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1. Motivation: scale-invariant estimation in regression
models

Parametric nonlinear regression model:

Xni = g(β0, zni) + εi , 1 ≤ i ≤ n (1)

where:

I {zni , i = 1, · · · ,n}: array of known constants (regressors); zni ∈ Rq

I {Xni , i = 1, · · · ,n}: observed responses

I {εi , i = 1, · · · ,n}: observation errors

I g = g(β, z): a known real-valued function on Ω× Rq, Ω ⊂ Rp fixed
subset

I Goal: determine the unknown true parameter β0 ∈ Ω from
observations {Xni , zni , i = 1, · · · ,n}

I An extremely important and general statistical model
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Example: linear regression:

Xni = β10zni1 + · · ·+ βp0znip + εi

= β′
0zni + εi

β0 = (β10, · · · , βp0) ∈ Rp, zni = (zni1, · · · , znip) ∈ Rp, q =
p, g(β, z) = β′z

Example: unknown mean:

Xni ≡ Xi = β0 + εi , i = 1, · · · ,n

zni ≡ 1, p = q = 1,Eεi = 0
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Standard assumption on regression function, see Koul (2002), Giraitis et al.
(2012):

Let an →∞ be a given sequence.
Assumption G(an) There exists ġ = ġ(β, z) : Ω× Rq → Rp s.t. for any
β ∈ Ω and any k > 0

sup
1≤i≤n,‖u‖≤k/an

an

∣∣∣g(β + u, zni)− g(β)− u′ġ(β, zni)
∣∣∣ = o(1)

and
max

1≤i≤n
‖ġ(β0, zni)‖ = O(1).

• Assumption G(an) is trivially satisfied in linear regression

M-estimators. Let φ = φ(x), x ∈ R: a monotone score function,
Eφ(εi) = 0:

β̂ = argminβ∈Ω‖M (β)‖, M (β) :=
∑n

i=1 ġ(β, zni)φ
(
Xni − g(β, zni)

)
• LS estimator: φ(x) = x,

β̂ = argminβ
(∑

ġ(β, zni)
(
Xni − g(β, zni)

))2

= argminβ
∑n

i=1

(
Xni − g(β, zni)

)2
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∣∣∣ = o(1)

and
max

1≤i≤n
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Assumption G(an) There exists ġ = ġ(β, z) : Ω× Rq → Rp s.t. for any
β ∈ Ω and any k > 0

sup
1≤i≤n,‖u‖≤k/an

an

∣∣∣g(β + u, zni)− g(β)− u′ġ(β, zni)
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• LS is sensitive to outliers (not robust).

• Robust score function: φ(x) = o(|x|), |x| → ∞

• ‘Most robust’: the median or M-estimator with score φ(x) := sgn(x)

• Huber (1981). Robust statistics.

Scale invariant estimators.
Let β̂ := β̂(X , z), X := (Xni , 1 ≤ i ≤ n), z := (zni , 1 ≤ i ≤ n)

• Est. β̂ = β̂(X , z) is called scale invariant if β̂(cX , z) = cβ̂(X , z)∀c > 0

• Scale invariance is a natural and desirable property

• LS estimator of β0 in linear regression is scale invariant (e.g. sample mean
β̂ =

∑n
i=1 Xni)

• generally M-estimator of β0 is not scale invariant even in linear regression
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• To have scale invariant M-estimators of regression parameters in regression
models there is a need for having a robust scale invariant estimator of a scale
parameter.

• For this, the regression residuals in the definition of M-estimator must be
divided by scale estimator. See Koul (2002).

• Robust estimation of scale parameter is of interest by itself, especially in the
context of infinite variance errors as in the present paper. (In this case, the
usual scale estimation by standard deviation is inconsistent.)

2. Two robust estimators of scale parameter
Let β̂ be an estimator of β0 and rni := Xni − g(β̂, zni), i = 1, · · · ,n be
residuals

Median of absolute residuals:

s1 := med
{
|rni |; 1 ≤ i ≤ n

}
(2)

Median of absolute pairwise residuals:

s2 := med
{∣∣rni − rnj

∣∣; 1 ≤ i < j ≤ n
}
. (3)
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Let F(x) := P(εi ≤ x) be the marginal d.f. and f (x) := F ′(x) the
marginal density (stationary errors {εi})

• s1 (= the median of absolute residuals) estimates the median σ1 of |ε1| defined as the

unique solution of

F(σ1)− F(−σ1) = 1/2.

