
Intermittency and the convergence of integrated supOU processes

Intermittency and the convergence of integrated supOU processes

Murad S. Taqqu
Boston University

(Joint work with Danijel Grahovac, Nikolai N. Leonenko and Alla Sikorskii)

August 4, 2017

1 / 34



Intermittency and the convergence of integrated supOU processes

Outline

Intermittency:
• We shall define it.
• We will show that a self-similar process cannot be intermittent.
• But how does this fit with Lamperti’s theorem which states that if we have
convergence of normalized sums, then the limit is self-similar?

We shall use supOU processes as our test cases.
• I will introduce these processes
• It will be like bringing coal to Newcastle

We will show that integrated supOU processes can be intermittent.

We will then focus on limit theorems

Conclusion: A process can be intermittent and satisfy a limit theorem

Conclusion: Intermittency involves an unusual behavior of the moments.
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Intermittency and the convergence of integrated supOU processes

Lamperti’s theorem

Let X (t), t ≥ 0 be a strictly stationary process and suppose without loss of generality that
it has mean zero. Let X ∗(t) =

∫ t

0
X (s)ds, t ≥ 0 be the aggregated process. Suppose that{
X ∗(Tt)

AT

}
d→ {Z(t)} , (1)

as T →∞ with convergence in the sense of convergence of all finite dimensional
distributions as T →∞. By Lamperti’s theorem, the normalizing sequence is always of
the form AT = L(T )TH for some H > 0 and L slowly varying at infinity. Moreover, the
limiting process X ∗ is H-self-similar, that is, for any c > 0,

{Z(ct)} d
= {cHZ(t)},

where {·} d
= {·} denotes the equality of finite dimensional distributions.

3 / 34



Intermittency and the convergence of integrated supOU processes

The scaling function and intermittency

For a process X ∗ = {X ∗(t), t ≥ 0}, let (0, q(X ∗)) denote the range of finite moments,
that is

q(X ∗) = sup{q > 0 : E|X ∗(t)|q <∞ ∀t}.

Definition. The scaling function at point q ∈ (0, q(X ∗)) of the process X ∗ is

τX∗(q) = lim
t→∞

logE|X ∗(t)|q

log t
.

Definition. A stochastic process X ∗ = {X ∗(t), t ≥ 0} is intermittent if there exist
q1 < q2 ∈ (0, q(X ∗)) such that

τX∗(q1)

q1
<
τX∗(q2)

q2
. (2)

Note. If X ∗ itself is H-self-similar, then

τX∗(q) = Hq, q ∈ (0, q(X ∗))

that is, τX∗(q) is linear in q. Hence a self-similar process cannot be intermittent.
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Intermittency and the convergence of integrated supOU processes

Important note

Consider the relation {
X ∗(nt)

An

}
d→ {Z(t)} .

We want to study the intermittency of X ∗ and not of the limit Z(t) because that limit is
self-similar and hence cannot be intermittent.
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Intermittency and the convergence of integrated supOU processes

What does Lamperti’s theorem imply on the scaling function τX∗(q)?

Theorem
Let X ∗ = {X ∗(t), t ≥ 0} and Z = {Z(t), t ≥ 0} be two processes such that Z(t) is
nondegenerate for every t > 0 and suppose that for a sequence (An), An > 0,
limn→∞ An =∞, one has {

X ∗(nt)

An

}
d→ {Z(t)} , (3)

with convergence in the sense of convergence of all finite dimensional distributions as
n→∞. Then there exists a constant H > 0 such that for every q > 0 satisfying

E|X ∗(nt)|q

Aq
n

→ E|Z(t)|q, ∀t ≥ 0, (4)

the scaling function of X ∗ at q is

τX∗(q) = Hq. (5)

Therefore, in the intermittent case either (3) or the convergence of moments (4) fail or
both must fail to hold. We will show:

Theorem
Integrated supOU processes can be intermittent. (Also true for trawl processes.)
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Intermittency and the convergence of integrated supOU processes

The supOU process

The supOU process will be defined through successive steps:

1

dX (t) = −λX (t)dt + dB(λt), λ > 0, t ≥ 0.

SDE, B(t) is Brownian motion, Mean reversion to the origin through −λ.

