

∂Dr (p)

X ·nds. (unit of area/unit of time)

Where:
I X is a 2-dimensional velocity field;
I Dr (p) is a disk of radius r > 0 and center p ∈ R2;
I n and n⊥ are the outward and tangent unit vectors on ∂Dr (p),

respectively.
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Flux and Circulation

The quantities obtained by normalizing the circulation and the flux by
πr2 are termed as the mean flux and mean circulation:

Mean Circulation around Dr (p) =
1

πr2

∮
∂Dr (p)

X ·n⊥ds; (/unit of time)

Mean Flux through Dr (p) =
1

πr2

∮
∂Dr (p)

X ·nds (/unit of time)

Where:
I X is a 2-dimensional velocity field;
I Dr (p) is a disk of radius r > 0 and center p ∈ R2;
I n and n⊥ are the outward and tangent unit vectors on ∂Dr (p),

respectively.
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Flux and Circulation

Figure: A vector field in R2.
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Circulation = degree of rotation
How a field rotates: The more the fluid is aligned to ∂D, the more the
motion is of rotational type.

(a) (b)
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flux = "amount" of fluid
Flux through a region: The larger the mean circulation, the more (less)
fluid is entering D.

(a) (b)
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In real life, it looks like this

Figure: Gilbert Hurricane, Mexico, 1988. Source: commons.wikimedia.org
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Rotation and incompresibility

The concept of incompressibility of a fluid expresses the fact that the
density of the fluid is constant: In terms of the mean flux

lim
r↓0

1
πr2

∮
∂Dr (p)

X ·nds = 0, ∀p.

Rotation and the related concept of vortex merging and stretching is
believed to be the main dynamic process for 2-dimensional turbulent
flows: Thus, if the fluid is turbulent, the mean circulation must
satisfies that

lim
r↓0

1
πr2

∮
∂Dr (p)

X ·n⊥ds 6= 0, for some p.
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Divergence and Vorticity

By Stokes’ Theorem, when X is continuously differentiable

1
πr2

∮
∂Dr (p)

X ·nds =
1

πr2

∫
Dr (p)

∇ ·X (q)dq→ ∇ ·X (p);

1
πr2

∮
∂Dr (p)

X ·n⊥ds =
1

πr2

∫
Dr (p)

∇
⊥ ·X (q)dq→ ∇

⊥ ·X (p).

with ∇ := (∂x ,∂y )′,∇⊥ := (−∂y ,∂x)′.

Incompressibility ⇐⇒ ∇ ·X ≡ 0 :Null Divergence.
Rotation ⇐⇒ ∇⊥ ·X 6= 0: Non-vanishing Vorticity/Curl.
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Divergence and Vorticity

In this talk I will focus on the asymptotic behavior of the circulation
and the flux of a random field X

Cr (p;X ) :=
∮

∂Dr (p)

X ·n⊥ds, p ∈ R2, r > 0,

Dr (p;X ) :=
∮

∂Dr (p)

X ·nds, p ∈ R2, r > 0.

X is the (stationary) Infinitely Divisible field

X (p) :=
∫

R+p
F (p−q)L(dq), p ∈ R2.

F : R2→ R2 continuously differentiable and R a compact set on R2.
L a homogeneous Lévy basis.
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Stokes’ Theorem

Stokes’ Theorem in its standard form guarantees that∮
∂U

α =
∫
U

dα,

whenever:
I α is a smooth form, e.g. α = X ·nds and dα = ∇ ·X (q)dq;
I U is a smooth manifold.

Generalizations of Stokes’ Theorem:
I Hsu (2002): U a path of a stochastic process;
I Harrison (1999): U a chainlet, e.g. fractals and vector fields;
I α is a smooth form.

Züst (2011) considered non-smooth forms over Lipschitz manifolds.
However there is NO Stokes’ Theorem available in this setting.
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What can we learn from the 1-dimensional case
Let Xt =

∫ t
0 f (t− s)dLs .

By definition

Dr (t;X ) =
∮

∂Dr (t)

X ·nds = Xt+r −Xt−r .

We have that

Xt = f (0)Lt +
∫ t

0
[f (t− s)− f (0)]dLs =: ∂Xt + X̊t ,

in such a way that

Dr (t;X ) = Dr (t;∂X ) +Dr (t; X̊ ).

If f is continuously differentiable, then X̊ is absolutely continuous.
Dr (t;∂X ) is proportional to the increments of a Lévy process. Thus it
only depends on the interaction of L on [0, t].
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A key example
Suppose that R is a disk of radius 1 and let F (q) = G (‖q‖).
X can be decomposed as

X (p) =
∫

R̊+p
[G (‖p−q‖)−G (1)]L(dq)+G (1)L(R +p) =: ∂X (p)+X̊ (p).

It is easy to check that in this case

1
πr2

∮
∂Dr (p)

X̊ ·nds = OP(r2).