• s2 (= the median of absolute pairwise residuals) estimates the median σ2 of |ε1 − ε′1|
where ε′1 is independent copy of ε1 defined as the unique solution of∫

[F(σ2 + x)− F(−σ2 + x)]dF(x) = 1/2.

• σ1 6= σ2 in general

• The fact that each of these estimators estimates a different scale parameter
is not a point of concern if our goal is only to use them in arriving at scale
invariant robust estimators of β0.



Let F(x) := P(εi ≤ x) be the marginal d.f. and f (x) := F ′(x) the
marginal density (stationary errors {εi})

• s1 (= the median of absolute residuals) estimates the median σ1 of |ε1| defined as the

unique solution of

F(σ1)− F(−σ1) = 1/2.

• s2 (= the median of absolute pairwise residuals) estimates the median σ2 of |ε1 − ε′1|
where ε′1 is independent copy of ε1 defined as the unique solution of∫

[F(σ2 + x)− F(−σ2 + x)]dF(x) = 1/2.

• σ1 6= σ2 in general

• The fact that each of these estimators estimates a different scale parameter
is not a point of concern if our goal is only to use them in arriving at scale
invariant robust estimators of β0.



Let F(x) := P(εi ≤ x) be the marginal d.f. and f (x) := F ′(x) the
marginal density (stationary errors {εi})

• s1 (= the median of absolute residuals) estimates the median σ1 of |ε1| defined as the

unique solution of

F(σ1)− F(−σ1) = 1/2.

• s2 (= the median of absolute pairwise residuals) estimates the median σ2 of |ε1 − ε′1|
where ε′1 is independent copy of ε1

defined as the unique solution of∫
[F(σ2 + x)− F(−σ2 + x)]dF(x) = 1/2.

• σ1 6= σ2 in general

• The fact that each of these estimators estimates a different scale parameter
is not a point of concern if our goal is only to use them in arriving at scale
invariant robust estimators of β0.



Let F(x) := P(εi ≤ x) be the marginal d.f. and f (x) := F ′(x) the
marginal density (stationary errors {εi})

• s1 (= the median of absolute residuals) estimates the median σ1 of |ε1| defined as the

unique solution of

F(σ1)− F(−σ1) = 1/2.

• s2 (= the median of absolute pairwise residuals) estimates the median σ2 of |ε1 − ε′1|
where ε′1 is independent copy of ε1 defined as the unique solution of∫

[F(σ2 + x)− F(−σ2 + x)]dF(x) = 1/2.

• σ1 6= σ2 in general

• The fact that each of these estimators estimates a different scale parameter
is not a point of concern if our goal is only to use them in arriving at scale
invariant robust estimators of β0.



Let F(x) := P(εi ≤ x) be the marginal d.f. and f (x) := F ′(x) the
marginal density (stationary errors {εi})

• s1 (= the median of absolute residuals) estimates the median σ1 of |ε1| defined as the

unique solution of

F(σ1)− F(−σ1) = 1/2.

• s2 (= the median of absolute pairwise residuals) estimates the median σ2 of |ε1 − ε′1|
where ε′1 is independent copy of ε1 defined as the unique solution of∫

[F(σ2 + x)− F(−σ2 + x)]dF(x) = 1/2.

• σ1 6= σ2 in general

• The fact that each of these estimators estimates a different scale parameter
is not a point of concern if our goal is only to use them in arriving at scale
invariant robust estimators of β0.



Let F(x) := P(εi ≤ x) be the marginal d.f. and f (x) := F ′(x) the
marginal density (stationary errors {εi})

• s1 (= the median of absolute residuals) estimates the median σ1 of |ε1| defined as the

unique solution of

F(σ1)− F(−σ1) = 1/2.

• s2 (= the median of absolute pairwise residuals) estimates the median σ2 of |ε1 − ε′1|
where ε′1 is independent copy of ε1 defined as the unique solution of∫

[F(σ2 + x)− F(−σ2 + x)]dF(x) = 1/2.

• σ1 6= σ2 in general

• The fact that each of these estimators estimates a different scale parameter
is not a point of concern if our goal is only to use them in arriving at scale
invariant robust estimators of β0.