2 Integral form. X (t) is strictly stationary.

X (t) = e−λt
∫ t

−∞
eλsdB(λs) =

∫
R

e−λt+s1[0,∞)(λt − s)dB(s), λ > 0, t ≥ 0.

3

X (t) =

∫
R

e−λt+s1[0,∞)(λt − s)dL(s), λ > 0, t ≥ 0.

L(s) is a Lévy process with E log(1 + |L(1)|) <∞, so that X (t) is well defined. L(s)
is independently scattered, has stationary increments and L(1) is infinitely divisible.

4 Randomize λ using the probability distribution π.

X (t) =

∫
R+

∫
R

e−λt+s1[0,∞)(λt − s)dL(s)dπ(λ) t ≥ 0.
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Intermittency and the convergence of integrated supOU processes

How does the mixing measure π affects things?

π does not affect the marginal distribution of X (t) because X (t) is stationary and the
representation of the process involves λt:

X (t) =

∫
R+

∫
R

e−λt+s1[0,∞)(λt − s)dL(s)dπ(λ) t ≥ 0.

But π affects the dependence structure.
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Intermittency and the convergence of integrated supOU processes

Modeling considerations

The supOU process is attractive because one can model

the dependence though the non-random mixing measure π.

the marginal distribution through the random Lévy process L(s):

X (t) =

∫
R+

∫
R

e−λt+s1[0,∞)(λt − s)dL(s)dπ(λ) t ≥ 0.

This is attractive, particularly in finance.

Recall:

Lévy process

= drift + Gaussian component + pure jump Lévy component

The pure jump Lévy component is a limit of compound processes.
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Intermittency and the convergence of integrated supOU processes

How does the mixing measure π affects the dependence structure?

Assume that X (t) has finite variance. Then its scaling function is given by

r(τ) =

∫
R+

e−τλπ(dλ), τ ≥ 0, (6)

that is, the correlation is the Laplace transform of π. Hence we have:

Proposition

Suppose X is a square integrable supOU process with correlation function r , L is a slowly
varying function at infinity and α > 0. Then

π ((0, x ]) ∼ L(x−1)xα, as x → 0

if and only if
r(τ) ∼ Γ(1 + α)L(τ)τ−α, as τ →∞.

10 / 34



Intermittency and the convergence of integrated supOU processes

Long-range dependence
We saw that for α > 0,

π(0, x ] ≈ xα, as x → 0

is equivalent to
r(τ) ≈ τ−α, as τ →∞.

If α ∈ (0, 1), then we have long-range dependence

because
∫∞
0

r(τ) =∞ and

Var X ∗(t) =

∫ t

0

∫ t

0

r(u − v)dudv ≈ t−α+2as t →∞.

If we set Var X ∗(t) ≈ t2H , we have 2H = −α + 2, with

1/2 < H < 1.

If α > 1 we have short-range dependence

because

Var X ∗(t) =

∫ t

0

∫ t

0

r(u − v)dudv ≈ t as t →∞,

and thus 2H = 1 or H = 1/2.
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Intermittency and the convergence of integrated supOU processes

Examples

1 π({λ}) = 1

2 π is a discrete probability on λk , k = 1, 2, · · · . Then let

X (t)
d
=
∞∑
k=1

X (k)(t), t ≥ 0,

where {X (k)(t), t ∈ R}, k ∈ N are independent OU type processes corresponding to
parameter λk and its characteristic or cumulant function is weighted by pk . From
(6) the correlation function is

r(τ) =
∞∑
k=1

e−λkτpk , τ ≥ 0.

3 π is a Gamma distribution:

π(dx) =
1

Γ(α)
xα−1e−x1(0,∞)(x)dx ,

where α > 0. Then π((0, x ]) ≈ xα, x > 0. In fact

r(τ) = (1 + τ)−α

Long-range dependence if α ∈ (0, 1).
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Intermittency and the convergence of integrated supOU processes

Analyticity assumption
We will assume that the cumulant function of X (t)

κY (θ) = C {θ ‡ X} = logEe iθX

is analytic in a neighborhood of the origin in the complex plane.