By definition∮
∂Dr (p)

∂X ·nds = r
∫ 2π

0
〈f (1),u(θ)〉L(R(p) + ru(θ))dθ

≈ r
∫ 2π

0
〈f (1),u(θ)〉L(∂R(p) + ru(θ))dθ .
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A key example cont’d

r
r

r rr rr r

r
rr
rR∩Nr(∂R)c

∂R

Dr(q), q ∈ R̊

Dr(q), q ∈ ∂R

Dr(q), q ∈ R ∩Nr(∂R)

Figure: {R(p) + ru(θ)) : 0≤ θ ≤ 2π} ≈R(p)∪{∂R(p) + ru(θ)}.
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A key example cont’d

We conclude that in this example

Dr (p;X ) = Dr (p;∂X )︸ ︷︷ ︸
OP(r2)

+ Dr (p; X̊ )︸ ︷︷ ︸
Interaction of F and L around ∂R(p)

.
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Assumptions on the ambit set

Assumption

There are C1, . . . ,Cn disjoint regular smooth Jordan curves with non-null
curvatures such that R, the ambit set, can be written as

R = (C1∪ IntC1)\
n⋃

i=2

IntCi .

Furthermore, it holds that Ci ⊂ IntC1 and IntCi ∩ IntCj = /0, for any
i , j = 2, . . . ,n, j 6= i .
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Typical ambit sets

RC1

C2b)

R

c)
C2

C3 ∪ IntC3

C4

C1

R

a)

Figure: Regions exhibited in a) and b) are typical examples of the type of ambit
sets considered in the previous assumption. Simple polygons as the one appearing
in c) is a class of ambit sets that will not be considered in this talk.
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Gaussian attractor
Theorem

Let R ⊂ R2 be as in Assumption 1. Suppose that F |−∂R 6= 0 and L has
characteristic triplet (γ,b,ν) with b > 0. Then, as r ↓ 0

1
v2r1+1/2 Dr (p;X )

F -fd−→
∫

∂R+p

〈
F (p− c),n∂R(p),O(c)

〉
WH 1(dc),

where n∂R(p),O is the outward unit vector to ∂R(p), WH 1 is a Gaussian
Lévy basis defined on an extension of (Ω,F ,P) having the following
properties:

Its cumulant function satisfies that

C{z ‡WH 1(A)}=−1
2
b2z2H 1(A), H 1(A) < ∞,z ∈ R.

H 1 is the 1-dimensional Hausdorff measure
WH 1 is independent of L.
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Classical regime

Theorem

Let R ⊂ R2 be as in Assumption 1. Then, as r ↓ 0

1
πr2 Dr (p;X )

P→σ(p), p ∈ R2,

if and only if one of the following (non-necessarily mutually exclusive) cases
holds:

1.b = 0 and
∫
R

(1∧|x |)ν(dx) < ∞; 2.F |−∂R ≡ 0.

The limiting process is given by

σ(p) :=
∫

R+p
∇ ·F (p−q)L̃(dq),

with L̃ = L− γdLeb, where γd = γ− ∫|x |≤1 xν(dx) in 1. while γd = γ in 2.
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Stable attractor

Theorem

Now suppose that F |−∂R 6= 0, b = 0 and
∫
R(1∧|x |)ν(dx) = +∞. In

addition, assume that there exists 1≤ β < 2 such that ν(x ,∞)∼ K̃+x
−β

and ν(−∞,−x)∼ K̃−x−β as x ↓ 0 with K̃+ + K̃− > 0. Then
1 If 1< β < 2, then as r ↓ 0

1
vβ r1+1/β

Dr (p;X )
F -fd−→

∫
∂R+p

〈
F (p− c),n∂R(p),I (c)

〉
MH 1(dc).

2 If β = 1, suppose that K̃+ = K̃− and PV
∫ 1
−1 xν(dx), the Cauchy

principal value, exists. Then, as r ↓ 0

1
πr2 Dr (p;X )

F -fd−→ σ(p) +
∫

∂R+p

〈
F (p− c),n∂R(p),I (c)

〉
MH 1(dc).
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Stable attractor cont’d

Theorem
Where

n∂R(p),I is the inward unit vector to ∂R(p);

M
K±,β ,γ̂
H 1 is a Lévy basis (independent of L) defined on an extension of

(Ω,F ,P) whose cumulant function satisfies that

C{z ‡MH 1(A)}= H 1(A)ψK±,β ,γ̂ (z), H 1(A) < ∞,z ∈ R,

with ψK±,β ,γ̂ the cumulant function of a strictly β -stable distribution
whose parameters depend on K± and γ̂.
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Remarks

The limit cannot take place in probability: The convergence is stable
and the limit is independent of the background driving Lévy basis.
In general, the convergence cannot be strengthen to functional
convergence: The limiting field might be a white noise.
The dependence structure of the limiting field is entirely determined
by the geometry of R.
The rates of convergence can be seen as an Lβ norm of a certain
parametrization of a disk: Put gβ (s,ρ) := (1+ β )

√
1− s2ρ for

1≤ β ≤ 2 . Then πr2 = ‖g1‖L1[−r ,r ]×[−1,1] and

r1+1/βvβ =
∥∥gβ

∥∥
Lβ [−1,1]×[−r ,r ]

.

Different rates of convergence can be obtained. However, the limiting
fields remain the same (Ivanovs (2016)).
The classical Stokes’ Theorem doesn’t hold in this framework.
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Open problems and generalizations

Higher dimensions.
R with non-smooth boundary, e.g. fractals.
Line integrals over non-smooth manifolds, e.g. paths of stochastic
process.
More general stochastic forms.

O. Sauri (Aarhus) Divergence and Vorticity Aarhus 2017 27 / 29



Thank you!
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