Koul (2002) [Asymptotic distributions of some scale estimators in nonlinear models. Metrika, 55, 75–90]

studied consistency rates and asymptotic distributions of s1 and s2 for a
large class of regression models with i.i.d. and finite variance long
memory moving average errors {εi}

• In the i.i.d. error case Koul (2002) proved that the limit (Gaussian)
distribution of s2 does not depend on β̂ regardless of whether f = F ′ is
symmetric around zero or not.
The limit Gaussian distribution of s1 in general depends of β̂ unless the error
density is symmetric around zero

• In the finite variance long memory moving average error case Koul (2002)
proved that the limit distribution of s2 is degenerate at zero and does not
depend on β̂.
For s1 similar conclusions hold if errors are symmetric around zero

• The limit distribution of scale estimator being free of the initial estimator β̂ is
desirable
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3. Errors: linear process with LM and infinite variance

Assumption E(α, d) Errors of regression model (1) form MA process

εi =
∑
j≤i

bi−jζj , i ∈ Z, (4)

bj ∼ c0j−(1−d), (j →∞), 0 < d < 1− 1/α, c0 > 0,

with i.i.d. innovations {ζj , j ∈ Z} with d.f. G(x) = P(ζ0 ≤ x) belonging to the
domain of attraction of α-stable law, 1 < α < 2, viz., Eζj = 0 and

lim
x→−∞

|x|αG(x) = c−, lim
x→∞

xα(1−G(x)) = c+, c+ + c− > 0 (5)

Moreover,

|Eeiuζ0 | ≤ C (1 + |u|)−δ (∀ u ∈ R, ∃C , δ > 0). (6)

• (5) implies n−1/α∑n
j=1 ζj →D Z , where Z is α-stable r.v. with ch.f.

Eei uZ = e−|u|
αω(α,u), u ∈ R, (7)

ω(α, u) := −Γ(2−α)(c++c−)
α−1 cos(πα/2)

(
1− i c+−c−

c++c−
sgn(u) tan(πα/2)

)
.
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• D.f. F(x) := P(εi ≤ x) is regularly varying with tail parameter α ∈ (1, 2):

lim
x→−∞

|x|αF(x) = B−, lim
x→∞

xα(1− F(x)) = B+.

• d ∈ (0, 1− 1/α): LM parameter,
∑∞

j=0 |bj | =∞,
∑∞

j=0 |bj |α <∞

• CLT for sample mean ε̄n := n−1∑n
i=1 εi (Astrauskas, 1984), (Avram and

Taqqu, 1986, 1992), (Kasahara and Maejima, 1988):

n1−d−1/αε̄n = n−d−1/α
n∑

i=1

εi →D c̃ Z , (8)

where Z is α-stable r.v. in (7) and c̃ = c0
(∫ 1

−∞

(∫ 1

0
(t − s)−(1−d)

+ dt
)α

ds
)1/α

• (6) is a weak regularity condition on the d.f. G which implies however that
the d.f. F is infinitely differentiable

• Assumption E(α, d) is satisfied by ARFIMA(p, d, q) with α-stable innovations
(Kokoszka and Taqqu, 1995)
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4. Asymptotic distributions of scale estimators

Recall: s1 := med
{
|rni |; 1 ≤ i ≤ n

}
, s2 := med

{∣∣rni − rnj
∣∣; 1 ≤ i < j ≤ n

}
where rni := Xni − g(β̂, zni) are residuals of regression model in (1)

F(x) = P(εi ≤ x) = d.f. of errors, f (x) = F ′(x), f±(x) := f (x)± f (−x)

Let
α∗ := α(1− d).

Note
1 < α∗ < α for 0 < d < 1− 1/α, 1 < α < 2.

Thm 1 Suppose regression model (1) holds with regression function
satisfying Assumption G(an) with an = n1−d−1/α and errors satisfying
Assumption E(α, d) with 1 < α < 2, 0 < d < 1− 1/α.

In addition, suppose β̂ is an estimator of β0 satisfying∥∥n1−d−1/α(β̂ − β0)
∥∥ = Op(1). (9)
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(i) Let f (σ1) 6= f (−σ1). Then, for every x ∈ R,

P(n1−d−1/α(s1 − σ1) ≤ xσ1)

= P
(

n1−d−1/α
(
ε̄n +

( 1
n

n∑
i=1

ġ(β0, zni)
)′

(β̂ − β0)
)
≥ −xσ1f+(σ1)

f−(σ1)

)
+ o(1).