This ensures the existence of all the moments and cumulants of the marginal
distribution of the underlying supOU process X (t).
In proofs we can use expansions of the cumulant function.
We may then involve high moments when discussing intermittency (it may be
enough to take derivatives up to finite order).
The analyticity does not depend on the mixing measure π since the choice of π does
not affect the marginal distribution of X .
The following is a useful criterion for checking analyticity of the cumulant function:

Lemma
The characteristic and cumulant functions are analytic in a neighborhood of the origin if
and only if there is a constant C such that the corresponding distribution function F
satisfies

1− F (x) + F (−x) = O(e−ux), as x →∞,

for some u > 0.

It follows that the cumulant function of X (t) is analytic in the neighborhood of the
origin if there exists a > 0 such that Eea|X (t)| <∞. 13 / 34



Intermittency and the convergence of integrated supOU processes

Example: the inverse Gaussian distribution

IG(δ, γ), γ > 0, δ > 0. It has density

fIG(δ,γ)(x) =
δ√
2π

eδγx−3/2 exp

{
−1

2

(
δ2x−1 + γ2x

)}
1(0,∞)(x)

Hence, there is a > 0 such that Eea|X (t)| <∞, the cumulant generating function is
analytic in a neighborhood of the origin and has the form

κX (θ) = δ
(
γ −

√
γ2 − 2iθ

)
.
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Intermittency and the convergence of integrated supOU processes

Example: the normal inverse Gaussian distribution

NIG(α, β, δ, µ) with parameters α ≥ |β|, δ > 0, µ ∈ R

The density of NIG(α, β, δ, µ) distribution satisfies

fNIG(α,β,δ,µ)(x) ∼ C |x |−3/2e−α|x|+βx , as x → ±∞.

Hence, there is a > 0 such that Eea|X (t)| <∞, the cumulant generating function is
analytic in a neighborhood of the origin and has the form

κX (θ) = iµθ + δ

(√
α2 − β2 −

√
α2 − (β + iθ)2

)
.

Other examples of supOU processes satisfying the required conditions can be obtained by
taking the marginal distribution to be gamma, variance gamma, tempered stable, Euler’s
gamma.
Note: we can deal with the heavy-tailed student distribution by having the moments
finite up to certain order.
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Intermittency and the convergence of integrated supOU processes

Brief notation review

X(t) is a supOU process. It is strictly stationary and all its moments are finite.

X (t) =

∫
R+

∫
R

e−λt+s1[0,∞)(λt − s)dL(s)dπ(λ) t ≥ 0.

π(0, x ] ≈ xα, as x → 0, α > 0.

α ∈ (0, 1) LRD, α > 1 SRD.

X ∗(t) =
∫ t

0
X (s)ds, t ≥ 0

The scaling function of the process X ∗ at point q is

τx∗(q) = lim
t→∞

logE|X ∗(t)|q

log t
,

A stochastic process X ∗ = {X ∗(t), t ≥ 0} is intermittent if there exist q1 < q2

such that
τX∗(q1)

q1
<
τX∗(q2)

q2
.

If Z is a H-self-similar process with E|Z(t)|q <∞, then τZ (q) = Hq, and τZ (q)/q is
constant, therefore the process is not intermittent.
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Intermittency and the convergence of integrated supOU processes

The three processes

Do not confuse the following three processes:

X (t), t ≥ 0: supOU, stritly stationary, all moments finite, mean subtracted

X ∗(t) =
∫ t

0
X (s)ds, t ≥ 0: stationary increments, all moments finite

Z(t), t ≥ 0: limit process, may have infinite variance

Intermittency is associated with X ∗(t).
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Intermittency and the convergence of integrated supOU processes

The intermittency theorem.

Theorem
Let X (t), t > 0 be a non-Gaussian supOU process such that

π(0, x) ≡ L(x−1)xα as x → 0, α > 0.

The cumulant function of X (t) is analytic around the origin.

E(X (t)) = 0,E(X (t)2) 6= 0.

Then for every q ≥ q∗,
τX∗(q) = q − α,

where q∗ is the smallest even integer greater than 2α. Hence, for q∗ ≤ q1 < q2,

τY (q1)

q1
= 1− α/q1 < 1− α/q2 =

τ∗X (q2)

q2
,

so X ∗ = {X ∗(t), t ≥ 0} is intermittent.