(ii) Let f (σ1) = f (−σ1). Then, for every x ∈ R,

P
(
n1−1/α∗(s1 − σ1) ≤ xσ1

)
→ P

(
Z∗1 ≤ xσ1f+(σ1)

)
,

where Z∗1 := Z∗(σ1)−Z∗(−σ1) and Z∗(x), x ∈ R is α∗-stable process
defined in (13) below.

• If f (x) is not symmetric and β̂ and the regression model satisfy some
additional conditions then s1 has α-stable limit and the convergence rate of s1
is the same as that of ε̄n

• If f (x) is symmetric then s1 has α∗-stable limit with α∗ < α which is free of
β̂ and the convergence rate of s1 is faster than that of ε̄n
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Thm 2 Suppose the regression model, errors and β̂ satisfy the same
conditions as in Thm 1.

Then

P
(
n1−1/α∗(s2 − σ2) ≤ xσ2

)
→ P

(
Z∗2 ≤ x

)
, ∀ x ∈ R,

where Z∗2 is an α∗-stable r.v. defined in below.

Idea of the proof. s1 = med
{
|rni |; 1 ≤ i ≤ n

}
, S(y) :=

∑n
i=1 I (|rni | ≤ y),

y ≥ 0. Then S(y) :=
∑n

i=1 I (rni ≤ y)−
∑n

i=1 I (rni ≤ −y) and

{s1 ≤ y} = {S(y) ≥ (n + 1)/2}, n odd

Since rni ≈ εi the study of P(s1 ≤ y) reduces to that of Fn(y)− Fn(−y),
where Fn(x) is the empirical process:

Fn(x) := n−1
n∑

i=1

I (εi ≤ x), x ∈ R

Similarly, probabilities of s2 = med
{∣∣rni − rnj

∣∣; 1 ≤ i < j ≤ n
}

can be
expressed via those of T(y) :=

∑
1≤i<j≤n I (|rni − rnj | ≤ y) and the latter

probabilities since rni ≈ εi can be expressed via those of the ‘bilinear empirical
integral’: ∫

[Fn(y + x)− Fn(−y + x)]dFn(x), y ≥ 0
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• Reduction of ‘residual’ empirical functionals to ‘true’ empirical functionals
corresponding to completely observed errors εi follows the methodology in the
monograph Koul (2002)

• The study of the limit distribution of ‘true’ empirical functionals uses the first
and second order asymptotic expansions and Uniform Reduction Principles
(URP) for the EP (empirical process) (see below).

5. The EP of linear LM sequence with infinite variance.
The first and second order URP.
Let {εi , i ∈ Z} be a strictly stationary and ergodic sequence with marginal d.f.
F(x) = P(ε0 ≤ x), x ∈ R

The EP {Fn(x) := n−1∑n
i=1 I (εi ≤ x), x ∈ R} is an unbiased

(EFn(x) = F(x)) and strongly consistent estimator of F :

sup
x∈R
|Fn(x)− F(x)| = op(1).

• For ‘weakly dependent’ {εi}, the consistency rate of Fn is n1/2 and
n1/2(Fn(x)− F(x)) tends weakly in the Skorohod space D(R̄) to a nontrivial
Gaussian process
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• For LM Gaussian process {εi} with memory parameter d ∈ (0, 1/2) the EP
tends to completely a different degenerated limit (Dehling and Taqqu, 1989):

n1/2−d(Fn(x)− F(x)) =⇒D(R̄) f (x)Z (10)

where f (x) = F ′(x) is (Gaussian) density and Z ∼ N (0, σ2) is a normal r.v.

• (10) remains true if {εi} is a linear MA process with finite variance (Giraitis
et al., 1996), (Ho and Hsing, 1996), (Giraitis and S., 1989)

• (10) is a consequence of the URP I (the first order URP) for the EP:

sup
x∈R

n1/2−d∣∣Fn(x)− F(x) + f (x)ε̄n
∣∣ = op(1) (11)

where ε̄n = n−1∑n
i=1 εi is the sample mean.

• f (x)ε̄n can be regarded as the first term of the asymptotic expansion of Fn
which may vanish for some nonlinear statistics and is insufficient for some
applications

• Higher-order asymptotic expansions of the EP and noncentral limit theorems:

Fn(x)− F(x) =
∑

1≤k≤[1/(1−2d)]

(−1)kF (k)(x)ε(k)
n + n−1/2Qn(x) (12)
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• The above results refer to linear/Gaussian LM processes with finite variance

This talk: EP of linear process with long memory and infinite variance:

εi =
∑
j≤i

bi−jζj , bj ∼ c0j−(1−d), 0 < d < 1− 1/α

with i.i.d. innovations {ζj} in the domain of attraction of α-stable law,
1 < α < 2, see Assumption E(α, d).

The EP Fn(x) =
∑n

i=1 I (εi ≤ x) is a sum of bounded r.v.s.

Hsing (1999, Ann. Probab.) claimed that the limit distribution of
n(α(1−d)−1)/2(Fn(x)− F(x)) is Gaussian, which is incorrect

Koul and S. (2001) proved that n1−d−1/α(Fn(x)− F(x)) tends to a
degenerated α-stable process:

n1−d−1/α(Fn(x)− F(x)) =⇒D(R̄) f (x)Z

where f (x) = F ′(x) is marginal density and Z is α-stable r.v.

Note n(α(1−d)−1)/2 = o(n1−d−1/α) since (α(1− d)− 1)/2 < 1− d − 1/α is equivalent to

d < 1− 1/α for 1 < α < 2

The last result is a consequence of the following URP for the EP:
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Z∗(x) := c1/α∗
+ ψ+(x)Z+ + c1/α∗

− ψ−(x)Z−, x ∈ R, (13)

where:

• Z± are independent copies of a totally skewed α∗-stable r.v. Z with

P(Z > x) ∼ x−α∗ , P(Z < −x) = o(x−α∗), x →∞

• ψ±(x), x ∈ R are deterministic functions written as

ψ±(x) :=
(
c

1
1−d
0 /(1−d)

) ∫ ∞
0

(
F(x∓s)−F(x)± f (x)s

)
s−1− 1

1−d ds (14)

• ψ±(x) agree, up to a multiplicative factor, with the Marchaud (left and
right) fractional derivative of F(x) of order 1/(1− d) ∈ (1, 2)

• In contrast, asymptotic expansion of Ho and Hsing (1996) of EP under finite
4th moment of ζ0 contains only integer derivatives F (k)(x), k = 1, 2, · · · , see
(12)
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The answer to Q.2 which also explains

how α∗-stable limit in Thm 4
originates is given in Thm 5

Thm 5 (URP II) Under the same conditions as in Thms 3 and 4,

supx∈R n1−1/α∗ |Fn(x)− F(x) + f (x)ε̄n −Zn(x)| = op(1) (15)

where

Zn(x) := n−1∑n
s=1 ηn,s(x; ζs), x ∈ R, where

ηn,s(x; z) :=
∑n−s

j=0
(
F(x − bjz)− EF(x − bjζ0) + f (x)bjz

)
.

• Zn(x) is a sum of independent r.v.s ηn,s(x; ζs), s = 1, · · · ,n in the domain
of attraction of α∗-stable law

• The convergence n1−1/α∗Zn(x)→D Z∗(x) can be obtained from classical
CLT
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Open problems:

1. Extension of the limit results on scale estimators to random regressors:

Xni = g(β0, zni) + εi , 1 ≤ i ≤ n

where {zni , 1 ≤ i ≤ n} are random and independent of {εi}

Estimation of β0 with LM finite variance errors: Koul (1996), Koul et al.
(2004)

2. Limit distribution of unbounded functionals of linear LM sequence with
infinite variance.

Given a nonlinear function H : R→ R and {εi} as in Thms 3-4,
what is the limit distribution of Sn(H ) =

∑n
i=1 H (εi) ?

Informally, Sn(H ) can be represented through the EP:

Sn(H )− ESn(H ) = n
∫

H (x)d(Fn(x)− F(x))
= −n

∫
(Fn(x)− F(x))dH (x)

= nε̄n
∫

f (x)dH (x)− n
∫
Zn(x)dH (x)

For symmetric H and f , 1st order term
∫

f (x)dH (x) = 0 suggesting α∗-stable
limit:
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n−1/α∗(Sn(H )− ESn(H ))→D −
∫
Z∗(x)dH (x) (16)

=
∫

H (x)dZ∗(x)

= c1/α∗
+ Z+

∫
H (x)dψ+(x) + c1/α∗

− Z−
∫

H (x)dψ−(x)

(Recall ψ± are fractional derivatives of d.f. F of order 1/(1− d) ∈ (1, 2).)