Note: ”Non-Gaussian” means that the Lévy process includes a pure jump component.
Note on proof: cumulants → even moments → absolute moments → moments
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Intermittency and the convergence of integrated supOU processes

Questions

Suppose that X ∗ = {X ∗(t), t ≥ 0} is intermittent.

Does X ∗(Tt) adequately normalized converge in the sense of finite dimensional
distribution?

If yes, to what?

How is this compatible with the intermittency?

How does it fit with Lamperti’s theorem?
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Intermittency and the convergence of integrated supOU processes

The Lévy process defining X (t) has a Gaussian component

Theorem
Suppose that the Lévy process defining X (t) has a Gaussian component but is not purely
Gaussian (i.e. it has also a jump component), and let EX (t) = 0, σ2 = VarX (t) <∞
and α ∈ (0, 1) with some slowly varying function L.
Then as T →∞ {

1

T 1−α/2L(T )1/2
X ∗(Tt)

}
d→ {σ̃BH(t)} ,

where {BH(t)} is fractional Brownian motion with H = 1− α/2 ∈ (1/2, 1) and

σ̃2 = σ2 α

2− α

∫ ∞
0

(
1− e−1/z

)
z−αdz .

Remark: By the intermittency theorem, if the cumulant function of X (t) is analytic
around the origin, then X ∗(t) is intermittent.
Remark: The theorem holds also if X (t) is purely Gaussian, but in that case

E|N(0, σ2)|q = Cσq

Then the process X ∗(t) cannot be intermittent.
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Intermittency and the convergence of integrated supOU processes

Let’s look at other limit theorems
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Intermittency and the convergence of integrated supOU processes

Basic assumptions

To get intermittency for X ∗ = {X ∗(t), t ≥ 0} in the sequel, we will always suppose:

The cumulant function for X (t) is analytic around the origin.
In particular, all the moments are finite.

EX (t) = 0,E(X (t)2) 6= 0
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Intermittency and the convergence of integrated supOU processes

The Lévy process defining X (t) is a pure jump process

Thus we now suppose that the Lévy process does not have a Gaussian component.

Introduction of the parameter β > 0:

In addition to the dependence parameter α, the limit will depend on the behavior of the
Lévy measure µL near the origin. We assume there exists β > 0, c+, c− ≥ 0,
c+ + c− > 0 such that

lim
x↓0

xβµL ([x ,∞)) = c+ and lim
x↓0

xβµL ((−∞,−x ]) = c−. (7)

Note that we must always have β < 2 since the Lévy measure µL must satisfy∫
0

x2µL(dx) <∞.
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Intermittency and the convergence of integrated supOU processes

Lévy-stable limit

Theorem
Suppose that

EX (t) = 0, σ2 = VarX (t) <∞
π involves α ∈ (0, 1) and some slowly varying function L.

There is no Gaussian component

There is a β > 0 such that
∫
R xβµL(dx) <∞.

0 < β < 1 + α < 2.

Then, as T →∞,{
1

T 1/(1+α)L (T 1/(1+α))
1/(1+α)

X ∗(Tt)

}
d→ {S1+α(t)} ,

where {S1+α} is an (1 + α)-stable Lévy process.

Note: 1 + α dominates β. Note also that S1+α(t) has infinite variance since 1 + α < 2
and has independent increments.
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Intermittency and the convergence of integrated supOU processes

Dependent stable process

Theorem
Suppose that

EX (t) = 0, σ2 = VarX (t) <∞
π involves α ∈ (0, 1) and some slowly varying function L.

There is no Gaussian component

The conditions on M hold with β > 0,

0 < 1 + α < β < 2.

Then as T →∞, {
1

T 1−α/βL(T )1/β
X∗(Tt)

}
d→
{
Zα,β(t)

}
,

where {Zα,β} is β-stable (1− α/β)-self-similar process with stationary increments given by the
stochastic integral representation

Zα,β(t) =

∫
R+

∫
R
(f(x , t − s)− f(x ,−s)) Sβ(dx , ds), (8)

where
f(x , u) = x−1(1− e−xu)1x>01u>0,

and where Sβ is a β-stable random measure on R+ × R with control measure αxαdxds.
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Intermittency and the convergence of integrated supOU processes

Notes about the limit

The limit is

Zα,β(t) =

∫
R+

∫
R

(f(x , t − s)− f(x ,−s)) Sβ(dx , ds). (9)

This process was first obtained by Pilipauskaité and Surgailis (2010), Advances in
Applied Probability 42.2 (2010) 509-527, in their study of the aggregation of
random AR(1) processes.