• The above derivation of α∗-stable limit in (16) is heuristic but hopefully can
be justified under additional conditions on H

• The problem is completely open for H s.t. the integrals
∫

H (x)dψ±(x) do
not exist

• The case of power functions H (x) = |x|p is of particular interest

• The problem of the limit distribution of
∑n

i=1 |εi |p for LM infinite variance
moving averages {εi} is related to that of the limit distributions of power
variations of semi-stationary Lévy process discussed in Basse-O’Connor,
Lachièze-Rey and Podolskij (2015)
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Lachièze-Rey and Podolskij (2015)



n−1/α∗(Sn(H )− ESn(H ))→D −
∫
Z∗(x)dH (x) (16)

=
∫

H (x)dZ∗(x)

= c1/α∗
+ Z+

∫
H (x)dψ+(x) + c1/α∗

− Z−
∫

H (x)dψ−(x)

(Recall ψ± are fractional derivatives of d.f. F of order 1/(1− d) ∈ (1, 2).)

• The above derivation of α∗-stable limit in (16) is heuristic but hopefully can
be justified under additional conditions on H

• The problem is completely open for H s.t. the integrals
∫

H (x)dψ±(x) do
not exist

• The case of power functions H (x) = |x|p is of particular interest

• The problem of the limit distribution of
∑n

i=1 |εi |p for LM infinite variance
moving averages {εi} is related to that of the limit distributions of power
variations of semi-stationary Lévy process discussed in Basse-O’Connor,
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6. Sketch of the proof of Thms 4 and 5

Thm 5 (URP II) ⇒ Thm 4. By Thm 5 it suffices to prove

n1−1/α∗Zn(x) =⇒D(R̄) Z∗(x)

or

n−1/α∗
∑n

s=1 ηn,s(x; ζs) =⇒D(R̄) Z∗(x) (17)

Step 1. Replace independent but not identically distributed ηn,s(x; ζs) in (17)
by independent and identically distributed η(x; ζs), s = 1, · · · ,n where

η(x; z) :=
∑∞

j=0

(
F(x − bjz)− EF(x − bjζ0) + f (x)bjz

)
is a deterministic function of x and z

Step 2. Show the limits:

lim
z→±∞

|z|−1/(1−d)η(x; z) = ψ±(x) = const
∫∞

0

(
F(x ∓ s)− F(x)± f (x)s

)
ds

s
1+ 1

1−d
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Step 3. Show Step 2 and α-tails of ζs imply α∗-tails of η(x; ζs)

and hence α∗-stable limit of
∑n

s=1 ηn,s(x; ζs) for x fixed
(also convergence of finite-dimensional distributions)

Step 4. Verify the tightness in D(R̄) in (17) using Kolmogorov’s criterion in
Billingsley (1968)

Sketch of proof of Thm 5 (URP II).

Step 1. Decompose

Fn(x)− F(x) + f (x)ε̄n −Zn(x)
= n−1∑n

i=1

(
I (εi ≤ x)− F(x) + f (x)εi

)
−Zn(x)

= Rn1(x) +Rn2(x)

where

Rn1(x) := n−1
∑n

i=1

{
I (εi ≤ x)− F(x) + f (x)εi

−
∑

s≤i
E
[
I (εi ≤ x)− F(x) + f (x)εi

∣∣ζs
]}

= n−1
n∑

i=1

{
I (εi ≤ x)− F(x)−

∑
s≤i

(P[εi ≤ x|ζs]− F(x))
}
(18)
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• The approximation of EP in (18) originates to Hsing (1999) and was used in
S. (2002, 2004)

• It is not intuitive and is crucial for reducing the problem to a sum of
independent r.v.s. since

∑n
i=1∨s(P[εi ≤ x|ζs]− F(x)), s ≤ n are independent

and have zero mean

Step 2. Proof of

sup
x∈R

n1−1/α∗ |Rni(x)| = op(1), i = 1, 2. (19)

The control of the sup in (19) follows from a chaining argument and the
following bound:

E |Rni(x, y)|r ≤ µ(x, y)nr( 1
α∗
−1)−κ

, ∀ x < y, i = 1, 2 (20)

where Rni(x, y) = Rni(y)−Rni(x), 1 < r < 2, κ > 0 and µ(x, y) is a finite
measure on R.

• To prove (20) following Ho and Hsing (1996) etc. we represent Rni(x, y) as
a sum of martingale differences w.r.t. Fs = σ{ζu , u ≤ s}:

Rni(x, y) =
∑
s≤n

(E [Rni(x, y)|Fs]− E [Rni(x, y)|Fs−1])︸ ︷︷ ︸
=Uni,s(x,y)
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