The process has stationary but dependent increments.

The process is self-similar with H = (1− α/β) ∈ (1/2, 1).

It is a stable self-similar mixed moving average (because of the x variable)

f(x , t − s)− f(x ,−s) =


x−1e−xs(1− e−xt), if s < 0

x−1(1− e−x(t−s)), if 0 ≤ s ≤ t

0, otherwise.
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Intermittency and the convergence of integrated supOU processes

Where is the intermittency best seen?
Perhaps in the following theorem where the limit is FBM, but
• X ∗ is not intermittent if it is purely Gaussian and
• X ∗ is intermittent if it has also a pure jump component.

Theorem
Suppose that the supOU process X (t) is defined using a Lévy process which is

purely Gaussian

or having

also a pure jump component

with EX (t) = 0, σ2 = VarX (t) <∞ and α ∈ (0, 1) with some slowly varying function L.
Then in both cases, as T →∞{

1

T 1−α/2L(T )1/2
X ∗(Tt)

}
d→ {σ̃BH(t)} ,

where {BH(t)} is fractional Brownian motion with H = 1− α/2 ∈ (1/2, 1).

X ∗(t) is intermittent only in the second case.
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Intermittency and the convergence of integrated supOU processes

Conclusion

Using supOU processes, we showed that:

Limit theorems and intermittency can occur jointly;

Intermittency involves an unusual behavior of the moments.
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Intermittency and the convergence of integrated supOU processes

Figure : Two new books on LRD
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Intermittency and the convergence of integrated supOU processes

Figure :
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Intermittency and the convergence of integrated supOU processes

THANK YOU
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Intermittency and the convergence of integrated supOU processes

Limit chart

1
0

1

2

α

β
B
G

L1+α

Zα ,β

FBM

BM

Figure :
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Intermittency and the convergence of integrated supOU processes

Intermittency lemma with cumulants

Theorem
Let X (t), t > 0 be a supOU process such that

π(0, x) ≡ L(x−1)xα as x → 0, α > 0.

The cumulant function of X (t) is analytic around the origin.

Then for any q > α+ 1 and κ
(q)
X 6= 0, we have

σX∗(q) = q − α.

Difference in the assumptions:
Cumulant lemma: α > 0, q > α + 1, κ

(q)
X 6= 0.

Conclusion involves σX∗(q) = limt→∞
log |κ(q)

X∗ |
log t

: σX∗(q) = q − α
Moment theorem: assume X (t) non-Gaussian, α > 0, q ≥ q∗, where q∗ is the smallest
even integer greater than 2α, EX (t) = 0, EX (t)2 6= 0.

Conclusion involves τX∗(q) = limt→∞
log E|X∗(t)|q

log t
: τX∗(q) = q − α
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Intermittency and the convergence of integrated supOU processes

Sketch of proof of the FBM theorem

Case 0 < 1 + α < β < 2. Infinite variance since β < 2.
Decompose X (t) = X1(t) + X2(t) where X1(t) has the Gaussian component and X2(t)
has the pure jump component.{

1

T 1−α/2L(T )1/2
X ∗1 (Tt)

}
d→ {σ̃BH(t)} ,

{
1

T 1−α/βL(T )1/β
X ∗2 (Tt)

}
d→ {Zα,β(t)} ,

But

1

T 1−α/2L(T )1/2
X ∗2 (Tt) =

1

T 1−α/2L(T )1/2
T 1−α/βL(T )1/β

T 1−α/βL(T )1/β
X ∗2 (Tt)

d
≈ T 1−α/βL(T )1/β

T 1−α/2L(T )1/2
Zα,β(t)

= T−α(1/β−1/2)L(T )(1/β−1/2)Zα,β(t)→ 0

since 1/β − 1/2 = 2−β
2β

> 0. Hence only X1(t) contributes to the limit.
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